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Abstract

Microtubule-associated protein 2 (MAP2) belongs to the family of heat stable MAPs, which takes part in neuronal
morphogenesis, maintenance of cellular architecture and internal organization, cell division and cellular processes. To
obtain insight into the possible alteration and the role of MAP2 in transmissible spongiform encephalopathies (TSEs), the
MAP2 levels in the brain tissues of agent 263K-infected hamsters and human prion diseases were evaluated. Western blots
and IHC revealed that at the terminal stages of the diseases, MAP2 levels in the brain tissues of scrapie infected hamsters, a
patient with genetic Creutzfeldt-Jakob disease (G114V gCJD) and a patient with fatal familial insomnia (FFI) were almost
undetectable. The decline of MAP2 was closely related with prolonged incubation time. Exposure of SK-N-SH
neuroblastoma cell line to cytotoxic PrP106-126 peptide significantly down-regulated the cellular MAP2 level and
remarkably disrupted the microtubule structure, but did not alter the level of tubulin. Moreover, the levels of calpain, which
mediated the degradation of a broad of cytoskeletal proteins, were significantly increased in both PrP106-126 treated SK-N-
SH cells and brain tissues of 263K prion-infected hamsters. Our data indicate that the decline of MAP2 is a common
phenomenon in TSEs, which seems to occur at an early stage of incubation period. Markedly increased calpain level might
contribute to the reduction of MAP2.
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Introduction

Prion diseases, also known as transmissible spongiform enceph-

alopathies (TSEs), are a group of fatal neurodegenerative diseases

of central nervous system (CNS), including bovine spongiform

encephalopathy in cattle, scrapie in sheep and goat, chronic

wasting disease (CWD) in deer and elk, and Kuru, Creutzfeldt-

Jakob disease(CJD), fatal familial insomnia (FFI) and Gerstmann-

Sträussler-Scheinker (GSS) syndrome in humans [1,2]. They are

characterized by progressive neuronal degeneration, neuronal

vacuolation and gliosis and the misfolding of normal cellular prion

(PrPC) into an abnormal form of scrapie prion (PrPSc) that

accumulates in CNS [3].

A synthetic peptide corresponding to the amino acid residues

106–126 of prion protein (PrP106–126) is able to induce apoptosis

in the primary rat hippocampal cultures [4] and various human

neuroblastoma cell lines [5], as well as mouse retinae [6]. Similar

to PrPSc, it forms amyloid fibrilar aggregates and to catalyzes the

conversion of PrPC to an amyloidogenic form [7]. The similarities

between the synthetic PrP106–126 peptide and native PrPSc to

some extents make it a useful mimic in the research of prion and

prion diseases.

Microtubules are polarized structures and assemble from

heterodimers of a- and b-tubulin in a GTP-dependent fashion.

It plays a central role in cellular transport, structural integrity and

cellular architecture. The polymerization, stabilization, arrange-

ment of microtubules can be modulated by interactions with a

series of microtubule-associated proteins (MAPs)[8]. Microtubule-

associated protein 2 (MAP2) belongs to a family of heat stable

MAPs, which takes part in neuronal morphogenesis, maintaining

cellular architecture and internal organization, cell division and

cellular processes [9]. In mammalian brain, MAP2 isoforms have

been divided into high-molecular weight MAP2 (HMWMAP2)

and low-molecular weight MAP2 (LMWMAP2). HMWMAP2

consists of MAP2a (Mr. 280 kDa) and MAP2b (Mr. 270 kDa,) that

are specially expressed in neurons, while LMWMAP2 includes

MAP2c (Mr. 70 kDa) and MAP2d (Mr. 75 kDa) that are present in

glial cells [10]. It has been reported that in the brains of

Alzheimer’s diseases, the levels of MAP2 are usually decreased

[11,12]. Treatment of Ab1–42 on C57BL/6J mouse primary

cerebral neurons and human neuroblastoma cells induce a

reduction of MAP2 [13,14]. However, the situations and roles of

MAP2 in TSE pathogenesis remain unclear.
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Many previously studies have repeatedly identified that the

