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Abstract

Background: Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth,
such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian
rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these
physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor
crosstalk.

Methodology/Principal Findings: In this work, we investigated the molecular effects of exogenous phyto-hormones to
photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by
monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor
genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of
some (IAA) or most (GA) photoreceptor genes is down regulated by these hormones.

Conclusions/Significance: Our results highlight the presence of molecular relationships among cryptochrome 1a protein,
hormones, and photoreceptors’ gene expression in tomato, suggesting that manipulation of cryptochromes could
represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive
mechanism.
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Introduction

During evolution, plants have developed accurate mechanisms

to integrate internal signal such as hormones and environmental

cues like light and temperature, in order to respond as quickly

and efficiently as possible to any change. Several growth and

developmental processes, such as seed germination, stem elonga-

tion, seedling de-etiolation, cotyledon opening, flower induction

and circadian rhythms are activated and/or regulated by both

light and hormones, suggesting interactions between signalling

pathways [1,2,3,4,5,6].

Plants have acquired the tools to monitor precisely the changing

intensity and spectrum of light, its direction and, in specific cases,

its plane of polarization [7], through a number of photoreceptors:

the red (R)/far-red(FR) – absorbing phytochromes and the blue/

UV-A – absorbing cryptochromes and phototropins [8,9].

In Arabidopsis, phytochromes are encoded by five different genes,

PHYA through PHYE [10,11], cryptochromes by three genes,

CRY1, CRY2 and CRY-DASH [12,13,14]. Cryptochromes and

phytochromes control several overlapping physiological responses,

[15,16] at all stages of plant development. Although the exact

nature of co-action has yet to be well elucidated, it is known that

blue light-mediated de-etiolation involves the interaction of both

phytochrome and cryptochrome signaling [17,18,19].

In tomato (Solanum lycopersicum), four cryptochrome genes have

been discovered and analyzed so far: two CRY1-like (CRY1a and

CRY1b), one CRY2 and one CRY-DASH gene [20,21,22]. The role of

the CRY1a gene has been elucidated through the use of antisense

[23] and mutant [24] plants. CRY1a controls seedling photomor-

phogenesis, anthocyanin accumulation, and adult plant develop-

ment. No effects of CRY1a on flowering time or fruit pigmentation

have been observed. The overexpression of tomato CRY2 causes

phenotypes similar to but distinct from their Arabidopsis counterparts

(hypocotyls and internode shortening under both low and high

fluence blue light), but also several novel ones, including a high-

pigment phenotype, resulting in overproduction of anthocyanins

and chlorophyll in leaves and of flavonoids and lycopene in fruits

[25]. Tomato CRY-DASH gene is under the control of circadian

machinery with a light-regulated transcription pattern and it is

expressed since the earliest phases of tomato development [22].

In tomato, phytochromes are encoded by five genes: PHYA,

PHYB1, PHYB2, PHYE and PHYF [26]. Phylogenetic analyses
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showed orthology between PHYA, PHYE and PHYC/F gene pairs

in Arabidopsis and tomato; tomato PHYB1 and PHYB2 were

originated by an independent duplication [27]. Roles for PHYA

and PHYB1 in the mediation of tomato plant de-etiolation

responses to red light (R) have been demonstrated previously

[28,29]. Although the phyAphyB1 double mutant is blind to low-

irradiance R, it de-etiolated normally under white light. The

phenotype of phyAphyB1phyB2 mutants under natural daylight

indicated an important role for PHYB2 in this residual response

[30] and it also clear that PHYB2 is also active in R-sensing [31].

Different classes of hormones regulate several aspects of seedling

development, often in redundant or antagonistic relationship

among them. Gibberellin (GA) and abscisic acid (ABA) are two

critical signals with antagonistic effects on seed dormancy and

germination [32,33]. GA and brassinosteroid (BR) are involved in

the repression of photomorphogenesis in the dark [34,35] and with

auxin promote hypocotyl elongation [36]. Low levels of auxin

induce root growth, whereas high levels have inhibitory effects

[37]. Besides, auxin plays an important role in lateral root

initiation and growth [38].

The interaction among hormones may be additive, synergistic

or antagonistic, making their overall effect more complex (see

reviews: [32,39,40,41]). For example, auxin is known to control

root growth in part through modulation of the cellular response to

GA [42], but it regulates hypocotyl elongation independently of

GA [36]. Recent evidence suggests that auxin and BR signaling

pathways are overlapping and interdependent: expression of

several AUX/IAA genes (SAUR and GH3 homologs) are

regulated by both auxin and BR [43,44,45].

