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Abstract

Background: Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and
behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-
inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear
factor kappa B (NF-kB)-related signaling pathways in mice following TBI.

Methodology/Principal Findings: Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or
50 mg?kg21) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier
(BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-kB-related
inflammatory mediators were also examined. Treatment with 40 mg?kg21 wogonin significantly improved functional
recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB
permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte
infiltration, microglial activation, TLR4 expression, NF-kB translocation to nucleus and its DNA binding activity, matrix
metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1b, interleukin-6, macrophage
inflammatory protein-2, and cyclooxygenase-2.

Conclusions/Significance: Our results show that post-injury wogonin treatment improved long-term functional and
histological outcomes, reduced brain edema, and attenuated the TLR4/NF-kB-mediated inflammatory response in mouse
TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-kB signaling pathway.

Citation: Chen C-C, Hung T-H, Wang Y-H, Lin C-W, Wang P-Y, et al. (2012) Wogonin Improves Histological and Functional Outcomes, and Reduces Activation of
TLR4/NF-kB Signaling after Experimental Traumatic Brain Injury. PLoS ONE 7(1): e30294. doi:10.1371/journal.pone.0030294

Editor: Valentin Cena, Universidad de Castilla-La Mancha, Spain

Received September 6, 2011; Accepted December 13, 2011; Published January 17, 2012

Copyright: � 2012 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Science Council of Taiwan, R.O.C. (98-2314-B-350-001-MY3 to S.-F.C.) and the Cheng Hsin General Hospital (C.-
C.C., S.-F.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: szufuchen@yahoo.com.tw

Introduction

Traumatic brain injury (TBI) induces a complex series of

inflammatory responses that contribute to neuronal damage and

behavioral impairment [1]. Toll-like receptors (TLRs) are a family

of signal transduction molecules known to activate the innate

immune response following systemic bacterial infection and

cerebral injury [2]. Among the TLRs, TLR4 has been shown to

play an important role in initiating the inflammatory response in

the damaged brain. Several animal studies have shown that both

TLR4 mRNA and protein are upregulated following TBI [3–5].

TLR4-mediated signaling pathways mainly stimulate the activa-

tion of nuclear factor kappa B (NF-kB). This important nuclear

transcription factor regulates many pro-inflammatory genes, e.g.,

cytokines, chemokines, cyclooxygenase-2 (COX-2), and matrix

metalloproteinase-9 (MMP-9), mediators involved in the patho-

genesis of TBI [6]. TLR4-deficient mice exhibited reduced infarct

size and improved neurological recovery as well as less

inflammatory response following cerebral ischemia [7,8]. Further-

more, neurons from TLR4 mutant mice were protected against

energy deprivation-induced cell death, which was associated with

decreased activation of pro-apoptotic c-Jun N-terminal kinase

signaling [7]. These studies suggest that pharmacological inhibi-

tion of TLR4/NF-kB signaling may be a useful strategy for

protection of the injured brain.

Wogonin, 5,7-dihydroxy-8-methoxyflavone, is one of the major

flavonoids found in the root of the Chinese herb Scutellaria

baicalensis Georgi (also called Huang-Qin), which is widely used in

treating allergic and inflammatory diseases [9]. Wogonin has been

shown to exert potent anti-inflammatory effects in both in vitro and
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in vivo studies. For example, it has been demonstrated that wogonin

suppresses lipopolysaccharide (LPS)-induced production of nitric

oxide (NO), prostaglandin E2, and pro-inflammatory cytokines in

immune cells such as macrophages and microglial cells [10–12]

and reduces migration in microglial cells via inhibition of NF-kB

activity [13]. In addition, treatment with wogonin was found to

alleviate inflammatory responses caused by skin inflammation and

carrageenan-induced hindpaw edema in animal studies [14,15].

Increasing evidence suggests that wogonin may have neuropro-

tective effects in the injured brain. Wogonin attenuated the death

of hippocampal neurons and inhibited microglia activation in

global ischemia and excitotoxic injury models [11]. Furthermore,

wogonin also reduced early ischemic brain injury and improved

acute behavioral dysfunctions caused by focal cerebral ischemia

[16,17]. In addition, wogonin attenuated excitotoxic and oxidative

stress-induced neuronal damage in primary cultured rat cortical

cells [18] and reduced neuronal damage caused by exposure to

oxygen and glucose deprivation in cultured rat hippocampal slices

[19]. Despite evidence indicating the benefits of wogonin

treatment to early neurological recovery in stroke models, there

is a lack of data describing the long-term effects of wogonin on

functional recovery or cell survival in the injured brain. In

particular, the neuroprotective effects of wogonin on TBI have not

been established.

The aim of the present study was to investigate the protective

effects of wogonin on neuronal damage, brain edema, and

functional impairment after TBI. We further examined whether

wogonin could attenuate TBI-induced activation of the TLR4/

NF-kB signaling pathway in the pericontusional area.

Results

Metabolic characteristics
There were no significant differences in the levels of plasma

blood urea nitrogen (BUN), creatinine (CRE), alanine amino-

transferase (ALT), or aspartate aminotransferase (AST) between

the vehicle-treated and 40 mg?kg21 wogonin-treated injured mice

(Table 1). The mice in both groups lost a small proportion of body

weight (,6%) during the initial 2 days after CCI, but regained

baseline weight within 7 days. No significant difference in body

weight was detected between groups treated with wogonin or

vehicle (P = 0.8261, data not shown).

Post-injury wogonin administration improves
neurobehavioral recovery following TBI Rotarod test

We first conducted several sets of behavioral experiments to

verify whether post-injury wogonin treatment could improve

recovery from neurologic deficits. TBI induced persistent motor

function impairment with a significant decrease in rotarod running

time from 1 to 28 days in the vehicle-treated group (Fig. 1A).

Treatment with 20 mg?kg21 wogonin did not significantly alter

rotarod performance compared with the vehicle-treated group.

Nevertheless, performance on the rotarod test was significantly

better for 40 mg?kg21 wogonin-treated mice than for vehicle-

treated mice on test days 1–28 after injury (all P,0.05). In

addition, mice treated with 50 mg?kg21 wogonin had better

performance in the rotarod test at days 1, 7, 14, 21, and 28 than

vehicle-treated mice (all P,0.05). There was no significant

difference between 40 mg?kg21- and 50 mg?kg21-treated-groups

at all tested time points.

Modified neurological severity score
Injury in the left hemispheric cortex resulted in neurological

deficits as measured by modified neurological severity score

(mNSS) (Fig. 1B). There was no significant difference between

20 mg?kg21 wogonin-treated and vehicle-treated groups at all

tested time points. The mNSS scores were significantly lower in

both the 40 mg?kg21 and 50 mg?kg21 wogonin-treated group

than the corresponding vehicle-treated group on test days 1–28

after injury (all P,0.05). There was no significant difference

between the 40 mg?kg21- and 50 mg?kg21-treated groups at all

tested time points.