levels of tubulin decreased in CNS tissues of naturally occurred

or experimental human and animal TSEs [15,16,17]. Our

previous studies have demonstrated that the CJD-associated

PrPs can disrupt the cellular microtubule structure through

different pathways [18]. Recently, by screening the transcrip-

tional diversity in the brains of human prion diseases with a

commercial mRNA microarray, we found that the expression

level of MAP2 is obviously decreased (unpublished data). In this

study, we found that MAP2 proteins in the brain tissues of

scrapie agent 263K-infected rodents and human genetic prion

diseases were almost undetectable at the terminal stages. The

decline of MAP2 in the brains of agent 263K-infected hamsters

was closely related with prolonged incubation time. These

phenomena could be reproduced in a human neuroblastoma

cell line SK-N-SH exposed to the synthetic peptide PrP106–

126, revealing the decrease of MAP2 and disruption of

microtubule structures. Meanwhile, the levels of calpain, which

mediates the degradation of a broad of cytoskeletal proteins,

were significantly increased in both the brain tissues of scrapie

agent 263K-infected hamsters and PrP106–126 treated SK-N-

SH cells.

Materials and Methods

Ethics statement
Usages of human and animal specimens in this study were

approved by the Ethical Committee of National Institute for Viral

Disease Prevention and Control, China CDC under protocol

2009ZX10004-101. All signed informed consents have been

collected and stored by the China CJD Surveillance Centre. All

Chinese golden hamsters were maintained under clean grade.

Housing and experimental protocols were in accordance with the

Chinese Regulations for the Administration of Affairs Concerning

Experimental Animals.

Samples from scrapie-infected hamsters, human gCJD
and FFI patients

Four Chinese golden hamsters inoculated intracerebrally with

hamster-adapted scrapie agent 263K and three normal hamsters

were enrolled in this study. In addition, the brain samples of the

agent 263K-infected hamsters collected on the 20th, 40th, 60th

and 80th day post inoculation were included as well. The brains

were removed surgically, immediately dissected, then frozen and

stored at 280uC until use. The postmortem brains of a G114V

gCJD case (47 year-old woman) [19] and a FFI case (26 year-old

woman) [20] were also enrolled in this study, which were

diagnosed by the experts of Chinese National Surveillance

Network for CJD (CNSNC).

Preparation of brain tissue samples
Brain tissues from experimental hamsters and the regions of

thalamus, cingulated gyrus, frontal cortex, parietal cortex,

occipital cortex and temporal cortex of human prion diseases

were collected and washed with iced TBS (10 mM Tris HCl,

133 mM NaCl, pH 7.4). 10% (w/v) brain homogenates were

prepared based on the protocol described previously [21]. Briefly,

brain tissues were homogenized in lyses buffer (100 mM NaCl,

10 mM EDTA, 0.5% Nonidet P-40, 0.5% sodium deoxycholate,

10 mM Tris, pH 7.5) containing a mixture of protease inhibitors.

The tissue debris was removed with low speed centrifugation at

2000 g for 10 min and the supernatants were collected for further

study.

Western blots
Aliquots of brain homogenates and cell extracts were separated

on 6% or 12% SDS-PAGE and electronically transferred to NC

membrane. Membranes were blocked with 5% (w/v) non-fat milk

powder (NFMP) in 16Tris-buffered saline containing 0.1%

Tween 20 (NFMP-TBST) at room temperature (RT) for 1 h

and probed with various primary antibodies at 4uC overnight,

including 1:1000-diluted anti-MAP2 pAb (Cell Signaling), 1:2000-

diluted anti-a-tubulin mAb (Sigma), 1:1500-diluted anti-Calpain

S1 mAb (EPR3324,Abcam), 1:5000-diluted anti-PrP mAb (3F4,

Chemicon) and 1:2000-diluted anti-b-actin mAb (Santa Cruz),

respectively. After washing with TBST, blots were incubated with

1:5000-diluted horseradish peroxidase (HRP)-conjugated goat

anti-mouse IgG or anti-rabbit IgG(Santa Cruz) respectively at

RT for 1 h. Blots were developed using Enhanced ChemoLumi-

nescence system (ECL, Amersham Life Sciences, Buckingham-

shire, UK) and visualized on autoradiography films.