A few downstream genes are known to modulate or integrate

different hormonal signals. For example, the Arabidopsis sax mutant

provides strong evidence for interaction among multiple hormo-

nes related to BR levels [46,47]. Finally, SPY gene was recently

demonstrated to have a role as a coordinator in cross-talk between

GA and cytokinin [48].

Phyto-hormones also play important roles in regulating

vegetative and reproductive development. Mutants with a

decreased response to GA, BR or auxin are usually characterized

by dwarfism, reduced apical dominance, dark-green foliage, and

reduced fertility [32,49,50,51]. GA also regulates flowering time

and flower organ development [52,53].

There are several pieces of evidence of interactions between

photoreceptors and hormones during plant development. Many

studies have suggested that phytochromes and cryptochromes

influence the activities of auxin in order to regulate plant growth.

Indeed, PHYA, PHYB and CRY1 promote light-dependent effects

of the auxin transport inhibitor 1-N-naphthylphthalamic acid on

both hypocotyls and root elongation in Arabidopsis [54,55]. Other

reports indicate that cryptochromes regulate the transcription of

AUX/IAA genes [56] and that AUX/IAAs are phosphorylated by

PHYA [57].

Gibberellins are known to be a component of light signalling

[58]; phytochromes and GAs act in coordination to regulate

multiple aspects of Arabidopsis development such as flowering and

hypocotyls elongation [59,60,61]. Phytochromes affect GA levels,

by regulating expression of the GA2ox and GA3ox genes [62], and

may also regulate GA responsiveness [63,64,65]. It has been

recently shown that PHYA and PHYB mediate light stabilization

of the DELLA proteins, which may, at least partially, result from

the phytochrome-dependent regulation of GA homeostasis [66].

Light and GA play an antagonistic role during photomorpho-

genesis [34]. It has been reported that light inhibits the ability of

Phytochrome Interacting Factors (PIFs) to promote dark-type

growth (elongation of hypocotyl and repression of chloroplast

development), through a stabilizing action of PIF proteins in the

dark, rather than the destabilization, mediated by activated

phytochromes, that occurs in the light. On the other hand, PIF

responses are restored by the destabilizing action of GA over

DELLA [4,67].

Phytochromes and GAs are also involved (together with auxins

and ethylene) in regulating shade-avoidance responses, that

maximize light capture by positioning the leaves out of the shade

[68].

In comparison to the phytochrome-regulated responses, the

relationship between cryptochromes and GA in the blue light

responses is less clear in Arabidopsis. It has been found in pea that

CRY1 and PHYA redundantly regulate GA2ox and GA3ox

expression and GA signaling [65,69]. A recent report demonstrat-

ed that cryptochromes mediate blue light regulation of GA

catabolic/metabolic genes, which affect GA levels and hypocotyl

elongation [5].

Furthermore cytokinins in Arabidopsis are involved in the

regulation of the circadian clock mechanism [6], in which both

cryptochromes and phytochromes are also involved. Besides

Vandenbussche and collegues [70] concluded that HY5, a positive

regulator of photomorphogenesis induced by CRY1 and CRY2

[71], represents a point of convergence between cryptochrome

and cytokinin signalling pathways.

Several other examples of hormone-over-photoreceptor inter-

action could be reported; however there is little or no information

about effects of phyto-hormones on photoreceptors and possible

alteration of their gene transcript accumulation.

We decided to investigate the effects of the addition of

exogenous phyto-hormones to the photoreceptor system of

tomato wt and transgenic lines with altered crypthochromes, by

monitoring the day/night transcript oscillations. We demonstrated

that exogenous GA and auxin are able to modify the tomato

photoreceptor diurnal expression patterns, especially in cry1a

mutants, suggesting the presence of a molecular network among

cryptochrome 1a, hormones, and photoreceptor genes in tomato.