Beam walk test
Marked impairment in beam walk performance including

decrease in hindlimb motor scores and increase in beam walk

latency (traversing latency) was observed on the first day after

surgery, regardless of treatment (Fig. 1C). There was no

significant difference between the 20 mg?kg21 wogonin-treated

and vehicle-treated groups at all tested time points. The decrease

in hindlimb motor scores was significantly different between the

40 mg?kg21 wogonin-treated group and vehicle-treated group on

test days 1–28 after injury (all P,0.05) and between the

50 mg?kg21-dose group and vehicle group on days 4, 7, 14, 21,

and 28 (all P,0.05). However, differences in hindlimb motor

scores between the 40 mg?kg21 and 50 mg?kg21 groups were not

significant on any testing day (all P.0.05). Likewise, beam walk

latencies were significantly shorter for both the 40 mg?kg21 and

50 mg?kg21 groups than for the vehicle group on days 1, 4, and 7

(all P,0.05), though no significant differences between the 2

wogonin-treated groups were found (Fig. 1C). Furthermore,

though beam walk latencies on days 14, 21, and 28 were shorter

for both the 40 mg?kg21 and 50 mg?kg21 groups than for the

vehicle group, these differences did not reach statistical

significance.

Post-injury wogonin administration reduces cortical
contusion volume, blood-brain barrier permeability, and
brain edema

Since 40 mg?kg21 wogonin treatment significantly improved

neurological outcomes, we further investigated whether this

treatment paradigm reduced neuronal damage, brain edema,

and post-traumatic inflammation. Brain sections taken from

controlled cortical impact (CCI) mice revealed a loss of cortical

tissue in the ipsilateral parietal cortex as reflected by gross

reductions in cresyl violet staining intensity (Fig. 2A). Quantifica-

tion of cortical volume showed that at day 1 after CCI, there was a

22.9% reduction in contusion volume in 40 mg?kg21 wogonin-

treated mice compared with vehicle-treated controls. Contusion

volume in the wogonin group was 14.161.0 mm3 versus

18.361.4 mm3 in the vehicle group (P,0.05; Fig. 2A). Long-

Table 1. Metabolic characteristics of the sham control, mice
treated with DMSO and 40 mg?kg21 wogonin.

Day 1 Day 28

Sham Vehicle Wogonin Vehicle Wogonin

BUN (mg/dL) 20.0061.30 21.2061.50 19.3061.60 20.5061.20 18.5061.80

CRE (mg/dL) 0.2760.07 0.2060.10 0.2760.07 0.2760.09 0.3360.07

ALT (mg/dL) 28.30610.2027.2062.60 25.8062.10 22.9062.30 23.7062.10

AST (mg/dL) 46.7068.50 46.0069.80 35.7066.30 43.0068.20 45.7069.20

Values are expressed as means 6 SEM. n = 7/groups. BUN: blood urea nitrogen;
CRE: creatinine; AST: aspartate aminotransferase; ALT: alanine aminotransferase.
doi:10.1371/journal.pone.0030294.t001
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term effects were evaluated at day 28 post-injury by which time the

cortical contusion volume in the vehicle-treated TBI group was

measured to be 12.060.9 mm3 (Fig. 2A). Treatment with wogonin

resulted in reduction of lesion size by 24.2% to 9.160.8 mm3,

which was significantly smaller than the vehicle-treated group

(P,0.05; Fig. 2A).

Disruption of the blood-brain barrier (BBB) and brain edema

can cause brain swelling and increased intracranial pressure

following TBI, leading to secondary injury and cell death [20].

To assess whether the reduction in neurological deficits and brain

injury after wogonin treatment correlated with reduced BBB

disruption and brain edema, we next examined hemispheric

enlargement and brain water content 1 day post-TBI. BBB

permeability was determined by Evans blue (EB) dye extravasa-

tion. There was a marked increase in EB content in the ipsilateral

hemisphere of the vehicle-treated TBI group as compared with

the sham control (8.360.5 mg?g21 versus 1.660.2 mg?g21,

P,0.001; Fig. 2B). TBI-induced increases in EB dye extravasa-

tion in the ipsilateral hemisphere were significantly reduced by

wogonin treatment at day 1 post-TBI (8.360.5 mg?g21 versus

5.860.7 mg?g21, P,0.01). Because BBB breakdown may lead to

accumulation of circulating fluid and contribute to brain edema

[21], we further assessed whether wogonin treatment could

reduce brain edema at day 1, when brain edema reached the

Figure 1. Effects of 3 different doses of wogonin on functional outcomes in contusion-injured mice. (A) Compared to the vehicle
treatment, 20 mg?kg21 wogonin treatment did not significantly alter rotarod performance. On days 1–28, 40 mg?kg21 wogonin-treated mice
performed significantly better than the vehicle-treated mice. On days 1, 7, 14, 21, and 28, the 50 mg?kg21 wogonin-treated mice had better rotarod
performance than the vehicle-treated mice. No significant differences were observed between the 40 mg?kg21 and 50 mg?kg21 wogonin treatment
groups at any time point. (B) No difference in modified Neurological Severity Score (mNSS) was detected between the 20 mg?kg21 wogonin and
vehicle treatment groups. On days 1–28, the mNSSs were significantly lower in the 40 mg?kg21 and 50 mg?kg21 dose groups than in the vehicle-
treated group. No significant differences were observed between the 40 mg?kg21 and 50 mg?kg21 treatment groups. (C) During the beam walk test,
no significant differences were observed between the 20 mg?kg21 wogonin-treated and vehicle-treated groups. Significant differences were
observed in the hindlimb motor scores between the 40 mg?kg21 wogonin-treated and vehicle-treated groups on post-injury test days 1–28 and
between the 50 mg?kg21 dose group and vehicle group on days 4, 7, 14, and 21. Differences in hindlimb motor scores between the 40 mg?kg21 and
50 mg?kg21 groups were not significant. Beam walk latencies were significantly shorter for both the 40 mg?kg21 and 50 mg?kg21 groups than for
the vehicle group, on days 1, 7, 14, and 28; however, no significant difference was observed between the 2 wogonin-treated groups. Values are
presented as mean 6 SEM; *P,0.05, **P,0.01, ***P,0.001 versus vehicle-treated injured mice. {P,0.05, {{P,0.01: 20 mg?kg21 wogonin-treated
mice versus the 40 mg?kg21 wogonin-treated mice. #P,0.05: 20 mg?kg21 wogonin-treated mice versus the 50 mg?kg21 wogonin-treated mice
(n = 8 mice/group at each time point).
doi:10.1371/journal.pone.0030294.g001

Wogonin Reduces TLR4/NF-ÎuB Signaling in TBI
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maximum following CCI in mice. Brain water content, an

indicator of brain edema, was significantly increased in the

ipsilateral hemisphere by day 1 in vehicle-treated TBI mice

compared with that of sham controls (82.860.6% versus

77.060.4%, P,0.001; Fig. 2C). Treatment with wogonin caused

a reduction in the percent water content within the ipsilateral

hemisphere cortex compared with the vehicle-treated group

(80.960.5% versus 82.860.6%, P,0.05; Fig. 2C). Similarly,

hemispheric enlargement was significantly smaller in wogonin-

treated mice (10.961.1%) than in the vehicle-treated mice

(14.561.1%, P,0.05; Fig. 2D).

