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Abstract

Though adolescents consume more fructose than any other age group, the relationship between fructose consumption

and markers of cardiometabolic risk has not been established in this population. We determined associations of total

fructose intake (free fructose plus one-half the intake of free sucrose) with cardiometabolic risk factors and type of

adiposity in 559 adolescents aged 14–18 y. Fasting blood samples were measured for glucose, insulin, lipids, adiponectin,

and C-reactive protein. Diet was assessed with 4–7 24-h recalls and physical activity (PA) was determined by

accelerometry. Fat-free soft tissue (FFST) mass and fat mass were measured by DXA. The s.c. abdominal adipose tissue

(SAAT) and visceral adipose tissue (VAT) were assessed usingMRI. Multiple linear regression, adjusting for age, sex, race,

Tanner stage, FFST mass, fat mass, PA, energy intake, fiber intake, and socioeconomic status, revealed that fructose

intake was associated with VAT (b = 0.13; P = 0.03) but not SAAT (P = 0.15). Significant linear upward trends across

tertiles of fructose intake were observed for systolic blood pressure, fasting glucose, HOMA-IR, and C-reactive protein

after adjusting for the same covariates (all P-trend, 0.04). Conversely, significant linear downward trends across tertiles

of fructose intake were observed for plasma HDL-cholesterol and adiponectin (both P-trend , 0.03). When SAAT was

added as a covariate, these trends persisted (all P-trend , 0.05). However, when VAT was included as a covariate, it

attenuated these trends (all P-trend . 0.05). In adolescents, higher fructose consumption is associated with multiple

markers of cardiometabolic risk, but it appears that these relationships are mediated by visceral obesity. J. Nutr. 142:

251–257, 2012.

Introduction

Between 1977 and 2004, U.S. consumption of fructose increased
on average 32% across all gender and age groups (1,2). This
trend has been accredited to the increasing use of HFCS7 as the
predominate sweetener in processed foods and soft drinks by
industry (3). There has been a growing concern that increased
fructose consumption may be related to factors known to
increase risk for cardiovascular disease and type 2 diabetes (4),
because animal studies suggest that high fructose consumption

promotes obesity, elevated blood pressure, insulin resistance,
inflammation, and dyslipidemia (5–7). However, the extent to
which increased fructose consumption is related to adiposity and
metabolic dysregulation in humans is uncertain. Whereas some
authors report that greater fructose consumption may increase
body fatness and blood pressure (8–11), others report no
relations between fructose intake and adiposity or blood
pressure (12,13). Disparate findings also exist between fructose
intake and other markers of cardiometabolic risk, including
lipids, insulin resistance, and inflammatory-related cytokines
(9,14–20).

The discrepancies in the aforementioned dietary fructose and
cardiometabolic risk factor investigations can be attributed in
part to differences in the populations studied and the study
designs and instruments used. However, it is also likely that the
half-portion of fructose from sucrose could be an additional
confounding factor (1). Because absorbed sucrose is hydrolyzed
into free fructose and free glucose before it arrives at the liver for
metabolism, it is important to consider the additional free
fructose from sucrose when determining the overall effect of
fructose on health-related outcomes.
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Given that adolescents have been found to consume more
fructose than any other age group over the last few decades
(2,21) combined with recent findings in adolescents of increasing
rates of insulin resistance, hypertension, and dyslipidemia
(22,23), it is vital to understand the role of greater fructose
consumption on factors known to increase risk for cardiovas-
cular disease and type 2 diabetes in this population. Currently,
two pediatric studies have linked high fructose intake to
cardiometabolic risk factors (17,24). In an investigation of 74
Swiss children aged 6–14 y, Aeberili et al. (17) reported no
associations between fructose consumption and weight status,
total cholesterol, HDL-cholesterol, or LDL-cholesterol. How-
ever, negative associations were observed between fructose
intake and LDL particle size, a marker of cardiovascular disease
risk. In the other pediatric investigation, Davis et al. (24)
reported inverse relationships between total fructose intake (free
fructose + 50% of free sucrose) and insulin sensitivity in 120
overweight Latino youth aged 10–17 y. Although these two
studies provide important insight into the relationship between
fructose consumption and cardiometabolic risk factors, addi-
tional work is warranted. The primary objective of this study
was to determine relations between total fructose intake (free
fructose + 50% of free sucrose) and measures known to increase
risk for cardiovascular disease and type 2 diabetes in a cohort
of white and black adolescents living in the southern US. A
secondary objective was to determine whether the type of fat
(s.c. vs. visceral) modified relations between total fructose intake
and the markers of cardiometabolic risk.