Results and Discussion

To investigate whether phyto-hormones influence the diurnal

expression pattern of the tomato cryptochrome (CRY1a, CRY1b,

CRY2 AND CRY-DASH) and phytochrome (PHYA, PHYB1,

PHYB2, PHYE AND PHYF) genes, we have exogenously added

citokinin (t-zeatin), gibberellic acid (GA3), auxin (IAA) and abscisic

acid (ABA) phyto-hormones to wt tomato, to a mutant genotype

with a non functional CRY1a (cry1a-) [24] and to a transgenic line

overexpressing the cryptochrome 2 (CRY2OX) [25]. All tomato

plants were grown hydroponically under a light cycle of 16 h

light/8 h darkness (LD), as described in Methods. Two hours

before the presumptive dawn (ZT-2) a specific phyto-hormone (t-

zeatin, GA3, IAA or ABA) was added (for details, see Methods).

Aerial components of the hormone-added plants and control

plants (without hormone) were sampled at distinct time points over

a diurnal cycle (ZT0, ZT6, ZT12, ZT16 and ZT20) and subjected

to cryptochrome and phytochrome gene expression assays, by Q-

RT PCR. We further analyzed the diurnal transcription pattern of

two genes for which the transcription is strictly light-regulated:

GIGANTEA (GI), involved in the regulation of the plants’ circa-

dian rhythm [72] and CAB4, a member of the large family of

Chlorophyll a/b-binding proteins [73].

The effects of cryptochrome alterations on the photoreceptors’

transcription pattern, without hormone treatment, are relatively

minor, with the obvious exception of the fact that CRY2 transcripts

are constantly up-regulated in CRY2OX genotype. Furthermore,

Hormones Influence Transcription of Photoreceptors
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GI and CAB4 transcripts show the widest day/night oscillation and

a sharp peak at 12 h and 6 h after dawn, respectively; the different

genotypes influence the peak amplitude rather than the phase of

the cycling transcripts (Fig S1). Transcript alteration patterns

similar to the above mentioned ones have already been observed

in our previous work carried out using soil grown plants in LD

[74]. However, in hydroponically grown plants we don’t have

strong effects on other CRYs and PHYs transcripts except for

significant down-regulation of some photoreceptor transcripts

(CRY1a, CRY1b, CRY-DASH, PHYA, PHYB1, PHYE, PHYF) at

several time points in CRY2 over-expressing tomatoes (Fig. S1).

The reciprocal interaction between light and phyto-hormones is

a well-known physiological process: light was found to regulate

directly the biosynthesis of active gibberellins [75], ethylene [76]

and ABA, as well [58]. The molecular mechanisms that regulate

this interaction during plant development and life remain unclear,

although they are starting to be unraveled [77]; here we provide

evidence of a remarkable level of control of gibberellin and auxin

on cryptochrome and phytochrome gene expression in tomato.

Our results show that this control varies according to the analyzed

genotype (Fig. 1). In general, the genotype with non functional

cryptochrome 1a, cry1a-, appears to be much more sensitive to

exogenous hormones than wt (Fig. 1). The data regarding CRY2

expression in CRY2OX genotype showed that the presence of an

overexpression construct driven by a constitutive promoter is

presumably able to dilute any hormonal effects on the transcrip-

tion of this cryptochrome (Fig. 2A, 3A, 4A, 5A).

Effects of phyto-hormones on tomato photoreceptor
diurnal transcription

The modification of cryptochrome and phytochrome transcrip-

tion pattern following addition of GA3 is remarkable, especially in

cry1a- plants (Fig. 1 and Fig. 2AB). In this genotype, GA3 produces

strong downregulation of both cryptochrome and phytochrome

transcripts, with the only exception of CRY2, at all time points

(Fig. 2A). The lack of a functional CRY1a protein produces a

generic and strong signal of downregulation of the photo-

perceptive apparatus of tomato in GA3 treated plants with regard

to the untreated ones, suggesting a pivotal role for CRY1a in

mediating light and gibberellin stimuli. Analyzing in greater detail

the behavior of cryptochrome transcripts following GA3 treatment

in wt tomato plants, it is evident that cryptochromes are quite

unaffected by rapid change of hormone concentration in the

culture medium, the only exception being the upregulation of

CRY-DASH (Fig. 2A). On the other hand, in CRY2OX and cry1a-

genotypes cryptochrome 1 transcripts are mostly downregulated

(Fig. 2A). This hints that CRY1a and CRY2 play an antagonistic

role in CRY1a and CRY1b transcriptional regulation, when

gibberellin is added.

The transcription pattern of the phytochrome gene family

following treatment with GA3, evidenced an opposite response in

cry1a- plants with respect to wt and CRY2OX tomatoes (Fig. 2B).