We next sought to determine the effects of wogonin on 2 major

proteins involved in tight junctions of the BBB, claudin-5 and

zonula occludens (ZO)-1. TBI caused a significant decrease in

both claudin-5 and ZO-1 expression at day 1 after injury (Figs. 2E

& F). However, this apparent loss of claudin-5 and ZO-1 was

reversed after wogonin treatment. Protein expression of claudin-5

and ZO-1 in the injured cortex of wogonin-treated mice was

increased to 181.6% (P,0.05) and 164.8% (P,0.05) of the vehicle

group, respectively.

Post-injury wogonin administration reduces neuronal
and apoptotic cell death

We used Fluoro-Jade B (FJB) and terminal deoxynucleotidyl

transferase-mediated dUTP-biotin nick end labeling (TUNEL)

staining to examine whether neuronal death was decreased in the

pericontusion region of wogonin-treated mice. Since FJB and

TUNEL reactivity has been shown to peak 1 day after CCI

[22,23], the day 1 time point was chosen. Both FJB-positive cells

with neuronal morphology and TUNEL-positive cells were

evident at day 1 after injury in the cortical contusion margin

(Figs. 3A & B) and striatum in the ipsilateral but not the

contralateral hemisphere. Wogonin-treated mice had significantly

fewer FJB-positive neurons around the injured cortical areas at

day 1 post-injury than observed in the vehicle-treated group

(85.769.0 versus 126.7612.1 cells/field, P,0.05; Fig. 3A).

Furthermore, TUNEL staining showed that the number of

apoptotic cells increased markedly in cerebral tissues surrounding

the injured area in TBI groups at 24 h post-injury. Significantly

fewer TUNEL-positive cells were found around injured cortical

Figure 2. Effects of 40 mg?kg21 wogonin treatment on cortical contusion volume, brain edema, and BBB permeability. (A)
Representative cresyl violet-stained brain sections of vehicle- and 40 mg?kg21 wogonin-treated mice 1 day post-TBI showing hypointense regions
immediately below the impact site in the cortex. Scale bar is 1 mm. Quantification showed significantly smaller contusion volumes in wogonin-
treated mice compared with vehicle-treated mice at days 1 and 28 post-TBI. (B) Wogonin-treated mice showed a significant decrease in the
concentration of Evans blue (EB) in the ipsilateral hemisphere compared with vehicle-treated mice at day 1. (C) Brain water content in the ipsilateral
hemisphere of 40 mg?kg21 wogonin-treated mice was significantly lower than in vehicle-treated mice at day 1. (D) At day 1, hemispheric
enlargement was significantly smaller in mice treated with 40 mg?kg21 wogonin than in vehicle-treated mice. (E, F) Treatment with 40 mg?kg21

wogonin also reversed TBI-mediated reduced expression of claudin-5 and zonula occludens 1 in traumatic cortical areas of the ipsilateral hemisphere
at day 1 following TBI, as measured by western blot. Values are presented as mean 6 SEM; **P,0.01, ***P,0.001 versus vehicle-treated injured mice.
{P,0.05, {{P,0.01 for the 40 mg?kg21 wogonin-treated mice versus vehicle-treated mice. (n = 8 mice/group for cresyl violet staining and
hemispheric enlargement, n = 7 mice/group for brain EB, brain water content, and western blot).
doi:10.1371/journal.pone.0030294.g002
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areas in wogonin-treated mice (52.364.7%) than in vehicle-

treated controls (70.466.3%, P,0.05; Fig. 3B).

Post-injury wogonin administration reduces neutrophil
infiltration and microglial activation

The above results suggest that wogonin may improve functional

recovery and reduce neuronal damage following TBI. We further

explored whether wogonin treatment directly influenced post-

injury early inflammatory events. Since neutrophil infiltration and

microglial activation may contribute to TBI-induced tissue injury,

we examined whether wogonin treatment had any effects on

infiltrated neutrophils and activated microglia/macrophages. We

found that TBI produced a robust infiltration of neutrophils in the

injured cortex, primarily in the contusion core and margin, in

vehicle-treated mice. Furthermore, wogonin-treated mice had

significantly fewer neutrophils in the pericontusion area than did

vehicle-treated mice (110.069.9 versus 177.4620.0 cells/field,

P,0.05; Figs. 4A & B). With regard to the microglial response,

there was a significant increase in ionized calcium binding adaptor

molecule 1 (Iba1)-positive microglia within the injured cortex in

the vehicle-treated group. This increase was attenuated by

wogonin treatment as well (86.067.8 versus 126.3612.6 cells/

field, P,0.01; Fig. 4A & B).

Post-injury wogonin administration reduces IL-1b, IL-6,
MIP-2, and COX-2 expression, but has no effect on MCP-1
expression after TBI

We next assessed the effects of wogonin treatment on the

expression of inflammatory mediators. Since our previous studies

showed that the mRNA and protein expression of most cytokines

peaked at 6 and 24 h after TBI, respectively [24], we chose to

evaluate the wogonin effect on mRNA and protein expression of

various inflammatory mediators at 6 h and 1 day post-injury.

