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Abstract

Retinal pigment epithelial (RPE) cells in the back of the eye nourish photoreceptor cells and form a selective barrier that
influences drug transport from the blood to the photoreceptor cells. At the molecular level, ATP-dependent efflux
transporters have a major role in drug delivery in human RPE. In this study, we assessed the relative expression of several
ATP-dependent efflux transporter genes (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP), the protein expression and localization of
MRP1, MRP4, and MRP5, and the functionality of MRP1 efflux pumps at different maturation stages of undifferentiated
human embryonic stem cells (hESC) and RPE derived from the hESC (hESC-RPE). Our findings revealed that the gene
expression of ATP-dependent efflux transporters MRP1, -3, -4, -5, and p-gp fluctuated during hESC-RPE maturation from
undifferentiated hESC to fusiform, epithelioid, and finally to cobblestone hESC-RPE. Epithelioid hESC-RPE had the highest
expression of MRP1, -3, -4, and P-gp, whereas the most mature cobblestone hESC-RPE had the highest expression of MRP5
and MRP6. These findings indicate that a similar efflux protein profile is shared between hESC-RPE and the human RPE cell
line, ARPE-19, and suggest that hESC-RPE cells are suitable in vitro RPE models for drug transport studies. Embryonic stem
cell model might provide a novel tool to study retinal cell differentiation, mechanisms of RPE -derived diseases, drug testing
and targeted drug therapy.
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Introduction

Age-related macular degeneration (AMD) is a complex eye

disorder and is the leading cause of blindness in developed

countries. AMD has a multifactorial etiology and leads to a

progressive loss of central vision in the elderly. The number of

AMD patients is projected to double over the next few decades,

becoming a major public health issue in the near future [1]. AMD

is characterized by the degeneration of retinal photoreceptors rod

and cones, retinal pigment epithelium (RPE), and Bruch’s

membrane, as well as detrimental alterations of the choroidal

capillaries. One of the main functions of RPE cells is to nourish the

neural cells, rod and cone cells. In senescent RPE cells, which are

constantly exposed to oxidative stress, this ability is weakened,

causing secondary adverse effects on the neural retina and

ultimately leading to vision loss [2]. Thus, degeneration of the

postmitotic RPE cells is one of the most important hallmarks of

AMD.

The pathogenesis of AMD is complex and it has remained

elusive. Therefore appropriate therapies have been difficult to

establish. Only 20% of AMD patients, that have exudative form of

disease, can be treated with intravitreal anti-VEGF injections. It is

a huge challenge to develop new effective treatment alternatives

for AMD. The most number of AMD patients are out of any

treatments and exudative AMD cases load ophthalmological

clinics by a new way that has created many problems to manage

from injections in limited resources. One of the most interesting

future treatment modality is certainly human pluripotent stem cell

derived regenerative RPE cell therapy for AMD and other RPE -

originated retinal diseases, such as retinitis pigmentosa [3,4]. In

addition these cells provide a potential resource as biological tool

for drug discovery, toxicity screening and targeted drug therapy.

The polarized RPE cells constitute a polygonal monolayer

between the neurosensory retina rod and cones and the fenestrated

capillaries of the choroid. The RPE has multiple functions:

absorption of light energy, transport of metabolites and nutrients

between photoreceptors and choriocapillaris, expression of growth

factors for photoreceptors, regulation of homeostasis of the ionic

environment, phagocytosis of the shed tips of photoreceptor outer

segments (POS), regulation of visual cycle, and creation of the

blood–retinal barrier (BRB) [5]. The BRB is composed of two

components: the outer part comprises the RPE and the inner part

comprises the endothelial cells of the retinal vessels [6,7].

Functionally, the RPE is very similar to the blood-brain barrier

(BBB). Several membrane-associated transport proteins, such as P-

glycoprotein (P-gp), multidrug resistance-associated proteins

(MRPs), breast cancer resistance protein (BCRP), and organic

anion transporting polypeptides, have been characterized at the
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BRB and BBB and play a major role in regulating tissue

bioavailability of several pharmacologic agents [8,9]. The nine

MRPs (MRP1-MRP9) represent the majority of the 12 MRP

subfamily members belonging to the 48 human ATP-binding

cassette transporters [10,11]. Cloning, functional characterization,

and cellular localization studies have identified most MRP

subfamily members as ATP-dependent efflux pumps with high

substrate specificity for the transport of endogenous and xenobiotic

anionic substances. Efflux pumps both regulate drug transport and

affect tissue pathology [10,11]. Our recent findings revealed that a

similar efflux protein profile is shared between the human RPE

cell line, ARPE-19, and bovine primary RPE cells. [6]