Indeed, when a functional form of CRY1a protein is absent, all

five phytochromes are constantly downregulated (Fig. 2B); on the

contrary, when CRY1a works normally (in wt and CRY2OX plants)

the same genes, but PHYB2, appear to be mostly upregulated,

especially at ZT12 (Fig. 2B). These results demonstrate that the

presence of a CRY1a working protein is a decisive factor for

transcript regulation of phytochrome genes. This effect is

particularly evident in PHYB1 transcription (Fig. 2B), suggesting

a possible role of PHYB1 in regulating the molecular network

among hormones, photoreceptors and light in tomato, as an

element downstream of CRY1a.

The photoreceptor response to auxin (IAA) treatment is lower

than to that of gibberellin (Fig. 3AB). Once again, the most

sensitive genotype to exogenous hormone is clearly cry1a-,

especially when focusing on the cryptochrome mRNA transcripts:

CRY1a, CRY1b and CRY2 are downregulated in at least three time

points analyzed (Fig. 3A). In wt and CRY2OX plants no clear

pattern of up or downregulation of cryptochrome transcripts was

observed (Fig. 3A). CRY1a may play a crucial role in the

regulation of chryptochrome expression also under auxin stimulus;

however, this role seems to be absent for phytochromes, which are

almost totally unaffected in cry1a- plants (Fig. 3B). Therefore, the

action of CRY1a over tomato photoreceptor gene transcripts

changes according to different hormonal stimuli. Within the

phytochrome family only PHYA appears to be sensitive to auxin

treatment: indeed, in wt plants this gene is up regulated across the

day; this effect is not visible in cry1a- and CRY2OX plants (Fig. 3B),

suggesting that CRY1a and CRY2 can play a positive and a

negative role, respectively, in the auxin induced alteration of

PHYA transcripts.

Generally, ABA does not cause dramatic effects on transcription

of cryptochrome genes. Nevertheless some very interesting

exceptions must be remarked: the strong upregulation of CRY1a

and the downregulation of CRY-DASH in cry1a- plants, as well as,

the upregulation of CRY-DASH in CRY2OX tomatoes (Fig. 4A). It

is interesting to note that the transcription of CRY-DASH, whose

function as photoreceptor has been heavily discussed [78,79], is

influenced by the other two main tomato cryptochromes, at least

under hormonal stimulus.

Analyzing phytochrome responses to exogenous ABA in

CRY2OX treated-plants, we observed strong upregulation during

the day for PHYB1, PHYE and PHYF; conversely, PHYA shows

downregulation (Fig. 4B).

In ABA treated cry1a- plants the scenario is completely inverted:

PHYA is upregulated at all time points, but ZT20 (presumptive

night); contrarily, PHYF is constantly downregulated, with the sole

exception of ZT16 (Fig. 4B). In CRY2OX genotype PHYA appears

to be downregulated with the exception of ZT12 and ZT16,

whereas PHYE and PHYF are up regulated during almost all cycle

(Fig. 4B). In general, cryptochrome 1–2 type proteins seem to play

a role in phytochrome responses to ABA treatment, in accordance

with what was already discussed for gibberellin treatment.