Materials and Methods

Participants. The participants in this study were 559 adolescents who

were recruited from local high schools in the Augusta, Georgia area.
With approval from superintendents and school principals, flyers were

distributed to all students in the high schools. Inclusion criteria for the

study were white or black/African American race and age 14–18 y.

Adolescents were excluded if they were taking medications or had any
medical conditions that could affect growth, maturation, PA, nutritional

status, or metabolism. Informed consent and assent were obtained from

all parents and adolescents, respectively. The protocol was approved by

the Human Assurance Committee at Georgia Health Sciences University
(institutional review board). All measurements were performed at the

Georgia Prevention Institute at Georgia Health Sciences University

between 2001 and 2005.

Anthropometry, blood pressure, pubertal stage, and socioeco-
nomic status. A trained laboratory technician collected height and

weight measurements for calculating sex- and age-specific BMI
percentiles for which we used body weight classification: not

overweight (,85th percentile), overweight, (85–94.99th percentile),

or obese ($95th percentile) (25). Seated blood pressure was measured

five times at 1-min intervals after a 10-min rest using the Dinamap Pro
100 (Critikon) and the last three measures were averaged. Pubertal

maturation stage (or Tanner stage) was measured with a five-stage

scale ranging from I (prepubertal) to V (fully mature) as described by
Tanner (26). Using this gender-specific questionnaire, participants

reported their pubertal stage by comparing their own physical

development to the five stages in standard sets of diagrams. A parent

or research coordinator then reviewed the results with the children to
make sure they understood the questionnaire. When an individual

reported discordant stages of pubic hair and breast or genital

development, the higher of the two stages was used. The socioeco-

nomic status was assessed using the Hollingshead 4-factor index of
social class (27), which combines the educational attainment and

occupational prestige for the number of working parents in the child’s

family. Scores ranged from 11 to 51, with higher scores indicating

higher theoretical socioeconomic status.

Biochemical variables. Blood samples were collected from fasting

participants for assessment of serum glucose, serum insulin, plasma TG,

plasma total cholesterol, plasma HDL-cholesterol, plasma LDL-
cholesterol, serum leptin, plasma adiponectin, plasma resistin, and

plasma C-reactive protein. Serum glucose concentrations were measured

using an Ektachem DT system (Johnson and Johnson Clinical Diagnos-

tics) and run in duplicate, with intra- and interassay CVof 0.6 and 1.5%,
respectively. Specific insulin was measured in serum and assayed in

duplicate using RIA (Linco Research), with intra- and interassay CV of

5 and 5.6%, respectively. HOMA-IR7 was calculated by using the

formula: fasting insulin (pmol/L) 3 fasting glucose (mmol/L)/22.5 (28).
Plasma TG and HDL-cholesterol concentrations were measured

using the EktachemDT II system. PlasmaHDL-cholesterol was analyzed

using a two-reagent system (Equal Diagnostics) involving stabilization of
LDL-cholesterol, VLDL-cholesterol, and chylomicrons using cyclodex-

trin and dextrin sulfate and subsequent enzymatic-colorimetric detection

of HDL-cholesterol (29). Plasma LDL-cholesterol concentrations were

calculated using the Friedewald formula (30).
Serum leptin concentrations were assayed using ELISA (R & D

Systems) and run in duplicate, with intra- and interassay CV of 2.2 and

5.3%, respectively. Adiponectin and resistin were measured in plasma

that was assayed in duplicate by ELISA (Linco Research). Intra- and
interassay CV were 7.4 and 8.4%, respectively, for plasma adiponectin

and 3.2 and 7.1%, respectively, for plasma resistin. Plasma C-reactive

protein concentrations were assayed using high-sensitivity ELISA
(ALPCO Diagnostics) and run in duplicate, with intra- and interassay

CV of 10 and 10.2%, respectively.