Immunohistochemical (IHC) assays
Paraffin sections (5 mm in thickness) were prepared and

immunohistochemistry were performed according to the previous

protocol. Briefly, sections were quenched for endogenous peroxi-

dases in 3% H2O2 in methanol for 10 min, pretreated with enzyme

digestion antigen retrieval for 1 min. After blocked in 1% normal

goat serum, the sections were incubated with 1:100-diluted mAb for

MAP2, 1:1000-diluted mAb for PrP or 1:500-diluted mAb for

GFAP (Santa Cruz) at 4uC overnight, respectively. Subsequently,

the sections were incubated with 1:250-diluted HRP-conjugated

goat anti-mouse secondary antibody (Vector Labs, USA) for

60 min, and visualized by incubation with 3,39-diaminobenzidine

tetrahydrochloride (DAB). Finally, the slices were counterstained

with hematoxylin, then mounted in Permount.

Peptides and chemicals
PrP106-126 (KTNMKHMAGAAAAGAVVGGLG) and

scrambled PrP106-126 (SCR) (AVHTGLGAMAALNMVVG-

GAAGL) were synthesized and purified by Sheng Gong Biological

Co (Shanghai, China). The peptides were dissolved in DMSO at a

concentration of 50 mM and stored at 280uC.

Cell treatment and cell viability assays
Human SK-N-SH cells were obtained from Experimental

Animal Center of Sun Yat-sen University. Cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco) that

contained 10% FBS (Gibco) in a humidified incubator supplied

with 5% CO2. SK-N-SH cells were seeded on a 96-well plate at a

concentration of 104 cells per well and cultured for 24 h. PrP106-

126 and SCR were diluted to the desired concentration in DMEM

without FBS and added directly to the cells. Cell viability was

determined by a commercially Cell Counting Kit (CCK-8,

Dojindo, Japan). 10 ml of CCK-8 regent were added to each well

and incubated at 37uC for 1 h, until the media turned yellow.

Each experiment was performed in triplicate and repeated at least

three times with separated cell preparations.

Immunocytochemical staining
Cells were fixed with formaldehyde (4% paraformaldehyde,

freshly depolymerized in 0.1 M sodium phosphate buffer, pH7.4)

at RT for 15 min and washed three times in PBS. After blocked

with blocking buffer (PBS with 5% FBS and 0.1% Trition X-100)

at RT for 1 h, cells were incubated with 1:50 diluted anti-MAP2

pAb (Cell Signaling) or 1:200 diluted anti-a-tubulin mAb (Sigma)

in dilute solution (PBS with 2% BSA and 0.3% Trition X-100) at

Alterations of the Level MAP2 in Prion Diseases
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4uC overnight. Cells then were washed and incubated with 1:200

diluted (v/v) appropriate secondary antibodies (Alexa Fluor anti-

mouse 488 or Alexa Fluor anti-rabbit 568, Invitrogen) in dilute

solution at RT for another 2 h. After washing, cells were

incubated with 0.5 mg/ml DAPI (Invitrogen) at RT for 2 min.

Cells were sealed and the images of the targeting proteins were

analyzed by microscope (Olympus BX51) and confocal microsco-

py (Leica ST2, Germany). Density analysis was performed using

Image-Pro Plus 5.0, and the mean optical density (MOD) was

slope value measured by counting the optical and area values of

each positive stained cell in a certain field of view.

Statistical analyses
Quantitative analysis of immunoblot images was carried out

using software Image J. The values of each target blot were

evaluated. All data are presented as the mean 6 SD. Statistical

analysis was performed using the T test. Probabilities of less than

0.05 were considered to be statistically significant.