Figure 1. Number of transcription patterns altered in at least
three points per cycle, by ZEA, GIB, AUX and ABA phyto-
hormones in wt, cry1a- and CRY2OX genotypes. We considered
four cryptochrome (CRYs (4)) and five phytochrome (PHYs (5)) gene
transcripts. In the squares is indicated the number of altered patterns
for each hormone.
doi:10.1371/journal.pone.0030121.g001
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Figure 2. Diurnal expression pattern of Cryptochrome (A) and Phytochrome (B) transcripts analyzed by QRT-PCR in wt, cry1a- and
CRY2OX GA3-treated tomato plants. Results are presented as a ratio after normalization with b-actin. Yellow and dark bars along the horizontal
axis represent light and dark periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]); data at ZT24 constitute a
replotting of those at ZT0. The control data, of gene expression in the absence of hormone applications, are reproduced, for clarity, from those in
Figure S1. Data shown are the average of two biological replicates, with error bars representing SEM. Hormone-treated plant transcripts significantly
different from the corresponding ones of control plants are marked with a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01) and three ***
(Student’s t test, P#0.001).
doi:10.1371/journal.pone.0030121.g002
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Figure 3. Diurnal expression pattern of Cryptochrome (A) and Phytochrome (B) transcripts analyzed by QRT-PCR in wt, cry1a- and
CRY2OX IAA-treated tomato plants. Results are presented as a ratio after normalization with b-actin. Yellow and dark bars along the horizontal
axis represent light and dark periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]); data at ZT24 constitute a
replotting of those at ZT0. The control data, of gene expression in the absence of hormone applications, are reproduced, for clarity, from those in
Figure S1. Data shown are the average of two biological replicates, with error bars representing SEM. Hormone-treated plant transcripts significantly
different from the corresponding ones of control plants are marked with a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01) and three ***
(Student’s t test, P#0.001). Data from control plants are replotted from Figure 2.
doi:10.1371/journal.pone.0030121.g003
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Figure 4. Diurnal expression pattern of Cryptochrome (A) and Phytochrome (B) transcripts analyzed by QRT-PCR in wt, cry1a- and
CRY2OX ABA-treated tomato plants. Results are presented as a ratio after normalization with b-actin. Yellow and dark bars along the horizontal
axis represent light and dark periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]); data at ZT24 constitute a
replotting of those at ZT0. The control data, of gene expression in the absence of hormone applications, are reproduced, for clarity, from those in
Figure S1. Data shown are the average of two biological replicates, with error bars representing SEM. Hormone-treated plant transcripts significantly
different from the corresponding ones of control plants are marked with a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01) and three ***
(Student’s t test, P#0.001). Data from control plants are replotted from Figure 2.
doi:10.1371/journal.pone.0030121.g004
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Figure 5. Diurnal expression pattern of CAB4 (A) and GIGANTEA (B) transcripts analyzed by QRT-PCR in wt, cry1a- and CRY2OX
hormone-treated tomato plants. Results are presented as a ratio after normalization with b-actin. Yellow and dark bars along the horizontal axis
represent light and dark periods, respectively. Time points are measured in hours from dawn (zeitgeber Time [ZT]); data at ZT24 constitute a
replotting of those at ZT0. The control data, of gene expression in the absence of hormone applications, are reproduced, for clarity, from those in
Figure S1. Data shown are the average of two biological replicates, with error bars representing SEM. Hormone-treated plant transcripts significantly
different from the corresponding ones of control plants are marked with a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01) and three ***
(Student’s t test, P#0.001).
doi:10.1371/journal.pone.0030121.g005
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The effect of exogenous t-zeatin on photoreceptor gene

expression is very weak and quite independent from the genotype

(Fig. S2 and Fig. 1).

Effects of phyto-hormones on tomato CAB4 and
GIGANTEA diurnal transcription

Transcription of the photosynthetic gene CAB4 is unaffected by

the addition of exogenous t-zeatin in all three genotypes under

study (Fig. 5A). On the contrary, GA3-treatment generates

significant upregulation in wt plants and a downregulation in

both cry1a- and CRY2OX genotypes, especially during the light

phase of the day (Fig. 5A). It is surprising that in wt genotype

gibberellin can stimulate the expression of a gene like CAB4,

implicated in the perception of light stimuli, when Arabidopsis spy

mutant, that is hypersensitive to GA, presents a pale phenotype,

very similar to photoreceptors mutants [80]. Our data suggest that

the upregulation of CAB4 is probably driven by CRY1a and

antagonized by CRY2, since they are downregulated in both

mutant and overexpressor genotypes after GA3-treatment (Fig. 5A).

A similar situation is evident in auxin-treated plants except that

the addition of IAA does not interfere with CAB4 transcription in

wt genotype, providing evidence that addition of auxin can alter

CAB4 transcription only as a consequence of the abnormal

presence of functional cryptochromes (Fig. 5A). Furthermore,

downregulation of CAB4 is also evident after ABA treatment but

limited to CRY2OX plants (Fig. 5A), evidencing a specific dose-

effect of the cryptochrome 2 over ABA induced transcript

alterations.