The ARPE-19 cell line, however, does not fully resemble the

human RPE; therefore, more relevant human-derived RPE cells

are needed as better in vitro models for drug testing and screening

[12]. RPE-like cells have been successfully differentiated from

human embryonic stem cells (hESC) and human induced

pluripotent stem cells (hiPSC) [12,13]. hESC and hiPSC-derived

RPE cells (hiPSC-RPE) express genes and proteins corresponding

to the human RPE [12,14,15]. In addition, strongly pigmented

hESC-RPE cells are able to phagocytose photoreceptor outer

segments, secrete RPE trophic factors, and form a tight epithelium

with high resistance [15–17]. The hESC-RPE cells are suggested

to be an excellent in vitro model of human RPE [12], but it is

important to evaluate whether the properties of these in vitro-

differentiated RPE cells are truly similar to those of human RPE.

Here, we studied the expression and functionality of ATP-

dependent efflux transporters in undifferentiated hESC and in

hESC-derived pigmented RPE (hESC-RPE) cells at different

maturation stages to evaluate whether hESC-RPE are useful for

drug screening and toxicology studies.

Materials and Methods

Cell lines
We used the hESC line Regea08/017 previously derived in our

laboratory [18] and the commercially available RPE cell line

ARPE-19 as a control (American Type Culture Collection

(ATCC), Manassas, VA).

The hESC line Regea08/017 (46, XX), derived in our

laboratory and characterized as previously described [18], was

cultured on a mitotically inactivated (c-irradiated, 40 Gy) human

foreskin fibroblast (hFF) cell line (36 500 cells/cm2; CRL-2429,

ATCC) at 37uC in 5% CO2 in hESC culture medium comprising

Knock-Out Dulbecco’s Modified Eagle Medium (KO-DMEM),

20% Knock-Out serum replacement (KO-SR), 2 mM GlutaMax,

0.1 mM 2-mercaptoethanol (all from Life Technologies, Carlsbad,

CA, USA), 1% Minimum Essential Medium non-essential amino

acids, 8 ng/ml human basic fibroblast growth factor (bFGF) (R&D

Systems Inc., Minneapolis, MN, USA), and 50 U/ml Penicillin/

Streptomycin (both from Cambrex Bio Science, Walkersville, MD,

USA). The culture medium was replenished six times a week. The

undifferentiated hESC (Fig. 1A) were passaged mechanically at 6

to 7-day intervals.

RPE cell differentiation was induced in floating cell aggregates

by reducing the KO-SR concentration to 15% and removing the

bFGF, as previously described [15]. The culture medium for the

floating aggregates was changed three times a week.

Pigmented cells were manually dissected from the aggregates,

and further dissociated with 1x Trypsin-EDTA before seeding on

collagen IV- (5 mg/cm2; Sigma-Aldrich, St. Louis, MO, USA)

coated wells of 24-well plates (NUNC, Thermo Fisher Scientific,

Tokyo, Japan) or on BD Biocoat culture plate inserts (BD

Biosciences, San Jose, CA). On adherent culture, pigmented cells

underwent morphologic changes starting from a non-pigmented

fusiform morphology (Fig. 1B) followed by rounding to more

pigmented epithelioid cells (Fig. 1C), and finally developed a

typical RPE-like cobblestone morphology (Fig. 1D). We selected

the samples for RNA and protein extraction, immunofluorescence

labeling, and functional testing based on their morphologic

appearance (Fig. 1B–D), rather than the culturing time (Fig. 1F).

The commercially available ARPE-19 cell line was grown in

Dulbecco’s Modified Eagle Medium (DMEM-F12) (1:1) supple-

mented with 10% fetal bovine serum (PAA Laboratories, Cölbe,

Germany), 100 U/ml Streptomycin/Penicillin (both from Cam-

brex Bio Science). Cells were cultured in a 5% CO2 atmosphere at

37uC and subcultured on 25-cm2 cell culture flasks until they

reached 80% confluency. For the experiments, ARPE-19 cells

were enzymatically dissociated and seeded similarly as the hESC-

RPE cells. The medium was changed three times a week. The

culture periods are shown in Figure 1. A spontaneously

transformed RPE cell line (D407), Human Embryonic Kidney

293 cells (HEK293), and hFF were used as control materials for

the polymerase chain reaction (PCR) analyses. The RNA samples

from D407 and HEK293, were the same reference RNA samples

used previously [6].

RNA isolation
Total RNA was isolated with NucleoSpin XS-kit (Macherey-

Nagel, GmbH & Co, Düren, Germany) according to the

manufacturer’s instructions. The RNA concentration and the

quality were assessed using a NanoDrop 1000 spectrophotometer

(NanoDrop Technologies, Wilmington, DE, USA).