Protein expression of interleukin (IL-1b), IL-6, macrophage

inflammatory protein (MIP)-2 and monocyte chemoattractant

protein (MCP)-1 was detected using enzyme-linked immunosor-

bent assay (ELISA) whereas that of COX-2 was detected using

western blot. mRNA expression of all the inflammatory mediators

was detected by real-time quantitative reverse transcription

polymerase chain reaction (RT-PCR) analysis. Basal levels of IL-

Figure 3. Effects of 40 mg?kg21 wogonin treatment on neuronal degeneration and apoptotic cell death. (A) Brain atlas of coronal
sections of a core contusional region at 0.74 mm from the bregma. Quantification analysis indicated that wogonin-treated mice had significantly
fewer degenerating neurons than vehicle-treated mice in the cortical contusion margin at day 1 post-TBI. The total number of Fluoro-Jade B (FJB)-
positive cells is expressed as the mean number per field of view (1.3 mm2). The scale bar is 50 mm. (B) Representative terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining (green)- and DAPI (blue)-stained brain sections of a sham-injured control, a
wogonin-treated mouse, and a vehicle-treated mouse at day 1 post-TBI. Quantification showed that wogonin-treated mice had significantly fewer
TUNEL-positive cells than the vehicle-treated mice in the cortical contusion margin at day 1 post-TBI. The percentage of TUNEL-positive cells is
expressed as the number of TUNEL-stained nuclei/the total number of DAPI-stained nuclei. Sections were stained with DAPI (blue) to show all nuclei.
The scale bar is 50 mm. Values are presented as means 6 SEM; *P,0.05 versus vehicle-treated injured mice (n = 7 mice/group).
doi:10.1371/journal.pone.0030294.g003
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1b, IL-6, MIP-2, MCP-1, and COX-2 were low in sham control

brains. However, TBI induced a significant increase in IL-1b, IL-

6, MIP-2, MCP-1, and COX-2 protein expression in the injured

cortex of both vehicle-treated and wogonin-treated mice com-

pared with the sham control at day 1 post-injury (Figs. 5A–D &

6A). Injured cortices from wogonin-treated mice exhibited

significantly reduced IL-1b, IL-6, MIP-2, and COX-2 protein

levels compared with the vehicle group (IL-1b: 49.1612.7 versus

84.969.4 pg?mg21 protein, P,0.05, Fig. 5A; IL-6: 86.568.1

versus 130.7611.6 pg?mg21 protein, P,0.01, Fig. 5B; MIP-2:

156.5617.4 versus 221.7611.3 pg?mg21 protein, P,0.01,

Fig. 5C; COX-2: 70.6% of the vehicle group, P,0.05, Fig. 6A).

Though MCP-1 protein levels appeared to follow the same trend,

the changes were not statistically significant (Fig. 5D). Similarly,

mRNA levels of IL-1b, IL-6, MIP-2, MCP-1 and COX-2

increased significantly in the injured cortices of vehicle-treated

mice at 6 h post-injury compared with sham controls (P,0.05 for

all values; Figs. 5E–H & 6A). The increase in IL-1b, IL-6, MIP-2,

and COX-2 mRNA levels was significantly attenuated by wogonin

treatment. IL-1b, IL-6, MIP-2, and COX-2 mRNA levels in the

wogonin-treated injured cortex were 56.0% (P,0.01; Fig. 5E),

73.5% (P,0.05; Fig. 5F), 54.2% (P,0.01; Fig. 5G), and 47.7%

(P,0.01; Fig. 6B) of the vehicle group at 6 h, respectively. In

contrast, no significant differences were found for MCP-1 mRNA

(Fig. 5H).

Post-injury wogonin administration reduces MMP-9
enzymatic activity after TBI

MMP-9 activity was significantly increased in both vehicle-

treated and wogonin-treated injured brains at day 1 post-TBI

(Fig. 6C). MMP-9 activity was significantly decreased in wogonin-

treated mice compared with vehicle-treated mice (P,0.05).

Post-injury wogonin administration reduces NF-kB
binding activity after TBI

NF-kB is a major transcription factor that regulates the

expression of several genes involved in the inflammatory response.

To investigate the time-course expression of NF-kB activation,

western blot analyses were performed with nuclear extracts. Basal

nuclear NF-kB p65 levels were low in the cortex of the sham-

injured animals. Activation of NF-kB, as indicated by the nuclear

translocation of p65 was observed at 1, 3, 6 and 24 h after injury,

with the peak level being observed at 3 h (P,0.05 for all values)

Figure 4. Effects of 40 mg?kg21 wogonin treatment on neutrophil infiltration and microglial activation. (A) Representative
myeloperoxidase (MPO)- and anti-ionized calcium binding adaptor molecule 1 (Iba1)-stained brain sections from a sham-injured control, a wogonin-
treated, and a vehicle-treated mouse at day 1 post-TBI. (B) Cell count analysis indicated that wogonin-treated mice had significantly fewer infiltrating
neutrophils and activated microglia/macrophages than vehicle-treated mice in the cortical contusion margin at day 1 post-TBI. The total number of
MPO- and Iba1-positive cells is expressed as the mean number per field of view (1.3 mm2). The scale bar is 100 mm. Values are presented as means 6
SEM; *P,0.05, **P,0.01 versus vehicle-treated TBI mice (n = 7 mice/group).
doi:10.1371/journal.pone.0030294.g004
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(Fig. 6D). Wogonin treatment significantly reduced the injury-

induced increased nuclear levels of NF-kB to 55.3% (P,0.05) of

vehicle-treated brains at day 1 post-TBI (Fig. 6E). We further used

electrophoretic mobility shift assays (EMSAs) to examine whether

wogonin affected the DNA binding activity of NF-kB. NF-kB was

present at low levels in sham control brains. Compared with the

sham group, NF-kB binding activity was significantly increased in

the vehicle-treated TBI group at day 1 post-TBI (Fig. 6F).

Wogonin treatment significantly reduced NF-kB binding activity.

NF-kB binding activity in the injured brains of wogonin-treated

mice was 61.3% (P,0.05) of vehicle-treated control brains at day

1.

Post-injury wogonin administration reduces TLR-4
protein expression after TBI

Since activation of TLR4 stimulates the activation of NF-kB, we

next examined the effects of wogonin on TLR4 protein expression.

Basal TLR4 expression was low in sham control brains. The

expression of TLR4 significantly increased starting from 1 h after

injury (P,0.05), and remained high between 3 h to 1 day post-

TBI (P,0.05 for all values) (Fig. 7A). At day 1 post-injury, TLR4

protein expression was significantly increased in the injured cortex

of both vehicle-treated and wogonin-treated mice compared with

sham controls (Fig. 7B). Dual-label immunofluorescence demon-

strated that TLR4 was co-localized in neurons and astrocytes, and

poor co-localization was observed in microglia, in the peri-

contusional area (Fig. 7C). Wogonin treatment significantly

reduced TLR4 levels to 73.0% (P,0.05) of vehicle-treated control

brains (Fig. 7B).

Discussion

This study shows for the first time that wogonin administered

10 min after CCI reduces neuronal damage and cerebral edema

and improves long-term sensory-motor recovery after TBI in mice.

These beneficial effects are associated with a reduction in mRNA

transcripts and protein expression of TLR4/NF-kB pathway-

related mediators. Our results demonstrate that wogonin treat-

ment is effective at attenuating the severity of TBI in mice, both

clinically and neuropathologically.