Body composition and type of adiposity. FFST mass and fat mass

were assessed using DXA (QDR-4500W; Hologic). For determination of

measurement reproducibility, one-way random effects model, single
measure intraclass correlation coefficients were calculated in partici-

pants 15–18 y of age (n = 219). Each participant was scanned twice

within a 7-d period for FFST mass, fat mass, and percentage body fat (all

r$ 0.97). SAATand VATwere measured using MRI (1.5-T; GEMedical
Systems). Assessments of SAAT and VAT are described in detail

elsewhere (31). Briefly, a series of five transverse images was acquired

from the lumbar region beginning at the inferior border of the fifth

lumbar vertebra and proceeding toward the head; a 2-mm gap between
images was used to prevent crosstalk. To calculate volumes for SAATand

VAT, the cross-sectional area from each slice was multiplied by the slice

width (1 cm) and then the individual volumes were summed. The
intraclass correlation coefficients for repeat analyses of the same scans on

separate days within a 7-d period were r$ 0.98 for both SAATand VAT.

PA. The mean daily minutes spent in moderate and vigorous PA was

assessed using MTI Actigraph monitors (model 7164; MTI Health

Services), uniaxial accelerometers that measure vertical acceleration and
deceleration. With epoch length set at 1 min and expressed as counts/

min, the accelerometers were to begin recording when the participant left

our laboratory after the first day of testing. The participants were

instructed to: 1) wear the monitor for a period of 7 d; 2) remove it for
sleep, bathing, and any activity that may cause harm to either the

monitor or another person (e.g. during contact sports); and 3) bring the

monitor back to us 1 wk later. Data from d 1 and 7 were discarded,

because a full day of information was not available for those days.
Movement counts were converted to min/d spent in moderate (3–6

metabolic equivalents) and vigorous (.6 metabolic equivalents) PA by

the software accompanying the device.

Dietary intake. To assess mean daily intakes of energy, protein, fat,

carbohydrate, free fructose, free sucrose, and fiber, a trained registered

dietitian conducted four to seven 24-h diet recalls (1 weekend day) using
NDS-R software (version 2006). Four, 5, 6, and 7 d of dietary

information were collected in 10, 21, 22, and 47% of the participants,

respectively, within 4 wk of the blood collection. The first two recalls

were performed in person at our institute with the use of food models,
portion booklets, or serving containers to assist in estimating serving size

and the remaining interviews were conducted by telephone. To minimize

the potential for undereating during the time frame for 24-h recalls,
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participants were unaware of the telephone recall schedule. A trained

research assistant coded and analyzed dietary intake data using the NDS-

R software. Because NDS-R software computes the intake of sugar type
and servings of food and beverage groups based on the Dietary

Guidelines for Americans 2005 (32) or the FDA (33), we provided

information on mean daily intakes of total sugars, added sugars, free

fructose subgroups (vegetables, fruit, and 100% fruit juice), and HFCS
subgroups (sugar-sweetened foods and sugar-sweetened beverages).

Statistical analysis. In our analyses, the primary independent/predictor

variable of interest was total fructose intake, which takes into account
the fructose found in foods (free fructose) and the fructose released from

sucrose during digestion (bound fructose) (1,24).