Reverse transcription- (RT) PCR
RNA (40 ng) was reverse-transcribed using MultiScribe Reverse

Transcriptase (Applied Biosystems, Foster City, CA, USA)

according to the manufacturer’s instructions in the presence of

an RNase inhibitor. In addition, genomic control reactions

excluding the restriction enzyme for each RNA sample were

performed. Complementary DNA was used as a template in a

following PCR reaction, which was carried out using 5 U/ml Taq

DNA Polymerase (Fermentas, Thermo Fisher Scientific Inc.,

Leicestershire, UK) with 5 mM primers specific for particular genes

(Biomers.net GmbH, Söflinger, Germany; Table 1). The PCR

reactions were carried out in PCR MasterCycler ep gradient

(Eppendorf AG, Hamburg, Germany) as follows: 95uC 3 min,

95uC 30 s, annealing 30 s, 72uC 1 min, 72uC 5 min, for 38 cycles.

Annealing temperatures and primer sequences are presented in

Table 1. PCR products were analyzed on 2% agarose gels with a

50-bp DNA ladder (MassRulerTM DNA Ladder Mix, Fermentas).

The bands were visualized with the Quantity one 4.5.2. Basic

program (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Quantitative RT-PCR
Relative gene expression comparisons were performed using

quantitative RT-PCR (qRT-PCR). FAM-labeled TaqMan Gene

Expression Assays (Applied Biosystems) were used for the following

genes: MRP1 (Hs00219905_m1), MRP2 (Hs00166123_m1), MRP3

(Hs00358656_m1), MRP4 (Hs00195260_m1), MRP5 (Hs0098

1071_m1), MRP6 (Hs00184566_m1), P-gp (Hs00184500_m1),

and BCRP (Hs01053790_m1). RNA (200 ng) was reverse tran-

scribed to cDNA as described above. The synthesized cDNA was

diluted 1:5 in RNase-free water and 3.0 ml was added to the final

reaction (total 15 ml). No template controls were prepared for any

of the genes. Reactions were carried out according to the

manufacturer’s instructions. The cDNAs were multiplied using

Applied Biosystems 7300 Real-time Sequence Detection System:

hESC-Derived RPE Cell Efflux Protein Expression

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30089



Figure 1. Morphology and gene expression of hESC on different maturation stages. Brightfield micrographs of cell cultures showing the
representative morphology of A) undifferentiated hESC (Regea08/017), B) fusiform hESC-RPE, C) epithelioid hESC-RPE, D) cobblestone hESC-RPE.
Scale bars, 100 mm, E) Gene expression of 1: D407, 3: ARPE-19, 5: undifferentiated hESC, 7: fusiform hESC-RPE, 9: epithelioid hESC-RPE, 11:
cobblestone hESC-RPE, 13: hFF. –RT- negative controls (i.e., samples not treated with reverse transcriptase) are placed adjacent to each sample in the
same order: 2: D407, 4: ARPE-19, 6: undifferentiated hESC, 8: fusiform hESC-RPE, 10: epithelioid hESC-RPE, 12: cobblestone hESC-RPE, 14: hFF. F)
Culture periods of the studied samples in all analyses. Cells were selected based on their morphology rather than the culture period.
doi:10.1371/journal.pone.0030089.g001

Table 1. Reverse-transcriptase–PCR primer sequences and used annealing temperatures.

Gene Primer sequences (59..39) Tann

Forward Reverse

GAPDH GTT CGA CAG TCA GCC GCA TC GGA ATT TGC CAT GGG TGG A 55

POU5F1 CGTGAAGCTGGAGAAGGAGAAGCTG AAGGGCCGCAGCTTACACATGTTC 62

nanog TGCAAATGTCTTCTGCTGAGAT GTTCAGGATGTTGGAGAGTTC 55

PAX6 AAC AGA CAC AGC CCT CAC AAA CA CGG GAA CTT GAA CTG GAA CTG AC 60

RAX CTG AAA GCC AAG GAG CAC ATC CTC CTG GGA ATG GCC AAG TTT 55

MITF AAG TCC TGA GCT TGC CAT GT GGC AGA CCT TGG TTT CCA TA 52

RPE65 TCC CCA ATA CAA CTG CCA CT CAC CACC ACA CTC AGA ACT A 52

tyrosinase TGC CAA CGA TCC TAT CTT CC GAC ACA GCA AGC TCA CAA GC 52

doi:10.1371/journal.pone.0030089.t001
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2 min at 50uC, 10 min at 95uC, and 40 cycles repeating

denaturation 15 s at 95uC, and annealing for 1 min at 60uC.

qPCR analyses were performed from three individual biologic

experiments, each reaction prepared as technical triplicates.