TBI induces neurological deficits and can result in functional

impairment as well as dependence. In clinical studies, the

functional outcome following a traumatic insult is one of the most

important parameters. We observed that wogonin treatment

caused a significant reduction in both sensory-motor deficits

(assessed by mNSS) and motor dysfunction (assessed by rotarod

and beam walk tests) up to 4 weeks post-injury, indicating that

wogonin was highly effective in providing long-lasting protection

to the traumatized brain. We utilized rotarod and beam walk tests

to measure motor coordination and balance [24,25], and mNSS to

evaluate overall neurological deficits [24]. Notably, we found that

a single dose of wogonin reduced functional deficits caused by

experimental TBI in mice as early as 1 day post-injury and

promoted sustained improvement of motor-sensory functions over

a 4-week post-injury period. The protection afforded by wogonin

was associated with a decrease in neuronal damage and apoptotic

cell death at day 1, and a reduction in contusion volume at both

day 1 and day 28 in the cortical regions involved in motor and

sensory functions. These findings suggest that wogonin effectively

Figure 5. Effects of 40 mg?kg21 wogonin treatment on protein and mRNA expression of cytokines and chemokines. (A, B, C, D) Bar
graphs of interleukin (IL)-1b, IL-6, macrophage inflammatory protein (MIP)-2, and monocyte chemoattractant protein (MCP)-1 protein concentrations
in the ipsilateral cortices of sham control, vehicle-treated, and 40 mg?kg21 wogonin-treated mice at day 1 post-injury. Wogonin significantly
attenuated injury-induced increases in IL-1b, IL-6, and MIP-2 protein concentrations, but had no effect on MCP-1 protein concentration compared
with vehicle-treated TBI mice. (E, F, G, H) Bar graphs demonstrating IL-1b, IL-6, MIP-2, and MCP-1 mRNA expression in the ipsilateral cortices of sham
control, vehicle-treated, and 40 mg?kg21 wogonin-treated mice 6 h post-injury. Wogonin significantly inhibited injury-induced expression of IL-1b, IL-
6, and MIP-2 mRNA in the ipsilateral cortices. There was no significant difference in MCP-1 mRNA transcript levels between the wogonin-treated and
vehicle-treated groups of mice subjected to TBI. Values are presented as means 6 SEM; **P,0.01, ***P,0.001 versus sham control, and {P,0.05,
{{P,0.01 for wogonin-treated mice versus vehicle-treated TBI mice (n = 7 mice/group).
doi:10.1371/journal.pone.0030294.g005
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attenuated the pathological events leading to post-traumatic

deficits during the first 24 h, which consequently led to a better

prolonged recovery of neurologic function.

TLR4-mediated NF-kB signaling plays a vital role in the

initiation of cerebral inflammation in several central nervous

system (CNS) diseases, such as inflammatory or autoimmune CNS

diseases, and cerebral ischemic injury [2,26]. The activation of

NF-kB leads to transcription of many pro-inflammatory genes that

encode cytokines, chemokines, and enzymes such as COX-2 and

MMP-9, mediators that are involved in the development of

secondary brain injury following TBI [27,28]. The upregulation of

cytokines and chemokines, e.g., IL-1b, IL-6, and MIP-2, may

activate microglia, initiate the infiltration of inflammatory cells

into the brain, and trigger a series of events ultimately leading to

neuronal death [1,29,30]. In addition, MMP-9 can degrade the

neurovascular matrix, leading to edema and tissue injury [28,31].

Induction of COX-2 up-regulates prostaglandin production,

generates free radical species, and contributes to edema and

neuronal death [32]. Here, we showed that wogonin treatment

could attenuate TBI-induced reduced TLR4/NF-kB signaling

pathway activation in the injured brain. It is possible that wogonin

suppressed microglia activation and neutrophil infiltration and

reduced injury-induced IL-1b, IL-6, MIP-2, MMP-9, and COX-2

expression, thereby ameliorating brain damage. Our results are in

agreement with previous studies demonstrating that suppression of

TLR4/NF-kB signaling by anti-inflammatory agents, including

statins and progesterone, reduced TBI-induced brain damage

[4,5]. There is abundant evidence showing that wogonin

attenuates several inflammatory processes known to be important

during TBI. For example, wogonin has been shown to alleviate

inflammatory processes by decreasing prostaglandin E2 produc-

tion and COX-2 expression in macrophages [10]. Wogonin

Figure 6. Effects of 40 mg?kg21 wogonin on COX-2 expression, MMP-9 and NF-kB activation. (A) Representative immunoblots and
densitometry analysis showed a significant decrease in COX-2 protein levels in the ipsilateral hemispheres of wogonin-treated injured mice at day 1
compared with vehicle-treated injured mice. (B) Bar graphs showed that wogonin significantly reduced COX-2 mRNA expression in the ipsilateral
hemispheres compared with vehicle-treated injured mice at 6 h post-TBI. (C) Representative zymography and densitometry analysis showed that
MMP-9 activity was significantly decreased in wogonin-treated mice compared with vehicle-treated mice at day 1. (D) Representative immunoblots of
nuclearNF-kB p65 in the ipsilateral hemisphere of untreated injured mice. Densitometric analysis showed increased nuclear p65 levels at 1, 3, 6 and
24 h post-injury, with a peak at around 3 h. #P,0.05 versus 3 h (n = 5 mice/time point). (E) Representative immunoblots and densitometric analysis
showed a significantly greater decrease in nuclear NF-kB p65 levels in the ipsilateral hemispheres of the wogonin-treated injured mice than in the
vehicle-treated injured mice at day 1. (F) Representative gel shift analysis showing NF-kB DNA-binding activity from a sham control mouse (lane 3),
vehicle-treated injured mouse (lane 4), and wogonin-treated injured mouse (lane 5) at day 1. Competition assays for NF-kB DNA-binding activity were
performed with a 50-fold excess of unlabeled competitor NF-kB consensus oligonucleotides (lane 1). For the supershift assay, an antibody targeting
the p65 subunit of NF-kB was incubated with a nuclear protein sample before the binding reaction (lane 2). Quantification analysis showed that
wogonin treatment induced a significantly greater decrease in NF-kB binding activity, expressed in arbitrary densitometric units (ADU), than that
induced by vehicle treatment, measured by EMSA.Values are reported as means 6 SEM; *P,0.05, **P,0.01, ***P,0.001 versus sham controls, and
{P,0.05, {{{P,0.001 for wogonin-treated versus vehicle-treated TBI mice (n = 7 mice/group).
doi:10.1371/journal.pone.0030294.g006
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inhibited MCP-1 gene expression in human endothelial cells and

suppressed MMP-9 expression in human aortic smooth muscle

cells [33,34]. It also ameliorated myocardial ischemia/reperfusion

injury, suppressed activation of NF-kB and p38 mitogen-activated

protein kinase and inhibited MCP-1 expression in vivo [35]. In the

CNS, wogonin attenuated LPS-induced production of NO and

pro-inflammatory cytokines in cultured microglia and astrocytes

[15,17,36] and suppressed microglial cell migration via inhibition

of NF-kB activity [13]. Additionally, it exhibited inhibitory effects

on inducible nitric oxide synthase (iNOS) protein expression and

MMP-9 enzyme activity in glioma cells [37]. These properties of

wogonin may contribute to its neuroprotective effects. Indeed,

inhibition of microglia by wogonin reduced cytotoxicity when cocultured with

PC12 cells [11]. In vivo experiments also showed that wogonin

treatment protected against brain damage by reducing the

production of inflammatory mediators, e.g., tumor necrosis factor

(TNF)-a and iNOS, preventing the death of hippocampal neurons

in cerebral ischemia [11], and inhibiting the activation of

microglia in excitotoxic brain injury [11].