Results

Decrease of MAP2 in the brains of 263K prion-infected
hamsters at terminal stages

To assess the potential changes of MAP2 in the brain tissues of

TSE, 10% brain homogenates of four scrapie strain 263K prion-

infected hamsters were included in this analysis. The amounts of

MAP2, tubulin and total PrP were evaluated by Western blots with

specific antibodies. Large amounts of total PrP signals were

detected in the brains of 263K prion-infected hamsters, while the

signals of MAP2, including MAP2a and 2b with Mr. 280 and

270 kDa, and MAP2c and 2d with Mr. 70 and 75 kDa, were

almost undetectable (Fig. 1A). The amounts of tubulin in the

brains of 263K-infected animals also remarkably decreased

compared to that of healthy hamsters (Fig. 1A). Relative protein

levels were normalized to b-actin control and showed that the

mean relative quantities of MAP2a/2b, MAP2c,2d and tubulin in

the brains of 263K-infected hamsters were significantly lower,

Figure 1. Comparative analyses of the levels of MAP2 in brain tissues of normal and 263K-infected hamsters. A. Western blots. Same
amounts of individual brain homogenate were loaded in 6% or 12% SDS-PAGE and various specific immunoblots were marked on the left side of the
graphs. B. Quantitative analysis of each gray numerical value of MAP2a/2b, MAP2c, 2d, tubulin and total PrP vs that of individual b-actin. The average
values were calculated from four individual infected hamsters or three individual normal hamsters and presented as mean 6 SD. Statistical
differences compared with controls were illustrated as P,0.05 or P,0.01. C. IHC assays of MAP2, total PrP and GFAP in cortex of normal and 263K-
infected hamsters. The magnifications are 620 in the left row and 640 in the right row.
doi:10.1371/journal.pone.0030163.g001
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while total PrP protein were significantly higher than those of the

healthy ones (P,0.05, Fig. 1B).

To verify the reduction of MAP2 in scrapie-infected animals,

the status of MAP2 in the brain tissues of 263K-infected hamsters

were analyzed with MAP2-specific immunohistochemistry (IHC).

In parallel, PrPSc deposits and astrogliosis were monitored with

PrP-and GFAP-specific IHC. As expected, large quantities of

PrPSc deposits were observed in cortex regions of 263K-infected

hamsters but not in normal controls (Fig. 1C, third row from top).

More GFAP positively stained long-fibrous like cells were detected

in the brain of 263K-infected hamsters, but there were almost no

such structures in the normal animals (Fig. 1C, second row).

MAP2 positive-stained particles were easily observable in the

brains of normal hamsters, but much weaker in that of 263K-

infected hamsters (Fig. 1C, first rows). These data indicate that the

level of MAP2 in the brains of scrapie experimental rodents is

significantly reduced at terminal stages of the disease.

Alteration of MAP2 isoforms during the incubation time
In order to investigate the dynamic changes of MAP2 isoforms

in the brains of scrapie-infected hamsters during incubation

period, the expressing level of MAP2 in the brain samples of

263K-infected hamsters collected on the 0th, 20th, 40th, 60th,

and 80th days post-inoculation (dpi) was comparatively evaluated

by Western blot. Fig. 2A revealed obvious PK-resistant PrP

signals (PrPres) in the brains of 263K-infected hamsters since

40 dpi, but not in normal controls. The signal intensities of total

PrP and PrPres became stronger along with the incubation

prolonging, showing a time-dependent manner. In contrast, the

signals of MAP2c,2d weakened gradually along with the

incubation and that of MAP2a/2b even vanished in the samples

of 20 dpi (Fig. 2A). After normalized to respective b-actin, the

data revealed a clear time-dependent increase of PrP and PrPSc

and a time-dependent decrease of MAP2 isoforms with prolong-

ing incubation (Fig. 2B).

Figure 2. Dynamic analysis of MAP2 and PrPSc in the brain tissues of normal and 263K-infected hamsters during incubation period.
A. Western blots. Same amounts of individual brain homogenate were loaded in 6% or 12% SDS-PAGE. Various specific immunoblots were marked on
the left and the time of post-inoculation are showed as days (d) at the bottom. B. Quantitative analysis of each gray numerical value of MAP2a/2b,
MAP2c, 2d and PrPSc vs that of individual b-actin. The average relative gray value is calculated from three independent blots and presented as mean
6 S.D.
doi:10.1371/journal.pone.0030163.g002

Figure 3. Analyses of the levels of MAP2 in the brain tissues of human prion diseases. A. Western blots of six brain regions of a gCJD
patient (left panel) and a FFI patient (right panel). The immunoblots for MAP2, total PrP and b-actin are indicated on the left. Various brain regions are
indicated at the top.
doi:10.1371/journal.pone.0030163.g003
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Similar reduction of MAP2 was detected in the brains of
human prion diseases