It is known that the expression of the circadian and flowering

gene GI is (at least partially) under the control of cryptochromes in

Arabidopsis [81], and, more specifically, under the control of

CRY1a in tomato [74]. Our results here reveal that GI transcripts

are not affected by exogenous adding of t-zeatin, gibberellin and

auxin in all the three genotypes observed (Fig. 5B); on the

contrary, GI is very sensitive to ABA, but only in cry1a- plants,

where its transcripts are dramatically upregulated during the part

of the day in which GI is more expressed (from ZT6 to ZT16)

(Fig. 5B). In a recent work [74], we have already demonstrated

that the lack of an active form of CRY1a causes downregulation of

GI; these new experiments highlight that in cry1a- plants CRY1a

and ABA signaling components are redundant in maintaining

optimal GI expression, resulting, most likely, in fine modulation of

numerous important physiological processes in tomatoes.

Concluding remarks
The main finding of this work is that without a functional

cryptochrome 1a, both GA3 and IAA can perturb the diurnal

expression pattern of tomato photoreceptors: GA3 downregulates

both cryptochrome and phytochrome expression pattern, whereas

IAA is able to downregulate cryptochrome diurnal transcription.

Data presented here reveal a substantial degree of control of

cryptochromes (especially CRY1a) over the regulatory networks

formed by phytohormones, light and photoreceptors. We demon-

strated that cryptochromes have a main role in the regulation of the

diurnal expression pattern of both cryptochrome and phytochrome

genes under hormonal stimulus. Particularly, the absence of a

working CRY1a protein makes ‘‘the tomato system’’ more sensitive

to changes of phyto-hormone concentration in the growing medium.

In cry1a- tomatoes, most photoreceptors, especially phyto-

chromes, become repressible by GA addition. The loss of

photoperception via CRY1a is able to compound the skotomor-

phogenic phenotype caused by gibberellin action, as in that

combined situation the transcription of most other photoreceptors

is also repressed; CRY2 overexpression can, in some cases

(PHYB1, PHYE),antagonize this action.

Moreover, under the given treatments, cryptochrome 1a, and in a

milder manner cryptochrome 2, can regulate not only the expression

of photoreceptor gene transcripts, but also the transcription pattern of

genes involved in photosynthetic processes and circadian rhythm, as

CAB4 and GI. This hints a major involvement of phyto-hormones in

mediating the physiological response of plants to light stimuli by an

interaction with photoreceptors.

Materials ands Methods

Standard molecular biology protocols were followed as

described in Sambrook and colleagues [82].

Plant material
All experiments were carried out in Solanum lycopersicum (cv

Moneymaker) background, cry1a- (80B mutant) and transgenic

CRY2OX seeds [24,25]. Tomato seeds were germinated in standard

paper towels. After germination, uniform seedlings were placed into

transparent plastic boxes (14 seedlings of the same genotype per

box) and grown hydroponically for 28 days in a growth chamber in

LD conditions (16 h light/8 h dark-25uC) without humidity control.

Light intensity of about 50 mmol m22 s21 was provided by Osram

(Munich) 11–860 daylight lamps. The composition of the full

nutrient solution used during the plant growth was: 1 mM MgSO4,

2.5 mM Ca(NO3)2, 2 mM KNO3, 0.1 mM K2HPO4, 10 mM Fe-

EDDHA, 10 mM B, 2 mM Mn, 1 mM Zn, 0.5 mM Cu, 0.2 mM Mo,

0.2 mM Co, 0.2 mM Ni and 25 mM Cl [83]. Nutrient solution was

replaced in each box every 2 days. The solution pH was maintained

at 7.5 with CaCO3. At ZT -2 (ZT- Zeitgeber time = number of

hours after the onset of illumination) [84] of the 29th day of growth,

20 mM phyto-hormones were added to nutrient solution of test-

plants (this hormone concentration is within experimental ranges

commonly used pharmacologically for a given phyto-hormone, and

is within a physiologic range); control-plants were let in the standard

nutrient solution. The aerial parts of 10–14 plants for each genotype

(wt, cry1a- and CRY2OX) both for treated and control plants were

harvested at the times shown.