We observed significant differences in brain water content and

EB extravasation between wogonin-treated and vehicle-treated

mice, providing evidence for the effects of wogonin on BBB

permeability and brain edema after TBI. Global cerebral edema,

or BBB dysfunction, has been reported as a major risk factor for

poor outcomes after TBI [38]. BBB dysfunction may potentially

allow circulating cells and many blood-borne substances into the

brain, thus augmenting cerebral inflammatory responses and

leading to further neuronal damage and edema formation.

Accumulating evidence shows that inflammation and activation

of MMPs play key roles in the disruption of the BBB and brain

edema formation after injury [28,38–40]. Furthermore, multiple

studies have shown that suppression of inflammation inhibited

BBB disruption and edema [5,41,42]. MMP-9 functions to

degrade the extracellular matrix, including major components of

the basal lamina and tight junctions as well as interendothelial

tight junction proteins, causing BBB disruption after TBI [28,38].

In addition, excessive accumulation of leukocytes causes the release

of cytotoxic enzymes, inflammatory mediators, and reactive oxygen

species, thereby potentially damaging the microvascular endothelium

and leading to BBB disruption and edema [31,38,39]. In the

current study, we showed that wogonin treatment decreased the

number of microglia, macrophages, and neutrophils recruited to

the injured areas of the brain, reduced NF-kB activation and

translocation to the nucleus, and interacted NF-kB binding

activity, expression of inflammatory mediators (IL-1b, IL-6,

MIP-2, and COX-2), and MMP-9 activity in the injured brain.

This reduction in inflammation was associated with the protection

of 2 tight junction proteins, ZO-1 and claudin-5, suggesting that

wogonin may act to protect endothelial tight junctions, thereby

keeping the BBB intact. Hence, the anti-edematous effect of

wogonin observed in our study is likely to be related to the

inhibition of inflammation. However, the beneficial effects of

Figure 7. Effects of 40 mg?kg21 wogonin on TLR4 expresssion. (A) Representative immunoblots of toll-like receptor (TLR)-4 protein in the
ipsilateral hemisphere from untreated injured mice. Bar graphs of densitometry analysis of the protein bands showed increased TLR4 levels at 1, 3, 6
and 24 h post-injury (n = 5 mice/time point). (B) Representative immunoblots showing TLR-4 protein in the ipsilateral hemisphere from a sham-
injured control, a wogonin-treated injured mouse, and a vehicle-treated injured mouse at day 1 post-TBI. Bar graphs of densitometry analysis of
protein bands showed a significant decrease in TLR4 protein levels in the ipsilateral hemispheres of wogonin-treated mice at day 1 post-TBI
compared with vehicle-treated mice. (C) Identification of TLR4- positive cells 1 day post-injury in the peri-contusion margin by immunofluorescence
labeling. TLR-4 immunoreactivity is shown in red, and immunolabeling of NeuN (a cell marker for neurons), anti-ionized calcium binding adaptor
molecule 1 (Iba1, a cell marker for microglia), or GFAP (a cell marker for astrocytes) is shown in green. Yellow labeling indicates co-localization. TLR4
was co-localized in neurons and astrocytes, and poor colocolization was observed in microglia. Sections were stained with DAPI (blue) to show all
nuclei. The scale bar is 50 mm. Values are reported as means 6 SEM; *P,0.05, **P,0.01, ***P,0.001 versus sham controls, and {P,0.05 for wogonin-
treated versus vehicle-treated TBI mice (n = 7 mice/group).
doi:10.1371/journal.pone.0030294.g007

Wogonin Reduces TLR4/NF-ÎuB Signaling in TBI
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wogonin may be in part due to the prevention of free radical and

oxidant formation since wogonin exerts potent antioxidant effects

both in vitro [15,18] and in vivo [43,44]. Further investigations are

needed to clarify the mechanisms underlying the anti-edematous

effects of wogonin.

We found that a single post-injury injection of 40 mg?kg21

wogonin protected against brain injury but did not induce renal or

liver toxicity in mice. The neuroprotective potential of wogonin

has been demonstrated in animal models of global and focal

ischemia as well as excitotoxic injury by systemic kainate injection

in rats. The effective doses ranged from 1 dose of 10 mg?kg21

(10 mg?kg21 given 10 min after induction of global ischemia) to 2

doses of 20 mg?kg21 (20 mg?kg21 given 30 min before and 4 h

after induction of focal ischemia) [16,17,33]. Nevertheless, all

previous studies only tested the efficacy of wogonin at fairly early

time points (1 to 7 days) after treatment. In contrast, our study

investigated structural parameters (infarct size), functional out-

comes, and physiological parameters (body weight, renal function,

and liver function) over a period of up to 1 month. Furthermore,

we found that post-injury wogonin treatment reduced cerebral

edema, BBB permeability, and apoptotic cell death, which are

major events that occur in the secondary injury phase of TBI.

Wogonin has a good safety profile, and it is already used in

humans in combination with other flavonoids extracted from S.

baicalensis Georgi for several different indications [9,45,46]. These

properties may facilitate clinical applications of wogonin to human

TBI patients. Further investigations will be required to establish

the optimal time window for treatment, route of administration,

and therapeutic efficacy for different injury magnitudes and

models.

In conclusion, our findings indicate that post-injury treatment

with wogonin leads to improved long-term functional and

histological outcomes and reduced brain edema in a clinically

relevant model of TBI. This improvement was associated with

attenuated expression of TLR4/NF-kB-pathway related media-

tors, including upstream factors (TLR4/NF-kB) and downstream

factors (IL-1b, IL-6, MIP-2, and COX-2 expression, and MMP-9

activity), suggesting that the neuroprotective effects of wogonin

following TBI may be mediated, in part, through modulation of

the TLR4/NF-kB signaling pathway. Wogonin treatment may

prove to be advantageous because chronic dosing is not required,

wogonin has low toxicity, and it can be easily administered in

emergency situations. Thus, wogonin could be a potential

therapeutic in the treatment of TBI.