Total fructose ðg=dÞ ¼ free fructose ðg=dÞ þ½free sucrose ðg=dÞ:

Separate multivariate linear regression analyses were conducted to

examine associations of total fructose intake with measures known to

increase cardiovascular disease and type 2 diabetes (blood pressure,
serum glucose, HOMA-IR, plasma TG, plasma total cholesterol, plasma

HDL-cholesterol, plasma LDL-cholesterol, serum leptin, plasma adipo-

nectin, plasma resistin, plasma C-reactive protein, SAAT, and VAT).

Potential confounding variables that were included in the analyses were
age, sex, race, Tanner stage, body composition (FFSTmass and fat mass),

PA, energy intake, fiber intake, and socioeconomic status (24,34).

Because there were no interactions with age, sex, or race, we ran the

analyses in all participants, adjusting for age, sex, and race rather than
conducting analyses for separate groups.

We further explored the fructose-cardiometabolic risk factor relation-

ship by comparing the cardiometabolic risk factor variables across tertile
groups of the percentage of energy intake from total fructose. Total fructose

intake values reported within each group are medians (range) (Tables 1 and

2). Group differences for anthropometric, body composition, PA, socioeco-

nomic status, and dietary intake variables were determined by using
ANOVA. Descriptive statistics for raw variables are presented as mean 6
SD if not stated otherwise. The proportions of males and females and of

blacks and whites were compared between groups by using chi-square test

of goodness of fit. For comparison of the primary dependent variables (i.e.,
blood pressure, serum glucose, HOMA-IR, plasma TG, plasma total

cholesterol, plasma HDL-cholesterol, plasma LDL-cholesterol, serum

leptin, plasma adiponectin, plasma resistin, plasma C-reactive protein), an
F test was performed to test the assumption of homogeneity of regression

slopes for the interactions between the independent variable (i.e., total

fructose tertile groups) and the covariates (age, sex, race, Tanner stage, FFST

mass, fat mass, PA, energy intake, fiber intake, and socioeconomic status).
Because there were no interactions, ANCOVA was used to compare the

primary dependent variables across total fructose tertile groups after

adjusting for age, sex, race, Tanner stage, FFST mass, fat mass, PA, energy

intake, fiber intake, and socioeconomic status. We subsequently tested
whether the association between total fructose intake and cardiometabolic

risk factor variable was dependent on type of fat (SAAT vs. VAT). By using

this approach, if an observed association with total fructose intake was

dependent on type of fat, there would be no association between total
fructose intake and the dependent variable of interest when controlled for

the type of fat (35). If the trend for difference in the dependent variable of

interest across a tertile of total fructose was significant (P , 0.05),
differences among individual tertiles, adjusted for multiple comparisons,

were tested by using Tukey’s honestly significant difference adjustment.

Adjusted means are reported as mean 6 SE. Because HOMA-IR, plasma

TG, serum leptin, plasma adiponectin, plasma resistin, plasma C-reactive
protein, SAAT, andVAThad skewed distributions, theywere transformed to

their natural logarithm for analyses but back-transformed when we present

the results for ease of interpretation. Datawere analyzed using SAS software

(version 9.1, SAS Institute) and statistical significance was set at P , 0.05.

Results

The sample was composed of 559 white and black adolescents
aged 14–18 y (49% female, 45% black). The majority of
adolescents (86%) reported to be in pubertal stages IV and V;

however, 55 were in pubertal stage III and 8 in stage II. The
majority of females (97.8%) reported having started menstru-
ation. The percentages of overweight and obese participants
were 11.4 and 14%, respectively. For context, total sample
characteristics on anthropometry, blood pressure, body compo-
sition, blood pressure, biochemistries, PA, socioeconomic status,
and dietary variables are provided in Supplemental Table 1.