Threshold cycle (Ct) values were determined using 7300 System

SDS Software (Applied Biosystems) and data were further

analyzed with Microsoft Office Excel 2003 (Microsoft Corpora-

tion, Redmond, WA). Relative gene expression was calculated

using the 2-DDCt method [19]. An internal control, glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH, Hs99999905_m1),

was used to normalize the data. The expression levels of either

D407 or HEK293 were used as a reference depending on the gene

studied. The technical replicate reactions were considered reliable

if the standard deviation of the triplicate Ct values was less than

0.5.

Western blotting
The cell samples washed with phosphate buffered saline (PBS,

Lonza Group Ltd., Basal, Switzerland) and cells were lysed in M-

PER lysis buffer (Thermo Scientific, Waltham, MA, USA)

according to the manufacturer’s instructions. Protein concentra-

tions of samples were analyzed using the Bradford method [20].

The amount of ARPE-19 and hESC samples was 10 mg. The

samples were run in 7% sodium dodecyl sulfate polyacrylamide

(SDS-PAGE) gels and then wet-blotted to nitrocellulose mem-

branes (GE Healthcare, Little Chalfont, Buckinghamshire, UK).

Blocking was done with 3% fat-free dry milk in 0.3% Tween 20/

PBS at room temperature (RT) for 1 h. Thereafter, membranes

were incubated in primary antibody dilutions anti-MRP1 (1:2000,

overnight at 4uC), anti-MRP4 (1:5000, 1 h at RT), or anti-MRP5

(1:2000, 1 h at RT) rat monoclonal MRP antibodies (all from

Abcam, Cambridge, UK) or alpha-tubulin (1:4000, 30 min at RT,

Sigma-Aldrich) that was used as a loading control. All primary

antibodies were diluted in 0.5% bovine serum albumin (BSA) in

0.3% Tween 20/PBS. After 365 minutes washes with 0.3%

Tween 20/PBS the membranes were incubated in horseradish

peroxidase-conjugated anti-mouse IgG or antibody (GE Health-

care), diluted in 3% fat-free dry milk in 0.3% Tween 20/PBS (1:10

000 for MRP1, 1:10 000 for MRP4, and 1:2000 for MRP5) for 1 h

at RT, and 30 min at RT for alpha-tubulin (1:10 000). Protein-

antibody-complexes both in MRP and alpha-tubulin labeling were

detected using an enhanced chemiluminescence method (Milli-

pore, Billerica, MA, USA).

Immunostaining
The cells were labeled as described previously [15]. Briefly, the

cells were washed 3x5 minutes with PBS, fixed 10 min with 4%

paraformaldehyde (pH 7.4; Sigma-Aldrich), and washed with

PBS. Cells were permeabilized in 0.1% Triton X-100/PBS

(Sigma-Aldrich), for 10 min and thereafter washed with PBS.

Nonspecific binding sites were blocked with 3% BSA (Sigma-

Aldrich) in PBS at RT for 1 h. Primary antibody incubations

were done in 0.5% BSA-PBS, with rat monoclonal anti-MRP-1

(1:100), anti-MRP-4 (1:100), and anti-MRP-5 (1:50), with rabbit

anti-microphthalmia-associated transcription factor (MITF,

1:350), mouse anti-cellular retinaldehyde-binding protein

(CRALBP, 1:1000), or mouse anti-Na+/K+ ATPase (1:50; all

antibodies were from Abcam) for 1h. Thereafter cells were

washed 3x with PBS. The secondary antibody incubations were

done in 0.5% BSA-PBS with donkey anti-mouse IgG and goat

anti-rabbit IgG (both Alexa Fluor 488), goat anti-mouse IgG and

goat anti-rabbit IgG (both Alexa Fluor 568; all from Molecular

Probes, Life Technologies, Paisley, UK) in a 1:1500 for 1 h,

following repeated PBS washings. Nuclei were counterstained

with 49,69-diamidino-2-phenylidole included in the mounting

media (DAPI, Vector Laboratories Inc., Burlingame, CA). The

entire labeling procedure was performed at RT. Confocal images

were obtained with an LSM 700 confocal microscope (Carl Zeiss,

Jena, Germany) using a 636 oil immersion objective and bright

field images were obtained with an Olympus BX60 microscope

(Olympus, Tokyo, Japan) with a 606 oil immersion objective

with N.A. 1. Overlays and image processing of confocal images

were done in ZEN-software (Carl Zeiss).