Materials and Methods

Surgical procedures
All animal procedures were approved by the Animal Research

Committee at Cheng Hsin General Hospital (Animal permit

number CHGH-98-003), and all procedures conformed to the

Guide for the Care and Use of Laboratory Animals published by

the US National Institutes of Health (NIH Publication No. 85–23,

revised 1996). Animals were housed in groups in a temperature

(21–25uC)- and humidity (45–50%)-controlled room with a 12-h

light/dark cycle and ad libitum access to pellet chow and water. A

previously described CCI injury model was utilized [47]. Eight-

week-old male C57BL/6 mice (22–25 g body weight) were

intraperitoneally anesthetized with sodium pentobarbital

(65 mg?kg21; Rhone Merieux, Harlow, UK) and placed in a

stereotaxic frame. A 5-mm craniotomy was performed over the left

parietal cortex, centered on the coronal suture and 3 mm lateral to

the sagittal suture. Considerable care was taken to avoid injury to

the underlying dura. Injury was induced using a pneumatic piston

with a rounded metal tip (2.5 mm diameter) which was vertically

angled (22.5u) so that the tip was positioned perpendicular, with

the brain surface at the center of the craniotomy. A velocity of

4 m?s21 and a deformation depth of 2 mm below the dura were

used. The bone flap was immediately replaced and sealed, and the

scalp was sutured closed. Body temperature was monitored

throughout the surgery by using a rectal probe; temperature was

maintained at 37.060.5uC using a heated pad. Mice were placed

in a heated cage to maintain body temperature while recovering

from anesthesia.

Sham-operated mice received craniotomy as described before,

but without CCI; the impact tip was placed lightly on the dura

before sealing the wound. After the trauma or sham surgery,

animals were housed under the conditions mentioned above.

Experimental protocol and dose selection
All animals were randomized into 1 of 3 groups (sham injury,

CCI+vehicle, CCI+40 mg?kg21 wogonin). Surgery/injury, behav-

ioral testing, and tissue analyses were all performed by different

individuals. Behavioral testing and tissue analyses were performed

by individuals blinded to the treatment group. Wogonin (Wako

Pure Chemical Industries, Osaka, Japan) dissolved in 30%

dimethyl sulfoxide (DMSO, 0.1 mL) or a corresponding volume

of vehicle (30% DMSO) was administered intraperitoneally

10 min following injury. Testing after injury was completed as

follows: 1) behavioral testing at days 1, 4, 7, 14, 21, and 28 (n = 8

mice/group); 2) cresyl violet staining at days 1 and 28 (n = 8 mice/

group); 3) histology, EB quantification, determination of brain

water content, western blot analysis, ELISA and EMSAs at day 1

(n = 7 mice/group); and 4) real–time quantitative RT-PCR at 6 h

(n = 7 mice/group). To determine the optimal dose of wogonin, a

pilot study was performed using 3 different doses (20, 40, and

50 mg?kg21) administered 10 min after injury, and neurological

deficits were evaluated as main outcomes. The results showed a

significant effect of wogonin at 40 mg?kg21, with no further

increase at 50 mg?kg21. Therefore, on the basis of these data, a

dose of 40 mg?kg21 was chosen for all subsequent experiments.

The temporal profile of TLR4 expression and NF-kB activation

was evaluated by western blot in another group of injured and

sham-injured mice. The purpose of this analysis was to determine

whether increased TLR4 expression and NF-kB activation

precede increased mRNA of pro-inflammatory mediators. Fol-

lowing CCI operation, western blot using whole-tissue or nuclear

extracts was performed at 1, 3, 6 and 24 h (n = 5 for both TLR4

and NF-kB expression at each time point). Ten additional sham-

operated rats were used for the controls (n = 5 for both TLR4 and

NF-kB western blot).

Neurological functional evaluation
Behavioral testing was performed before CCI and at 1, 4, 7, 14,

21, and 28 days after CCI. The battery of tests consisted of the

rotarod motor test, mNSS assessment, and beam walk test.

Animals were pre-trained for 3 days for both the rotarod and

beam walk tests.

Rotarod test. An accelerating rotarod was used to measure

motor function and balance in mice [24]. Each mouse was placed

on the rotarod cylinder, and the time that the animal remained on

the rotarod was measured. Speed was slowly increased from 4 rpm

to 20 rpm within 5 min. A trial would be ended if the animal fell

off the rungs or gripped the device and spun around for 2

consecutive revolutions without attempting to walk on the rungs.

One hour before CCI, the mean duration on the device was

recorded with 3 rotarod measurements as pre-injury baseline
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values. Post-injury latencies were expressed as percentages of their

respective baseline values to reduce interanimal variability.

Modified neurological severity score. The mNSS is a

composite of motor, sensory, reflex, and balance tests [24]. One

point was scored for the inability to perform each test or for the

lack of a tested reflex; thus, the higher the score, the more severe

the injury. Neurological function was graded on a scale of 0–18

(normal score, 0; maximal deficit score, 18).

Beam walk test. The beam walk test was utilized to evaluate

fine motor coordination and function [24]. Mice escaped a bright

light and loud white noise by walking along an elevated (50 cm)

narrow wooden beam (0.8 cm6100 cm) to enter a darkened goal

box at the opposite end of the beam. The time required for the

mouse to reach the goal box (not to exceed 60 s) and hindlimb

performance as it traversed the beam (based on a 1 to 7 rating

scale) were recorded. A score of 7 was given when animals

traversed the beam with 2 or less foot slips; 6 was given when

animals traversed the beam with less than 50% foot slips; 5 was

given for more than 50% but less than 100% foot slips; 4 was given

for 100% foot slips; 3 was given for traversal with the affected limb

extended and not reaching the surface of the beam; 2 was given

when the animal was able to balance on the beam but not traverse

it; 1 was given when the animal could not balance on the beam.

Three trials were recorded 1 h before CCI (baseline) and each day

after CCI. The mean values of latency and score for each day were

computed.

Evaluation of metabolic characteristics
Following terminal anesthesia, venous blood was collected via

direct right atrial puncture. The obtained blood was centrifuged

(3500 rpm for 5 min), and the serum was stored at 220uC until

analysis. A chemistry analyzer (Synchron Clinical System LX20;

Beckman Coulter, Fullerton, CA) was used to measure serum BUN

and CRE to assess renal function, and AST and ALT to assess

liver function.

Tissue processing and histology
Following terminal anesthesia, mice were processed for

histology by transcardial perfusion with phosphate-buffered saline

(PBS) followed by 4% paraformaldehyde. All solutions were

maintained at pH 7.4 and 4uC. Brains were removed, post-fixed in

4% paraformaldehyde overnight, and then transferred to PBS

containing 30% sucrose and 0.1% sodium azide (Sigma-Aldrich,

St. Louis, MO) for cryoprotection. Coronal sections were cut in a

cryostat at 10 mm from the level of the olfactory bulbs to the visual

cortex and used for cresyl violet histology, FJB staining, TUNEL

staining, or immunohistochemistry.