Pearson’s bivariate analyses revealed that total fructose
intake was associated with intakes of the following carbohy-
drate-related variables: free fructose (r = 0.87), free sucrose (r =
0.78), fiber (r = 0.45), total sugars (r = 0.38), added sugars (r =
0.44), vegetables (r = 0.14), fruits (r = 0.19), 100% fruit juices
(r = 0.11), sugar-sweetened foods (r = 0.69), and sugar-
sweetened beverages (r = 0.57) (all P , 0.05). Multiple linear
regression, adjusting for age, sex, race, Tanner stage, FFST mass,
fat mass, PA, energy intake, fiber intake, and socioeconomic
status, revealed that total fructose intake was associated with
systolic blood pressure (b = 0.14), fasting serum glucose (b =
0.13), HOMA-IR (b = 0.11), plasma TG (b = 0.11), plasma
HDL-cholesterol (b = 20.17), plasma LDL-cholesterol (b =
0.10), plasma adiponectin (b = 20.17), and plasma C-reactive
protein (b = 0.11) and VAT (b = 0.13) (all P , 0.05). When
determining relations between total fructose intake and type of
adiposity (Supplemental Fig. 1), only VAT was associated with
total fructose intake after controlling for the same covariates (P
= 0.03). No relations were found between total fructose intake
and diastolic blood pressure, plasma total cholesterol, serum
leptin, plasma resistin, or SAAT (all P . 0.05).

Age, sex, race, Tanner stage, BMI percentile, FFST mass, fat
mass, SAAT, moderate/vigorous PA, socioeconomic status,
energy intake, and macronutrient intakes did not differ across
tertiles of total fructose intake (Table 1). However, significant
linear upward trends in levels of VAT and intakes of free
fructose, free sucrose, total sugars, added sugars, 100% fruit
juices, sugar-sweetened foods, and sugar-sweetened beverages
were found across tertiles of total fructose intake (all P-trend ,
0.05). Significant linear downward trends across tertiles of total
fructose intake were observed with intakes of fiber and free
fructose subgroups vegetables and fruit (all P-trend , 0.04).

When cardiometabolic risk factor variables were compared
across tertiles of total fructose intake adjusting for age, sex, race,
Tanner stage, FFST mass, fat mass, moderate/vigorous PA,
socioeconomic status, energy intake, and fiber intake (Table 2),
there were significant linear upward trends for systolic blood
pressure, fasting serum glucose, HOMA-IR, and plasma C-reactive
protein across tertiles of total fructose intake (all P-trend , 0.04;
model 1). Conversely, significant linear downward trends across
tertiles of total fructose intake were observed for plasma HDL-
cholesterol and plasma adiponectin (both P-trend , 0.03). When
SAAT was added as a covariate, these significant trends persisted
(all P-trend, 0.05; model 2). However, when VATwas included as
a covariate, it attenuated these significant trends (all P-trend .
0.05; model 3). There were no differences in diastolic blood
pressure, plasma total cholesterol, plasma LDL-cholesterol, serum
leptin, or plasma resistin across tertiles of total fructose intake (all
P-trend . 0.05).

Discussion

In this study of white and black adolescents living in the southern
US, we found that total fructose consumption, which included
both free fructose plus one-half the intake of free sucrose, was
positively associated with systolic blood pressure, fasting serum
glucose, HOMA-IR, plasma TG, plasma LDL-cholesterol, plasma
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C-reactive protein, and visceral adiposity but negatively associ-
ated with HDL-cholesterol and plasma adiponectin. These
relationships were independent of potentially confounding factors
such as age, sex, race, pubertal stage, body composition, PA,
socioeconomic status, energy intake, and fiber consumption.
When we compared differences in cardiometabolic risk factors
across tertiles of total fructose intake adjusting for the same
covariates, our findings were quite similar to the correlational
data. Collectively, our data reflect interventional studies in
animals and adults (5–10), suggesting that greater fructose
consumption is associated with multiple factors known to
increase risk for cardiovascular disease and type 2 diabetes.