Quantitative RT-PCR
Total RNA (1 mg) was reverse-transcribed with oligo-dT and

Superscript III (Invitrogen), according to the manufacturer’s

instructions. First strand cDNA (5 ng) was used as template for

QRT-PCR. QRT-PCR assays were carried out with gene-specific

primers, using an ABI PRISM 7900HT (Applied Biosystems) and

the Platinum SYBR Green master mix (Invitrogen), according to

manufacturer’s instructions. The primer sequences are:

CRY1a TCCTTGCTAACTTTTTGTTAGTATCTGTG; TA-

CGATCTTTTGTTAGCCTGCCT

CRY1b: ATATCGATGTAATGCAAGAACTATGGA; TCT-

GGTACAGAGAAGTAGAGGCATCA

CRY2: CAAAGGGTGCCATCAATGC; GCTTGTTATCA-

TTGAGCTTCTTTGTT

CRY-DASH: GACACTCTCCTGGAATGATG; CACCAG-

TCTTCTTGGTATATCC

PHYA: GAATCGAAGGTGACTATAGAGCGATT; GAA-

CACCAGCCAAATTGATCAG

PHYB1: GGGCTTCCTCCTGAATTGG; GCTCAGTCCTA-

GGCCTTCCTG

PHYB2: TGATTTCTTACAGATTATGGCAAGCT; TTGG-

TCGAAGATGGACTTCTACC

PHYE: TTGCTTAGTGTAGTGCACCATGC; GTTTCA-

AACCAGGTAACACCTTGA
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PHYF: TTGAGCAAGGATCAAAGGCA; GTGTCGTCA-

ATGATCTTGGCTAGT

GI: GCAACCATTGGAAAACAAAG; CAGACAGAAGCA-

AGGACATAAG

CAB: GAAGGGTCCAATTGAGAAC; GTACAAAGTTTG-

TCCCGTAAG

ACTIN: AGGTATTGTGTTGGACTCTGGTGAT; ACGG-

AGAATGGCATGTGGAA.

PCR conditions were: 5 min at 95uC, followed by 45 cycles at

95uC for 15 sec, and at 58uC for 60 sec. At the end of the PCR,

the thermocycler has been programmed to generate a thermal

denaturation curve of the amplified DNA and to measure the

melting temperature of the PCR product(s). The shape of the

melting curve indicates whether the amplified products are

homogeneous and the melting temperature provides confirmation

that the correct product has been specifically amplified. Relative

template abundance was quantified using the relative standard

curve method described in the ABI PRISM 7900HT manual and

the data were normalized for the quantity of the b-actin transcript

[85], an housekeeping gene whose transcripts do not oscillate

during the day (data not shown). A serial dilution of 10-, 100-,

1000-,10000-, and 100000-fold of each studied gene fragment was

used to determine the amplification efficiency of each target and

housekeeping gene. At least three PCR runs were carried out for

each cDNA to serve as technical replicates and two independent

experiments were carried out by using two biological replicates for

each genotype. Means from two independent experiments were

subjected to SEM calculation, Student’s t test using PAST.

Supporting Information

Figure S1 Effect of CRY1a loss-of-function and CRY2
over-expression on diurnal expression of tomato cryp-
tochrome (A), phytochrome (B) and GIGANTEA/CAB4
(C) genes. Wt, cry1a- and CRY2OX tomato plants were grown

hydroponically under LD conditions. The abundance of the

mRNAs was measured by QRT-PCR. Results are presented as a

proportion of the highest value after normalization with b-actin.

Yellow-black box along the horizontal axis represents light and

dark periods, respectively. Time points are measured in hours

from dawn (zeitgeber Time [ZT]); data at ZT24 constitute a

replotting of those at ZT0. Data shown are the average of two

biological replicates, with error bars representing SEM. Time

points of CRY2OX and cry1a- genotypes, significantly different

from the corresponding ones in wt genotype are marked with

a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01) and

three *** (Student’s t test, P#0.001).

(DOCX)

Figure S2 Diurnal expression pattern of Cryptochrome
(A) and Phytochrome (B) transcripts analyzed by QRT-
PCR in wt, cry1a- and CRY2OX t-ZEATIN-treated
tomato plants. Results are presented as a ratio after normal-

ization with b-actin. Yellow and dark bars along the horizontal

axis represent light and dark periods, respectively. Time points are

measured in hours from dawn (zeitgeber Time [ZT]); data at

ZT24 constitute a replotting of those at ZT0. The control data, of

gene expression in the absence of hormone applications, are

reproduced, for clarity, from those in Figure S1. Data shown are

the average of two biological replicates, with error bars

representing SEM. Hormone-treated plant transcripts significantly

different from the corresponding ones of control plants are marked

with a * (Student’s t test, P#0.05), two ** (Student’s t test, P#0.01)

and three *** (Student’s t test, P#0.001). Data from control plants

are replotted from Figure 2.

(DOC)
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