Efflux activity test with calcein-AM
Calcein-AM is a substrate both for P-gp and MRP1 proteins

[21,22], thus MRP1 and P-gp efflux protein activity in the cells

was assessed using the calcein–acetoxymethyl (AM) assay.

Calcein-AM is cell permeable until it is metabolized by

intracellular esterases to AM and calcein, a cell-impermeant

fluorescent compound [6]. Efflux pump inhibitors either totally

inhibit or slow the pumping rate, thus allowing the esterases more

time to metabolize calcein-AM to calcein. The efficacy of

inhibition is observed as an increase in intracellular fluorescence.

The experiment was performed as previously described [6].

Briefly, the cells were pre-equilibrated with 25 mM HEPES-

buffered Hank’s balanced salt solution (pH7.4) with or without

one of the following inhibitors, 15 mM cyclosporine A (Calbio-

chem, La Jolla, CA, USA), 200 mM progesterone (Sigma-

Aldrich), 500 mM verapamil (ICN Biomedicals, Irvine, CA), or

100 mM MK571 (Cayman Chemicals, Ann Arbor, MI, USA) for

20 min at 37uC. Thereafter, calcein-AM (Calbiochem) was added

to a final concentration of 2 mM and incubation continued for an

additional 20 min at 37uC. Test solutions were changed to ice-

cold buffer and intracellular fluorescence was measured using a

Victor 1420 Multilabel Counter (Wallack, Finland) with excita-

tion wavelength of 480 nm and an emission wavelength of

535 nm.

Cell viability test
Cell viability was assessed from ARPE19 and hESC RPE cells

simultaneously as the efflux pump activity test with the Live/Dead

Viability/Cytotoxity kit for Mammalian cells (Invitrogen). Briefly,

the cells were rinsed with DPBS and incubated at RT for 40 min

with a mixture of 0.25 mM Calcein AM (green fluorescence) and

0,5 mM Ethidium homodimer-1 (red fluorescence, EthD-1). A

fluorescence microscope (Olympus IX) was used to image the

viable cells (green fluorescence) and dead cells (red fluorescence)

with 10x long working distance objective.

Statistical analyses
Statistical analysis of the qRT-PCR data was performed using

analysis of variance (ANOVA) with Bonferroni’s correction for

multiple comparisons, and the calcein-AM assay with a one-

sample t-test, both with PASW Statistics, version 18. P-values of

less than 0.05 were considered statistically significant and P values

of less than 0.01 were considered highly significant.

Ethical issues
We have approval from the National Authority for Medicolegal

Affairs Finland research with human embryos (Dnro 1426/32/

300/05) and a supportive statement was obtained from the local

ethics committee of the Pirkanmaa hospital district Finland to

derive and expand hESC lines from surplus embryos not used in

the treatment of infertility by the donating couples, and to use

these lines for research purposes (R05116). No new cell lines were

derived in this study.
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Results

hESC-derived RPE cells express eye-specific genes
RT-PCR analysis was used to assess the cell maturation status.

Pluripotency genes POU5F1 and nanog typically expressed by

undifferentiated hESC were expressed only by undifferentiated

hESC, as expected (Fig. 1E). PAX6, one the first markers of the

development of the neuroectoderm and eye, and eye-specific genes

RAX, MITF and RPE65 were expressed by both ARPE-19 and

hESC-RPE cells at all maturation stages (i.e., fusiform, epithelioid,

and cobblestone hESC-RPE). Undifferentiated hESC also ex-

pressed the eye-specific genes at very low levels. Tyrosinase, which is

important for melanin synthesis, was expressed by hESC-RPE

cells but not in ARPE-19 or D407 cells. None of the analyzed eye-

specific genes, except for MITF, were detected in D407 cells. In

addition, none of the studied genes, except for GAPDH, and faint

expression of PAX6, were detected in hFF, which was analyzed as

a possible source of background expression for the undifferentiated

hESC samples.

Efflux protein gene expression during RPE cell
differentiation

The relative expression of several ATP-dependent efflux

transporters (MRP1, -2, -3, -4, -5, -6, p-gp, and BCRP) was

examined with qRT-PCR. The mRNA expression levels in the

spontaneously transformed cell line D407 were used as a reference

sample for all other studied genes except the MRP6 gene, which

has not been previously detected in D407 cells, and thus HEK293

cells were used as reference for MRP6 gene expression studies.