Levels of MAP2 expression in postmortem brain from a G114V

gCJD patient and a D178N FFI patient were assessed by Western

blots, including frontal lobe, parietal lobe, occipital lobe, temporal

lobe, thalamus and cingulated gyrus. In line with the observations

in 263K-infected hamsters, MAP2 specific signals were barely

detectable in all tested brain regions from either G114V gCJD or

D178N FFI, but were clearly detectable in controls (Fig. 3). This

finding suggests that the reduction of MAP2 in central nervous

tissues is a common feature for TSEs.

PrP106–126 peptide induced the decline of MAP2 in the
cultured cells

The cytotoxic peptide PrP106–126 has been widely used to

mimic the pathological features of PrPSc in vitro. To identify the

potential influences of PrP106–126 on MAP2 levels in the

cultured cells, human neuroblastoma cells SK-N-SH were

Figure 4. Analyses of the MAP2 levels in SK-N-SH cells exposed to PrP106–126. A. SK-N-SH cells were treated with 200 mM of PrP106–126,
scrambled peptide PrP106–126 (SCR) or DMSO for 6 h and 12 h. The treated cells were photographed with a light microscope (620). B. Cell viability
after exposed to different concentrations of PrP106–126 or SCR. The average data of each preparation was calculated based on three independent
experiments and represented as mean 6 S.D. C. Western blots of MAP2a/2b, MAP2c, 2d and b-actin in SK-N-SH cells after treated with 200 mM of
PrP106–126, SCR or DMSO for 6 h and 12 h. D. Quantitative analyses of each gray numerical value of MAP2a/2b, MAP2c, 2d vs that of individual b-
actin. The average relative gray value is calculated from three independent blots and presented as mean 6 S.D. Statistical differences compared with
controls are illustrated as P,0.05 and P,0.01.
doi:10.1371/journal.pone.0030163.g004
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Figure 5. Immunofluorescent assays of MAP2 on PrP106–126 treated SK-N-SH cells. A. Immunofluorescence images of the cells were
exposed to DMSO (upper), PrP106–126 (middle) or SCR (lower) for 6 h. The images of MAP2 (red), DAPI (blue) and merge are indicated above.
B. Quantitative analysis of fluorescence intensity of MAP2 in the cells. MOD data each preparation is calculated from three independent images
and presented as mean 6 S.D. Statistical differences is illustrated as P,0.01.
doi:10.1371/journal.pone.0030163.g005
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exposed to different amounts of PrP106–126 or scrambled

PrP106–126 (SCR). Morphological assays revealed obvious

abnormality on the cells treated with 200 mM PrP106–126 for

12 h (Fig. 4A). Cell viability tests also identified markedly

cytotoxicity in the preparations exposed to 200 mM PrP106–

126, while the cells exposed to SCR peptide remained almost

unchanged (Fig. 4B). Western blots of the cell lysates showed that

the levels of MAP2 in cells treated with PrP106–126 for 6 and

12 h were significantly reduced compared to the control groups

(DMSO and SCR) (Fig. 4C). Analyse of the relative gray values of

each blot after normalization with b-actin revealed a statistically

significant decrease of isoforms in PrP106–126 treated cells

(Fig. 4D).

The finding that PrP106–126 reduces cellular MAP2 levels was

further verified by immunofluorescence staining. Cells exposed to

PrP106–126, SCR peptide and DMSO for 6 h were subjected into

immunofluorescent assays with anti-MAP2 antibody. PrP106–126

treatment led to weaker MAP2 stained signals (red color) in the

cytoplasm of the cells compared with SCR peptide or DMSO

treatment. (Fig. 5A). Comparison of the MOD values among the

three preparations showed significant difference (P,0.01) between

the groups of PrP106–126 and DMSO, or between PrP106–126

and SCR peptide (Fig. 5B). These data imply that the treatment of

PrP106–126 induces an obvious reduction of MAP2 in the

cultured cells.