In further analyses, we revealed that associations between
fructose consumption and markers of cardiometabolic risk may
be dependent on the type of fat accumulation, because visceral,
not s.c., fat attenuated the significant findings between total
fructose intake and cardiometabolic risk factors. This dietary
fructose-visceral fat relationship that we observed is supported
by a recent adult intervention by Stanhope et al. (9). When the
investigators gave overweight adults either glucose-sweetened or
fructose-sweetened beverages for 10 wk, they observed signif-
icant increases in total body fat in both groups, but only
significant increases in visceral fat in the group consuming
fructose. These interventional findings combined with our data

TABLE 1 Characteristics by tertile categories of total fructose intake in adolescents aged 14–18 y1

Total fructose, % energy

Characteristics Tertile 1 8.6% (2.1210.9%) Tertile 2 12.4% (11.0213.8%) Tertile 3 16.4% (13.9228.4%) P-trend

n 186 186 187

Age, y 16.1 6 1.2 16.0 6 1.1 16.1 6 1.1 0.30

Females, % 46.8 46.8 56.6 0.11

Blacks, % 41.0 45.1 48.6 0.38

Tanner stage (1–5) 4.6 6 0.7 4.5 6 0.6 4.6 6 0.6 0.29

BMI percentile 64.5 6 26.9 58.3 6 27.4 62.2 6 28.8 0.44

BMI percentile category, % 0.36

Not overweight 73.4 81.5 68.8

Overweight 12.1 9.3 14.5

Obese 14.5 9.2 16.7

FFST mass, kg 46.5 6 10.8 47.3 6 9.5 46.5 6 10.6 0.81

Fat mass, kg 15.1 6 8.6 14.3 6 8.6 17.7 6 11.5 0.06

SAAT, cm3 787 6 656 770 6 579 973 6 793 0.06

VAT, cm3 86 6 50b 91 6 51 103 6 59a 0.025

Moderate/vigorous PA, min/d 43 6 26 47 6 31 38 6 27 0.16

Socioeconomic status 35 6 9 33 6 8 33 6 9 0.24

Dietary intake

Energy, kJ/d 7990 6 2720 8500 6 2490 7820 6 2500 0.34

Protein, % energy 14.8 6 3.1 14.6 6 3.2 13.8 6 2.5 0.15

Fat, % energy 33.2 6 5.7 33.1 6 4.4 34.3 6 4.3 0.58

Carbohydrate, % energy 52.9 6 6.5 53.2 6 6.9 52.8 6 6.5 0.73

Total fructose, g/d 41.7 6 17.7c 62.6 6 18.4b 73.4 6 20.9a ,0.001

Free fructose

g/d 21.2 6 10.9c 34.2 6 13.0b 43.1 6 14.6a ,0.001

% energy 4.4 6 1.6c 6.8 6 1.6b 9.6 6 2.8a ,0.001

Free sucrose

g/d 41.2 6 19.4c 56.8 6 22.9b 62.5 6 28.0a ,0.001

% energy 8.5 6 2.6c 11.3 6 3.2b 13.7 6 4.4a ,0.001

Fiber

g/d 11.0 6 4.5a 11.1 6 4.4a 9.3 6 4.2b 0.020

g/4186 kJ 5.9 6 1.6a 5.5 6 1.3b 5.2 6 1.6c ,0.001

Total sugars

g/d 102 6 44c 138 6 43b 157 6 45a ,0.001

% energy 21.2 6 4.0c 27.7 6 2.8b 34.6 6 3.9a ,0.001

Added sugars

g/d 77 6 70c 89 6 76b 100 6 81a 0.007

% energy 15.5 6 11.8c 17.3 6 12.9b 20.9 6 15.6a 0.001

Free fructose subgroups

Vegetables, g/d 7.1 6 5.6a 6.1 6 4.1 5.1 6 3.6b 0.010

Fruit, g/d 9.0 6 7.5a 7.5 6 7.5 6.0 6 7.5b 0.011

100% fruit juices, mL/d 24 6 72b 48 6 72 72 6 96a 0.038

HFCS subgroups

Sugar-sweetened foods, g/d 46.8 6 25.7b 60.4 6 24.2 69.5 6 28.7a 0.013

Sugar-sweetened beverages, mL/d 384 6 312c 552 6 240b 840 6 336a ,0.001

1 Values are means 6 SD or percent. Values in a row with superscripts without a common letter differ, P , 0.05. FFST, fat-free soft tissue; HFCS, high-fructose corn syrup; PA,