During all maturation stages, hESC-RPE cells expressed

higher levels of MRP1 gene than D407 cells (Fig. 2). MRP2 gene

expression levels were significantly lower in all studied cells than

in D407 (see Supplementary Table S1). Fusiform and epithelioid

hESC-RPE cells expressed equal amounts of the MRP3 as D407,

while undifferentiated hESC, cobblestone hESC-RPE cells, and

hFF expressed lower levels of the MRP3 gene than D407 cells

(Fig. 2). Fusiform, epithelioid, and cobblestone hESC-RPE

expressed higher levels of the MRP4 gene than D407 cells.

MRP5 was expressed in hFF cells and ARPE-19 lower levels, and

undifferentiated hESC expressed similar amounts of MRP5 gene

as D407 cells. Conversely mature hESC-RPE cells expressed

higher levels of the MRP5 gene than D407 cells. The MRP6 gene

expression level was very low in D407 and ARPE-19 cells;

therefore, HEK293 cells were used as a reference sample

(Supplementary Table S1). Fusiform hESC-RPE expressed the

MRPP6 gene at the same level as HEK293. The MRP6

expression levels were much higher in epithelioid and cobblestone

hESC-RPE cells than in HEK293 cells, and much lower in

undifferentiated hESC, ARPE-19, and D407 cells than in

HEK293 cells (Fig. 2). Fusiform and epithelioid hESC-RPE

expressed significantly higher levels of the p-gp gene than D407

cells, whereas the p-gp gene was undetectable in ARPE-19 cells.

In addition, the undifferentiated hESC, cobblestone hESC-RPE,

and hFF expressed lower levels of the p-gp gene than D407 cells

(Fig. 2) (Supplementary Table S1). BCRP gene expression levels in

all studied samples were significantly lower than those in D407

cells.

Efflux protein expression
To ensure that the gene transcripts were translated to proteins,

we used Western blot to examine whether the ARPE-19 and

fusiform, epithelioid and cobblestone hESC-RPE expressed

MRP1, MRP4, and MRP5 protein. Both ARPE-19 and the

hESC-RPE cells produced MRP1 (Fig. 3A), -4 (Fig. 3B), and -5

(Fig. 3C) proteins. The MRP1 protein expression slightly increased

and MRP5 protein expression was extensively increased during

the maturation process (Fig. 3A), whereas MRP4 expression

remained stable during the maturation.

Efflux protein localization during RPE cell differentiation
The cellular localization of MRP1, -3, and -5 proteins was

assessed in ARPE-19 cells and in fusiform, epithelioid, and

cobblestone hESC-RPE (Fig. 4A–P). The overall labeling intensity

with MRP antibodies was extremely low. None of the studied

MRPs were detected in ARPE-19 cells (Fig. 4A, E, I). The fusiform

hESC-RPE had low but still detectable amounts of MRP1 and

MRP4 and a very low amount of MRP5 protein staining (Fig. 4B,

F, J). The early cobblestone hESC-RPE had detectable amounts of

subcellularly localized MRP1, -4, and -5 proteins (Fig. 4C, G, K).

The cobblestone hESC-RPE cells had MRP1, -4, and -5 protein

staining that coincided with apical Na+/K+ ATPase staining

(Fig. 4D, H, L).

Functionality of MRP1 efflux pump during RPE cell
differentiation

Efflux protein activity in the cells was assessed with Calcein-AM

assay from ARPE-19 cells and in fusiform, epithelioid, and

cobblestone hESC-RPE. ARPE-19 cells cultured for 7 days

showed efflux activity, but the activity was lost when the cells

were cultured for longer periods of time (Fig. 5A). On the other

hand, fusiform hESC-RPE cells had higher MRP1 activity than

cobblestone hESC-RPE. The undifferentiated hESC and hFF had

no MRP1 efflux pump activity.

Cell viability
Microscopic observations revealed that after 7 days of culture, at

the time of functionality tests, both ARPE19 (Fig. 5B and C) and

fusiform hESC RPE (Fig. 5D and E) cells were viable, and the

number of dead cells was low.

Discussion

Currently there is no curative treatment for exudative AMD,

therefore human pluripotent stem cell derived RPE cells are highly

desirable source of cells for cell therapy in AMD [3,4].

Furthermore these cells offer a biological tool for drug discovery,

toxicity screening and targeted drug therapy. For that purpose we

have assessed the expression status and function of ATP-

dependent efflux transporters in stem cell derived RPE cells.

Before examining the expression status of ATP-dependent efflux

transporters, we assessed the maturation status of the samples

using RT-PCR, which revealed that the spontaneously trans-

formed retinal cell line, D407, previously used in efflux transporter

studies [6,23], expressed no eye-specific genes other than MITF.