Treatment of PrP106–126 on SK-N-SH cells did not alter
the level of cellular tubulin but destroyed cellular
cytoskelet al network

To detect the effects of PrP106–126 on cellular tubulin and

microtubule, SK-N-SH cells were treated with 200 mM PrP106–

126 or SCR peptide. Our result showed there is no significant

changes in the expression levels of cellular tubulin after exposure

to PrP106–126 for 6 or 12 hours(Fig. 6A and B). Immunofluo-

rescence staining with an anti-tubulin antibody was performed on

cells exposed to various agents were to visualize the alteration of

cytoskeletal network. In the cells treated with DMSO and SCR

peptide, large amounts of long fibril-like microtubule structures

were observed in the cytoplasm. In cells exposed to PrP106–126,

the fibril-like structures disappeared and only variably sized

granular elements were observed (Fig. 6C). These results suggest

that, under our experimental condition, cytotoxic peptide PrP106–

126 induces a rapid disorganization of cellular microtubule

network before significantly reducing tubulin levels.

Increase of calpain in PrP106–126 treated cells
Calpain is believed to cause degradation for a series of cell

cytoskeletal proteins. To gain insight into the possible relationship

between MAP2 and calpain, the level of calpain in the SK-N-SH

cells treated with PrP106–126 was evaluated by Western blots.

Figure 6. Analyses of the tubulin levels and microtubule structure in cells exposed to DMSO, PrP106–126 or SCR. A. Western blots
with anti-a-tubulin mAb. B. Quantitative analyses of each gray numerical value of tubulin vs that of individual b-actin. The average relative gray value
is calculated from three independent blots and presented as mean 6 S.D. C. Immunofluorescence images of cellular microtubule structure.
doi:10.1371/journal.pone.0030163.g006
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Clearly stronger calpain S1 signals were observed in the cells

exposed to PrP106–126 (Fig. 7A), showing a significant increase

(P,0.01) compared to cells treated with SCR peptide and DMSO

(Fig. 7B). To detect the influence of inhibition by calpain on the

MAP2 levels, calpain inhibitor ALLN was introduced into the cells

exposed to PrP106–126. Compared with the remarkable reduction

of MAP2a/2b in the cells exposed to PrP106–126, the cellular

MAP2a/2b levels in cells exposed to PrP106–126 plus ALLN were

almost as high as that of control of DMSO cells (Fig. 7C and D).

ALLN treatment alone did not affect the level of MAP2 or calpain

(data not shown). These data highlight that exposure of the

cytotoxic peptide PrP106–126 to the cultured cells induces an

increased calpain level, whcih might be responsible for the

reduction of MAP2.

Increase of calpain in the brains of 263K-infected
hamsters

We also tested the potential alterations of calpain in the brain

tissues of TSE experimental animals. The protein level of calpain

was much higher in 263K-infected hamsters than normal controls

(Fig. 8A) and quantification revealed a significant difference

(P,0.01) between two groups (Fig. 8B). To determine the

dynamic changes of calpain during prion infection, levels of

calpain in the brains of 263K-infected hamsters collected during

incubation period were comparatively analyzed by Western blot.

An obvious time-dependent increase of calpain was observed

along with the prolonging incubation, accompanying with a

gradually decrease of tubulin signals (Fig. 8C and D). These data

indicates a more active status of calpain in the brain tissues of

TSE infected animals.

Inhibition of calpain activity reversed the PrP106–126
induced destruction on microtubule structure and
cytotoxicity

To evaluate potential role of calpain in mediating the PrP106–

126-induced destruction of microtubule structures network and

cytotoxicity, SK-N-SH cells were pretreated with 20 mM ALLN

for 4 h and then cells were exposed to PrP106–126 for 12 h. As

expected, cellular microtubule was significantly impaired when

cells were treated with PrP106–126. Importantly, the destructive

effects of PrP106–126 was substantially reversed in the cells

pretreated with ALLN. ALLN alone did not change the cellular

microtubule structure (Fig. 9A). Morphological analyses revealed

more normal cells after the treatment of PrP106–126 plus ALLN

than that of PrP106–126 alone (Fig. 9A). CCK8 tests identified

that the cell viability of the reaction of PrP106–126 plus ALLN

was partially, but significantly (P,0.05) improved compared with

that of PrP106–126 (Fig. 9B). This result suggests that inhibition of

calpain activity is able to partially reverse PrP106–126 induced

cytotoxicity.