physical activity; SAAT, s.c. abdominal adipose tissue; VAT, visceral adipose tissue.
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suggest that fructose consumption might specifically promote
visceral fat accumulation. The mechanism by which high
fructose intake may increase visceral adiposity is unclear;
however, it has been postulated that a diet chronically high in

fructose may lead to greater visceral fat accumulation due to the
increased exposure to TG and remnant lipoproteins (36,37).

Our finding that fructose consumption was positively corre-
lated with measures of insulin resistance may indicate decreased

TABLE 2 Markers known to increase risk for cardiovascular disease and type 2 diabetes across tertiles of total fructose intake in
adolescents aged 14–18 y1,2

Total fructose, % energy

Tertile 1 18.6% (2.1210.9%) Tertile 2 12.4% (11.0213.8%) Tertile 3 16.4% (13.9228.4%) P-trend

n 186 186 187

Systolic blood pressure, mm Hg

Model 1 109 6 1b 111 6 1 113 6 1a 0.007

Model 2 109 6 1b 111 6 1 113 6 1a 0.013

Model 3 110 6 1 111 6 1 113 6 1 0.28

Diastolic blood pressure, mm Hg

Model 1 59 6 0.4 60 6 0.4 60 6 0.4 0.41

Model 2 59 6 0.4 60 6 0.4 60 6 0.4 0.40

Model 3 60 6 1 59 6 1 60 6 1 0.52

Fasting serum glucose, mmol/L

Model 1 4.93 6 0.03b 5.01 6 0.03a 5.05 6 0.03a 0.024

Model 2 4.93 6 0.03b 5.01 6 0.03a 5.04 6 0.03a 0.033

Model 3 4.91 6 0.04 4.95 6 0.04 4.99 6 0.04 0.10

HOMA-IR

Model 1 3.39 6 0.13b 3.65 6 0.13 3.79 6 0.13a 0.038

Model 2 3.40 6 0.11b 3.71 6 0.12 3.73 6 0.12a 0.046

Model 3 3.36 6 0.15 3.63 6 0.15 3.50 6 0.16 0.53

Plasma TG, mmol/L

Model 1 0.69 6 0.03b 0.75 6 0.03 0.79 6 0.03a 0.027

Model 2 0.69 6 0.03b 0.76 6 0.03 0.79 6 0.03a 0.038

Model 3 0.71 6 0.03 0.78 6 0.03 0.77 6 0.04 0.27

Plasma total cholesterol, mmol/L

Model 1 3.88 6 0.08 3.80 6 0.08 3.86 6 0.08 0.84

Model 2 3.88 6 0.08 3.81 6 0.08 3.86 6 0.08 0.86

Model 3 3.87 6 0.08 3.81 6 0.08 3.86 6 0.08 0.91

Plasma HDL-cholesterol, mmol/L

Model 1 1.24 6 0.03a 1.23 6 0.03a 1.17 6 0.03b 0.029

Model 2 1.25 6 0.02a 1.23 6 0.02 1.17 6 0.02b 0.026

Model 3 1.26 6 0.03 1.25 6 0.03 1.21 6 0.03 0.07

Plasma LDL-cholesterol, mmol/L

Model 1 2.36 6 0.06 2.30 6 0.06 2.41 6 0.06 0.61

Model 2 2.35 6 0.06 2.32 6 0.06 2.40 6 0.06 0.61

Model 3 2.38 6 0.08 2.29 6 0.08 2.44 6 0.09 0.61

Serum leptin, mg/L

Model 1 10.6 6 0.4b 11.3 6 0.4 11.3 6 0.4 0.21

Model 2 10.5 6 0.4 10.5 6 0.5 10.8 6 0.4 0.64

Model 3 10.5 6 0.5 10.5 6 0.5 10.8 6 0.5 0.71

Plasma adiponectin, mg/L

Model 1 9.1 6 0.4a 8.7 6 0.4 8.4 6 0.4b 0.033

Model 2 9.2 6 0.4a 8.6 6 0.4 8.4 6 0.4b 0.021

Model 3 9.5 6 0.5 9.2 6 0.5 9.1 6 0.5 0.21

Plasma resistin, mg/L

Model 1 11.8 6 0.6 12.2 6 0.5 12.0 6 0.5 0.81

Model 2 11.8 6 0.6 12.3 6 0.5 12.0 6 0.5 0.80

Model 3 12.5 6 0.7 13.1 6 0.7 13.4 6 0.7 0.36

Plasma C-reactive protein, mg/L

Model 1 0.67 6 0.16b 0.84 6 0.15 1.21 6 0.15a 0.012

Model 2 0.67 6 0.15b 0.92 6 0.15 1.14 6 0.14a 0.025

Model 3 0.81 6 0.15 0.71 6 0.15 1.04 6 0.16 0.31

1 Values are mean 6 SEM. Means in a row with superscripts without a common letter differ, P , 0.05. FFST, fat-free soft tissue mass; PA, physical activity; SAAT, s.c. abdominal