Eye-specific gene expression was detected in ARPE-19, which is a

cell line that is widely used for RPE drug transport studies [9,24],

confirming that ARPE-19 cells are a good RPE standard.

Human ESC-RPE cells at all maturation stages (fusiform,

epithelioid, and cobblestone) expressed eye-specific genes, as

expected. Furthermore, the expression of PAX6, RAX, RPE65,

and tyrosinase increased from fusiform to epithelioid and from

epithelioid to cobblestone hESC-RPE, confirming that classifica-

tion according to morphology is valid.

MRP1 protein is predominantly expressed in human cells that

form blood-tissue barriers [10,25]. Several xenobiotics, dietary,

and synthetic flavonoids (e.g., fruit pigments) modulate the MRP1

pump [25]. MRP1 expression is detected in human RPE [26],

primary RPE cells [27], and RPE cell lines [6,27]. The present

hESC-Derived RPE Cell Efflux Protein Expression
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Figure 2. Expression of ATP-dependent efflux transporter genes. Relative expression of MRP1, MRP3, MRP4, MRP5, P-gp, and MRP6 genes.
D407 used as reference sample for all genes except MRP-6, for which HEK-293 was used instead. Values that are significantly different from those of
the reference sample are marked with an asterisk (*). For better visualization, fold-change is represented on a logarithmic scale. Standard deviations
of fold-change from three separate experiments are presented as error bars.
doi:10.1371/journal.pone.0030089.g002
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study showed for the first time that hESC-derived RPE cells also

express MRP1 at both the mRNA and protein levels. MRP1

mRNA expression clearly peaked in the early stages of

differentiation in fusiform-shaped cells, and declined thereafter

in fully mature cells with a cobblestone morphology. These results

are consistent with those of previous studies [6,26,27], although

this is the first study to confirm that MRP1 expression fluctuates

depending on the maturation status. The fluctuation in expression

was also observed in an efflux pump functional test with calcein-

AM. In the functional test, epithelioid cells had higher activity

than cobblestone cells, and undifferentiated hESC had no activity

at all. Graff and coworkers [28] as well as Rao and coworkers [29]

previously reported that MRP1 localizes on the apical side of the

BBB. In the present study, the localization of MRP1 changed

when hESC-RPE cells matured: in fusiform cells, MRP1 was

located primarily subcellularly with only faint expression in

cellular projections in the majority of cells; in early cobblestone

MRP1 was located intracellularly near the nucleus; and in mature

cells with a cobblestone morphology, MRP1 was located on the

apical side of the polarized cells. The change in the amount and

localization of MRP1 might also reflect the differences in the

MRP1 function in native RPE. The overall intensity in

immunofluorescence labeling was very low, even in hESC-RPE

cells that expressed high amounts of MRP1 protein, therefore the

labeling in ARPE-19 cells might have remained below the

detection level.

In previous studies, MRP2 expression was detected in RPE

extracted from cadaveric eyes [26] and in D407, but not in ARPE-

19 cells [6]. Our qRT-PCR expression analysis showed that hESC

and ARPE-19 cells expressed only very low levels of MPR2 gene

compared to D407. Thus, our results are consistent with the

previous results obtained with ARPE-19 cells [6].

MRP3 gene expression has been previously detected in human

retina/choroid [30] and in D407 cells, but not in ARPE-19 cells

[6]. MRP3 expression fluctuated during the hESC-RPE cell

maturation: MRP3 expression was very low in undifferentiated

hESC, but the expression was increased from fusiform hESC-RPE

to epithelioid hESC-RPE and diminished again in cobblestone

hESC-RPE.

MRP4 is an ATP-dependent organic anion transporter [10]

that has a role, for example, in prostaglandin transport [31] in the

eye. It also interacts with many drugs, such as 59fluorouracil,

zidovudine, ganciclovir, and vincristine that are used to treat

retinal conditions [32–34]. In earlier studies MRP4 expression was

detected in human retinal samples [26] and in ARPE-19 and

D407 cells [6]. In the present study, MRP4 expression was low in

undifferentiated hESC, but was induced when cells matured to

fusiform hESC-RPE. MRP4 protein localizes either on the

basolateral or apical membrane of the cells, depending on the

cell type [35], nevertheless, the localization of MRP4 has not been

previously studied in RPE cells. The microscopic examination

revealed that the fusiform cells were weakly MRP4 positive, and

the positivity was scattered within the cell. In highly pigmented

cobblestone hESC-RPE cells, MRP4 protein was localized on the

apical side near the Na+/K+ ATPase-expressing cells. The overall

labeling intensity in immunofluorescence labeling was very low,

and MRP4 labeling in ARPE-19 cells probably remained below

the detection level.