Discussion

In this study we have demonstrated that levels of MAP2 in the

CNS tissues of a scrapie experimental rodent model and in the

postmortem brains of the patients of genetic prion diseases are

significantly reduced, highlighting a common phenotype in TSEs.

Mammalian brain MAP2 is composed of at least four isoforms,

designated as MAP2a, 2b, 2c, and 2d, varying from the

electrophoresis mobility on SDS-PAGE. Through alternative

splicing of a pre-mRNA transcribed from a single gene located

Figure 7. Analyses of calpain levels in PrP106–126 treated SK-N-SH cells. A. Western blots of calpain in cells exposed to DMSO, PrP106–126
or SCR. B. Quantitative analyses of the gray numerical values of calpain. The average relative gray value is calculated from three independent blots
and presented as mean 6 S.D. Statistical differences are illustrated as P,0.01. C. Western blots of MAP2 in the cells treated with PrP106–126 alone
and PrP106–126 plus calpain inhibitor ALLN. D. Quantitative analyses of the gray numerical values of MAP2a/2b, MAP2d and MAP2c. The average
relative gray value is calculated from three independent blots and presented as mean 6 S.D. Statistical differences are illustrated as P,0.01.
doi:10.1371/journal.pone.0030163.g007

Alterations of the Level MAP2 in Prion Diseases
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at chromosome 2 in human, multiple MAP2 isoforms are

translated and presented in the CNS tissues [22]. In line with

the observations that MAP2a/2b are the most abundant forms in

adult brains [23,24], clear MAP2a/2b bands are detected in the

brain tissues of adult hamsters and human. Meanwhile, weak

MAP2c/2d bands in the brain lysates of adult hamsters are

consistent with that LMWMAP2 are mainly expressed during

early developmental stages, which may decrease dramatically in

the brains of mice postnatal 20 days [25].

Earlier studies have found that MAP2 polyclonal antibody

might label abnormal neurites around senile plaques [26], and

accumulation of soluble Ab oligomers in a transgenic mouse

model of AD results in a decrease in MAP2 labeling before these

mice develop plaques [12], suggesting a possible role of MAP2 in

neurodegenerative diseases. As a biomarker for neurons, reduction

of MAP2 at the terminal stages of TSEs is reasonable. However,

compared with the alteration of another neuronal marker NSE

that reduces but usually remains detectable in prion diseases with

conventional techniques (such as Western blot and IHC), the

reduction of MAP2 isoforms are much significant and almost no

specific signal could be detected by Western blots. In addition, our

dynamic analysis of scrapie-infected rodents identify that the

disappearance of MAP2 seems to occur at the early stage of

infection, as it reduces to undetectable level in the 20 dpi samples.

At this time, pathological PrPSc start to deposit in CNS tissues,

which are visible in the assays of immunohistochemistry, but

undetectable by Western blots [27]. Springer and his co-workers

have proposed that MAP2 decreased dramatically within 1 hour

after traumatic spinal cord injury, which is believed that as

somatodendritic compartments of neurons, MAP2 may be

especially vulnerable during diseases of nervous system [28].

Although we do not know the exact time when MAP2 starts to

drop-down during prion infection, our data here indicate that the

expression of MAP2 in neurons is more vulnerable during the

progression of prion diseases, which may reflect that both the

biological function of MAP2 in neurons and the cluster of MAP2

positive neurons are affected. Moreover, the reduction of MAP2

isoforms has been reproduced in a cultured neuroblastoma cell

line exposed to the cytotoxic peptide PrP106–126 in this study. It

emphasizes again the possibility of the disruption of MAP2

exposed to pathological prion.