adipose tissue; VAT, visceral adipose tissue.
2 Model 1 was adjusted for age, sex, race, Tanner stage, FFST mass, fat mass, moderate/vigorous PA, socioeconomic status, energy intake, and fiber intake; model 2 was

adjusted for the same covariates in model 1 and further adjusted for SAAT; model 3 was adjusted for the same covariates in model 1 and further adjusted for VAT.
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removal from the blood, increased fasting glycogenolysis, or
the beginnings of insulin resistance in our otherwise healthy
adolescent sample. One potential impact of the fructose-related
increase in TG production is the downstream consequence of a
decrease in glycogen synthesis and increases in glycogenolysis
and glucogenesis (38). Other reports show a rise in intestinal
glucose production after fructose administration, secondary to
the conversion of triose-phosphates to glucose within enter-
ocytes (39). Moreover, our findings may be due to decreased
glucose tolerance resulting from the increased hepatic lipid
supply to stimulate the protein kinase C, tyrosine/serine phos-
phorylation cascade, leading to a decrease in insulin receptor
sensitivity (36,40,41). Although, to the best of our knowledge,
there are no known direct mechanisms to explain the ability of
fructose to decrease circulating adiponectin or increase
C-reactive protein, greater fructose consumption is thought to
induce inflammation through activation of cytokines, endothe-
lial cells, reactive oxygen species, and the renin-angiotensin-
aldosterone system (6,42).

Strengths of the study include the assessment of visceral
adiposity using MRI and the consideration of potential con-
founding variables in our analyses with fructose consumption.
However, we acknowledge study limitations. Given that our
study used cross-sectional data, we cannot be certain that
fructose consumption has a direct effect on the measures
associated with cardiometabolic risk. Second, although dietary
recalls have been shown to more accurately detail types and
amounts of food intake than FFQ, it is possible that the recalls
may not accurately represent usual dietary intake (43). Lastly,
our study findings are limited to adolescents living in the
southern U.S. and thus differences in socioeconomic status,
geographic location, social environment, lifestyle, or food habits
of the study population may preclude generalizability of the
study findings. However, given that the mean fructose consump-
tion (60.2 g/d) in our study sample is comparable to the most
recent national average in 12–18 y olds (72.8 g/d) (21), our
findings are likely generalizable to many other settings.

In conclusion, our adolescent data suggest that greater
fructose consumption is associated with multiple markers
known to increase risk for cardiovascular disease and type 2
diabetes, and it appears that these relationships are dependent
on visceral obesity. With increasing use of HFCS in processed
foods and soft drinks, additional research is needed to assess the
long-term implications of increasing fructose consumption on
cardiometabolic disease risk in youth.
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