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3Departamento de Genética, Universidad de Granada, 18100 Armilla,
Granada, Spain
4Departamento de Parasitologı́a y Biomedicina López-Neyra, CSIC,
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Talpid moles across all northern continents exhibit
a remarkably large, sickle-like radial sesamoid
bone anterior to their five digits, always coupled
with a smaller tibial sesamoid bone. A possible
developmental mechanism behind this phenom-
enon was revealed using molecular markers
during limb development in the Iberian mole
(Talpa occidentalis) and a shrew (Cryptotis
parva), as shrews represent the closest relatives
of moles but do not show these conspicuous
elements. The mole’s radial sesamoid develops
later than true digits, as shown by Sox9, and
extends into the digit area, developing in relation
to an Msx2-domain at the anterior border of the
digital plate. Fgf8 expression, marking the apical
ectodermal ridge, is comparable in both species.
Developmental peculiarities facilitated the
inclusion of the mole’s radial sesamoid into the
digit series; talpid moles circumvent the almost
universal pentadactyly constraint by recruiting
wrist sesamoids into their digital region using a
novel developmental pathway and timing.
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1. INTRODUCTION
The constancy of pentadactyly among living land ver-
tebrates has been linked to developmental constraints
or strong pleiotropic gene interactions [1]. However,
several species of the earliest tetrapods from the Devo-
nian show more than five digits [2], and syndromes
involving polydactyly in humans and other mammals
are frequent, suggesting that a latent developmental
programme for additional digits may exist in extant
taxa. Many groups of vertebrates present accessory
pre-axial structures in their limbs: tibial and radial
skeletal elements anterior to the first phalanges that
can assume positions similar to those ‘extra-digits’ of
the earliest tetrapods [3,4].

A prominent example of such pre-axial elements is
the massive radial sesamoid (Os radiale externum, pre-
pollex, ‘os falciforme’) in the hands of moles [5]. It
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appears in several genera of talpids in all northern con-
tinents, and, as reported here, its presence is coupled
with that of a distinctive tibial sesamoid (figures 1
and 2c). Their functional role is to increase the autop-
odial area and to brace the animal when digging.
Although not segmented, these pre-axial elements in
at least the most derived moles can be moved indepen-
dently like a digit, becoming abducted to widen the
autopod [7]. Tendinous insertions to the radial sesa-
moid in Talpa come from Musculus abductor pollicis
longus and M. palmaris longus [8]. While sesamoids
in association with the former are taxonomically far
spread [5], the characteristics of the mole’s radial
sesamoid and its distal position are remarkable.

In this study, we examined the early development
of autopodial structures of the Iberian mole, Talpa
occidentalis, and the North American least shrew
Cryptotis parva, as shrews represent the closest rela-
tives of moles but lack such conspicuous pre-axial
sesamoids (figure 1).
2. MATERIAL AND METHODS
(a) Embryo collection

Talpa occidentalis embryos were collected in Granada, Spain, and
their gestational age was determined [9]; C. parva embryos were
obtained from a captive breeding colony at ATSU. Specimens were
fixed in 4 per cent paraformaldehyde, dehydrated through a
methanol series and stored at 2208C.

(b) In situ hybridization

Digoxigenin-labelled antisense RNA probes were synthesized from
plasmids containing PCR products of the major part of the coding
sequences of Sox9 of T. occidentalis and Msx2 and Fgf8 of the
mouse (Mus musculus), using cDNA retro-transcribed from
embryonic mRNA of each species as a template (GenBank accession
numbers: HQ260700, HQ260699 and HQ260698). Whole-
mount in situ hybridizations and histological preparations were
performed [10].
3. RESULTS
The pre-axial elements of talpids are sesamoid bones
[5,11] and have a discrete cartilaginous phase of devel-
opment, as is typical for such elements [5] and are thus
preceded by prechondral mesenchymal condensations.

In 17 d mole specimens (n ¼ 2), there is strong
asymmetric anterior Msx2 expression in the region
that will become occupied by the distal radial sesamoid
(figure 2a,b). Such a strong anterior expression
domain could not be seen in the 17 d mole foot. The
expression of Sox9, serving as an early marker for
limb chondrification [12] marks the prospective
domains of chondral autopodial elements: In 18 d
T. occidentalis, Sox9 expression becomes apparent in a
rod-like manner pre-axial to the region of digit I,
after Sox9 expression in the digits had reached its
peak (figure 2a). This pre-axial expression persists in
later embryos when Sox9 transcription has already
faded in the phalanges, with the domain extending
well into the autopod. Both temporal persistence and
the spatial situation of Sox9 expression in these
domains do not exactly match with other basipodial,
metapodial or acropodial elements; the expression pat-
tern of this gene in the autopods of the shrew is
comparable with those of the moles but there are no
signs of condensations in the pre-axial regions of
either the hand or the foot comparable to those seen
in the mole. Instead, there are proximal, radial and
This journal is q 2011 The Royal Society
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Figure 1. Microtomography scan-images of autopodia of talpid species and of C. parva, demonstrating the distribution and