Previous reports have suggested that PrP106–126 can bind to

microtubules [29] and electron microscopy has confirmed that

PrP106–126 can enter the cytosol and bind to microtubules when

applied to cultured cerebellar cells [30]. PrP106–126 also shows

the ability to inhibit tubulin polymerization by preventing the

Figure 8. Analyses of calpain levels in the brain tissues of 263K-infected hamsters. A. Western blots of calpain in the infected and normal
hamsters. B. Quantitative analyses of the gray numerical values of calpain. The average gray values were calculated from four infected hamsters or or
four normal after normalized with that of individual b-actin and presented as mean 6 SD. Statistical difference is illustrated as P,0.01. C. Western
blots of calpain and tubulin in the brain tissues of 263K-infected hamsters on 0, 20, 40, 60 and 80 dpi. D. Quantitative analyses of the gray numerical
values of calpain and tubulin vs that of individual b-actin. The average relative gray value is calculated from three independent blots and presented as
mean 6 S.D.
doi:10.1371/journal.pone.0030163.g008
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interaction of tau with tubulin in a cell-free system [31]. As a PrP

interacting partner, the polymerization of tubulin and the cellular

microtubule structures can be impaired directly via interacting

with a couple of CJD-associated PrP mutants [16,18], or indirectly

via influencing on other microtubule associated proteins, such as

tau [32] and TPPP [33]. Tubulin level has also been proved to be

decreased in the brains of different TSEs [16]. These data strongly

indicate that the disruption of microtubule structure is one of

milestones in the pathogenesis of prion disease. As an important

component of MAPs, it is reasonable to hypothesize that the

reduction of MAP2 will be another pathway to demolish

microtubule structures in TSEs. Additionally, our data here

illustrate that the reduction of MAP2 and disruption of

microtubule structure occur earlier and more obvious than the

changes of tubulin and deposits of PrPSc, highlighting that change

of MAP2 is an early and persistent event in progression of TSEs.

Figure 9. Inhibition of calpain activity reversed the PrP106–126-induced destruction on microtubule structures and cytotoxicity.
A. SK-N-SH cells were treated with 200 mM of PrP 106–126 with or without calpain inhibitor ALLN for 12 h. Immunofluorescence images of cellular
microtubule structure (upper) and morphological analyses of cells (lower) were shown. B. Cell viability after exposed to PrP106–126 with or without
ALLN. The average data of each preparation was calculated based on three independent experiments and represented as mean 6 S.D. Statistical
differences are illustrated as P,0.05.
doi:10.1371/journal.pone.0030163.g009
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In fact, as the importance of cytoskeleton in the functions of

neurons, interference with microtubule network is likely to lead to

apoptosis with the impairment of axonal transport of various

vesicles and organelles [34].

Calpain is a ubiquitous calcium-dependent protease which is

essential for physiological neuronal function and the activation of

calpain can be triggered by calcium influx and oxidative stress

[35]. MAP2 isoforms are the substrates for the activated calpain

[13] and the neuronal apoptotic events involved in alterations of

the microtubule network are consequent to calpain activation [36].

Calpain-dependent degradation of MAP2 is known as an early

response to traumatic [28], focal ischemic brain injuries [37] and

glutamate excitotoxicity [38]. In addition, there are considerable

evidences that an increased activity of calpain associated with

impaired calcium homeostasis may be involved in AD develop-

ment [13,39,40]. Recent study has suggested that the apoptosis

induced by the peptide PrP106–126 is possibly through two

biochemical pathways, caspase and calpain [41]. Moreover, our

assays illustrate a time-dependent increase in calpain level during

scrapie infection, along with a gradually decrease in tubulin level.

Inhibition of calpain activity not only reverses the reduction of

cellular MAP2 level, but also partially rescues PrP106–126

induced cytotoxicity. It is reasonable to speculate that the abrupt

reduction of MAP2 in brain tissues is associated with the rapid

increase of calpain in prion diseases. Actually, disturbance of the

calpain system in CNS tissues has been observed in some

neurodegenerative diseases including Alzheimer’s [42], Parkin-

son’s [43] and prion diseases [41]. The central role of microtubules

and microtubule transport even make them an appealing target in

developing therapy of neurodegenerative diseases. Neuronal death

due to PrP106–126 is reduced following pharmacologic calpain

inhibition [39] and MAP2 degradation is reversed by pretreated

with calpain inhibitor in neuronal cells exposed to Ab [13]. Hence,

further characterizations of the role of calpain and MAP2 in the

pathogenesis of prion diseases are specially needed.
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