MRP5 has a broad substrate and inhibitor specificity [10]. In

eye diseases, MRP5 has an important role as it interacts with

drugs, such as Etoposide, used for treatment of retinoblastoma

[36]. MRP5 expression has also been linked to AMD develop-

ment, and its expression decreases in RPE cells cultured on old

Bruch’s membrane [37]. Both the MRP5 gene and protein are

expressed in D407 and ARPE-19 cells [6,37]. Here, MRP5

expression increased both in mRNA and protein level during

hESC-RPE cell maturation, which is consistent with a previous

study [37]. MRP5 is apically localized in the BBB [38], but in the

BRB the site of expression had not been previously determined. In

immunofluorescence labeling, MRP5 was not detected in ARPE-

19 cells and very few subcellular signals were observed in fusiform

cells. In highly pigmented cobblestone hESC-RPE, the MRP5

protein localized to the apical side of the cells.

MRP6 gene expression has not been previously detected neither

in native RPE [39] nor in ARPE-19 and D407 cell lines [6],

although MRP6 gene ablation in mice increases the calcification of

retina and Bruch’s membrane [40]. Interestingly, the hESC-RPE

cells expressed MRP6 at similar level to HEK293, and the

expression increased during maturation of the hESC-RPE cells,

whereas very low expression was detected in ARPE-19 and D407

cells. The discrepancy in the MRP6 expression between hESC-

RPE and cadaveric RPE might be due to the fact that hESC-RPE

are in a different maturation state than native RPE or that MRP6

is expressed in very low levels in native RPE and thus remains

undetected.

P-gp is expressed in human [41] and porcine [42] RPE, and at

low levels in the h1RPE cell line derived from immortalized

Figure 3. Expression of ATP-dependent efflux transporter
proteins. Expression of MRP1 (A), MRP4 (B), and MRP5 (C) proteins
in ARPE-19 cells (lane 1), fusiform hESC-RPE (lane 2), epithelioid (lane 3)
and cobblestone (lane 4) hESC-RPE (lanes 4) detected with Western
blotting. Alpha-tubulin was used as the loading control.
doi:10.1371/journal.pone.0030089.g003
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primary RPE cells [23] and in ARPE-19 cells [6,23]. In the

present study, P-gp gene expression levels peaked in immature

hESC-RPE. Thus, the expression pattern of p-gp was similar to

that of MRP1 and MRP4. BCRP is expressed in human RPE [26]

and in D407, but not in ARPE-19 cells [6]. BCRP expression was

very low in ARPE-19 and hESC-RPE.

In conclusion, the findings of the present study clearly

demonstrated that expression of genes for the ATP-dependent

efflux transporters MRP1, -3, -4, -5, and P-gp fluctuates in

undifferentiated hESC and hESC-RPE at different maturation

stages. In addition, based on the gene expression profile, hESC-

RPE cells more closely resemble ARPE-19 cells than D407 cells,

suggesting that hESC-RPE cells have important RPE cell-like

properties, which make these cells an excellent in vitro cell model

for drug transportation studies for AMD drug testing and

development.

Figure 4. Localization of ATP-dependent efflux transporter proteins. A-L) Confocal micrographs after indirect immunofluorescence labeling
with efflux pump proteins MRP-1, -4, or -5 (green), and eye-specific proteins MITF and cellular retinaldehyde-binding protein (CRALBP, both red), the
polarization marker Na+/K+ ATPase (red), and the nuclear label 49,69-diamidino-2-phenylidole (blue). In figures M-P) the brightfield micrographs show
the same ARPE-19 cells and fusiform, early cobblestone, and cobblestone hESC-RPE as shown in the confocal images. Scale bars, 10 mm.
doi:10.1371/journal.pone.0030089.g004
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Figure 5. Functional testing of ATP-dependent efflux transporter proteins and viability of cultured cells. A) Calcein retention in ARPE-
19, undifferentiated hESC, fusiform, and cobblestone hESC-RPE, and hFF cells in the presence or absence ( = control) of efflux protein inhibitors.
Retention is expressed as a percentage of fluorescence relative to control (control = 100%). The studies were repeated at least three times for ARPE-19
and fusiform hESC-RPE, and once each for undifferentiated hESC, cobblestone hESC-RPE, and hFF. Data are expressed as mean6SD, *p,0.05,
**p,0.01, ***p,0.001. B-E) Representative images of viable (green fluorescence) and dead (red fluorescence) ARPE19 (B,C) and fusiform hESC RPE
cells (D,E). The scale bar 100 mM.
doi:10.1371/journal.pone.0030089.g005
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