proportions of the pre-axial sesamoids (highlighted); phylogenetic relationships are based on Sánchez-Villagra et al. [6].
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Figure 2. (a) Sox9, (b) Msx2 and Fgf8 expression and (c) microtomography scan images (radial and tibial sesamoids high-
lighted) of right autopodia of mole and shrew embryos; gestational ages in days post coitum, double arrows indicate
mirrored images of left autopodia; brackets highlight stronger anterior Msx2 expression in mole; roman numbers label
digits; fe, fibulare; re, radial epiphysis; pp, radial sesamoid; te, tibiale; ph, tibial sesamoid; u, ulna.
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tibial condensations that do not extend into the digit
area (figure 2a).

Fgf8, which marks the apical ectodermal ridge
(AER), shows a similar pattern in moles and shrews
(figure 2b), with no evidence for an anterior extension
of the AER in the former.
4. DISCUSSION
Considering the modularity exhibited in the region of
the first digit according to the expression of HoxD
genes, it is not surprising that the plasticity around
the pentadactyl pattern should originate at late stages
in that region of the autopod; whereas changes to
digits 2–5 seem interdependent, changes to digit 1
are independent and the thumb exhibits wrist-like
characteristics [13,14].

The uncoupling between digit identity and position
has been one of the major findings in research addres-
sing digit identity at the dinosaur–bird transition [15].
For this, several approaches integrating experimental
and comparative embryology have been paramount
[16]. In the mole, the anatomical and developmental
comparisons show important differences between the
pre-axial elements and true digits. The timing of
onset of skeletal differentiation is later than in the
digits. The mole shows no conspicuous anterior exten-
sion of the AER, but there is a prominent domain of
Msx2 expression that hints at the recruitment of autop-
odial developmental mechanisms normally involved in
digit-patterning in the region anterior of the thumb.

The interdigital tissue is important in patterning
species-specific autopodia, it has furthermore been
shown to have chondrogenic potential and to regulate
digit identity [17–20]. Msx2 marks the interdigital
tissue where, in cases where the fingers are separated
from one other (the mole hand is much webbed), apop-
tosis will happen, thus influencing further AER
development. Msx expression may also repress Shh
anteriorly, influencing pattering of the acropodium as
a Shh gradient is involved in determining digit numbers.
Generally, the Msx genes are thought to have several
influences on limb development, they have been
shown to be involved in the apoptotic programme
(although not to be sufficient to initiate it), and they
are involved in controlling bone development and differ-
entiation including the suppression of ectopic cranial
neural crest-derived bones [18,21–23] and are involved
in digit number regulation [24]. Also, defects in likely
upstream factors to Msx1/Msx2 such as bone morpho-
genetic proteins are known to cause malformations
including syndactyly and polydactyly [25].

A singular aspect of the biology of moles is relevant
to address their autopodial innovation. Females of sev-
eral species, including T. occidentalis, have ovotestes,
instead of normal ovaries, and masculinized genitalia,
very uncommon specializations among mammals hint-
ing at specific androgen exposure of the embryos [9].
Those species are those also specialized for exclusive
or partial fossoriality and show the presence of well-
differentiated pre-axial elements. These facts are rel-
evant, as such steroids influence bone turnover,
growth and transitions between tendinous tissue and
cartilage [26]. Additionally, high maternal testosterone
Biol. Lett. (2012)
levels have been hypothesized to be one cause of poly-
dactyly [27]: high levels of testosterone were found to
be associated with the birth of males, and there was a sig-
nificant excess of post-axial and pre-axial polydactylous
male probands. Moles also develop a tibial sesamoid
bone which, however, does not extend into the acropo-
dial area as clearly as the radial sesamoid of the hand
nor does it develop in association with a well-developed
Msx2 expression domain as the radial sesamoid does.
However, different sesamoid elements develop fre-
quently coincidently [28]. Taking into account high
incidences of certain sesamoids in conjunction with
primary osteoarthritis [29], it was suggested that sesa-
moids tend to be linked in their appearance and that
their presence may be owing to an increased tendency
of endochondral ossification [28], perhaps manifested
through genetic assimilation [30].

Pre-axial elements have evolved numerous times in
tetrapod evolution; as shown by the mole case, the
co-option of similar developmental mechanisms to
those of true (anterior) digits in conjunction with
changes in developmental timing may be one way to
facilitate the recruitment of wrist skeletogenic material
into the acropodial region.

Animal handling was in accordance with institutional
guidelines.
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