Contusion volume and hemispheric enlargement analysis
Contusion volumes and hemispheric enlargement were quan-

tified using coronal sections stained with cresyl violet at 20 rostral-

caudal levels that were spaced 200 mm apart. Sections were

digitized and analyzed using a 1.56 objective and Image J

software (Image J, National Institutes of Health, Bethesda, MD).

The contusion area was calculated using all cresyl violet-stained

sections containing contused brain as previously described [24],

and the volume measurement was computed by summation of the

areas multiplied by the interslice distance (200 mm). Brain edema

was measured by determining the percentage of hemispheric

enlargement, which was calculated using the following formula:

[(ipsilateral hemisphere volume2contralateral hemisphere vol-

ume)/contralateral hemisphere volume]6100 [48]. Analysis was

conducted by two experimenters who were blinded to all animal

characteristics. Inter-rater reliability in contusion volumes and

hemispheric enlargement was well within 10%.

Evaluation of blood-brain barrier permeability
One day after TBI, BBB permeability was evaluated by

measuring EB extravasation. Briefly, EB dye (4 mL?kg21 in 2%

saline) was administered via the tail vein and allowed to circulate

for 60 min. To wash out intravascular EB, the animals were then

perfused with saline through the left ventricle at a pressure of

110 mmHg until colorless fluid was obtained from the right

atrium. Brains were removed, and ipsilateral hemispheres were cut

into 4-mm-thick sections (2 mm from the frontal pole) and

weighed. For the extraction of EB from brain tissues, hemispheres

were placed in 1 mL of 60% (w/v) trichloroacetic acid and

homogenized by sonication. Homogenates were centrifuged at

4500 rpm for 15 min, and the supernatants were diluted with

ethanol (1:4). The absorbance of each supernatant for the EB dye

was measured at 620 nm using a spectrophotometer. EB

concentrations were calculated and expressed as mg?g21 brain

tissue against a standard curve.

Brain water content
Brain water content represents brain edema, which forms as a

consequence of BBB breakdown and post-injury inflammation.

Mice were re-anesthetized and decapitated at day 1, a time point

associated with maximal edema formation following experimental

TBI [21]. Brain water content was measured by the tissue-drying

method in a 4-mm coronal tissue section of the ipsilateral

hemisphere, 2 mm from the frontal pole. The water content of a

sample was determined by measuring the difference between wet

weight (fresh tissue weight) and dry weight and expressed as a

fraction of the wet weight [42,48]. Brain samples were immedi-

ately weighed on an electric analytical balance to obtain the wet

weight and then dried at 100uC for 24 h to obtain the dry weight.

The water content of each sample (% water content) was

calculated using the following formula: (wet weight2dry

weight)/wet weight6100%.

FJB histochemistry
FJB is a polyanionic fluorescein derivative that binds with high

sensitivity and specificity to degenerating neurons, and staining

was done as previously described [49], with some modifications.

Briefly, sections were first incubated in a solution of 1% NaOH in

80% ethanol for 5 min and then rehydrated in graded ethanol (75,

50, and 25%; 5 min each) and distilled water. Sections were then

incubated in 0.06% KMnO4 for 10 min, rinsed in distilled water

for 2 min, and incubated in a 0.0004% solution of FJB (Chemicon,

Temecula, CA) for 30 min. Sections were observed and

photographed under a fluorescence microscope (Olympus BX-

51; Olympus, Tokyo, Japan) with blue (450–490 nm) excitation

light.

TUNEL staining
TUNEL assay was performed using a commercial kit that labels

DNA strand breaks with fluorescein isothiocyanate (FITC; In Situ

Cell Death Detection Kit, Roche Molecular Biochemicals,

Mannheim, Germany). Sections were pretreated with 20 mg/mL

proteinase-K in 10 mM Tris-HCl at 37uC for 15 min. The slices

were then washed in distilled water and PBS and incubated in

0.3% hydrogen peroxide solution. Each section was incubated

with 50 mL of TUNEL reaction mixture with terminal deoxynu-

cleotidyl transferase (TdT) for 60 min at 37uC under humidified

conditions. Sections were observed and photographed under a
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fluorescence microscope with blue (450–490 nm) excitation light.

Negative controls were obtained by omitting the TdT enzyme.

Immunohistochemistry
All sections were dried, rehydrated in PBS, fixed in 4%

paraformaldehyde for 20 min, and rinsed in PBS. Sections were

then quenched in a solution of 10% methanol/10% hydrogen

peroxide in distilled water for 5 min before washing 3 times in

Tris-buffered saline (TBS; Sigma). Sections were blocked for

60 min in TBS containing 0.2% Triton X-100 (TXTBS; Sigma)

and 3% normal goat serum (NGS; Dako, Carpinteria, CA) and

then incubated overnight at 4uC with the respective primary

antibody (rabbit polyclonal anti-myeloperoxidase [MPO], a

neutrophil marker [Dako], or rabbit anti-Iba1, a microglia marker

[Wako]) in TXTBS containing 1% NGS. After 3 washes in TBS,

sections were incubated with a biotinylated secondary antibody

(biotinylated anti-rabbit IgG; Vector, Burlingame, VT) at a 1:200

dilution in TBS containing 1% NGS for 3 h, followed by 3 washes

in TBS. Detection of the primary antibody was facilitated by use of

a streptavidin-biotinylated horseradish peroxidase complex kit

(Dako), in which samples were incubated with diaminobenzidine

in TBS containing 1% NGS for 2 h, followed by 3 washes in TBS

and 2 washes in Tris non-saline (TNS). Sections were developed

with diaminobenzidine in TNS containing 0.03% hydrogen

peroxide, and excess stain was removed by washing in TNS 3

times. The specificity of the staining reaction was assessed by

several control procedures, including omission of the primary

antibody and substitution of the primary antibody with non-

immune rabbit serum.

In order to assess the cellular source of TLR4 after TBI, double

immunofluorescence labeling was performed by simultaneous

incubation of rabbit or goat polyclonal anti-TLR4 (1:100 dilution;

Santa Cruz Biotechnology, Santa Cruz, CA) with mouse anti-

neuronal nuclei antigen (1:100 dilution; NeuN, a neuronal marker;

Chemicon, Temecula, CA), rabbit polyclonal anti-Iba1 (1:100

dilution; a microglia marker; Wako), or rat monoclonal anti-glial

fibrillary acidic protein (GFAP, 1:400 dilution; an astrocyte

marker; Zymed Laboratories, South San Francisco, CA) overnight

at 4uC. Sections were then washed, incubated with Alexa Fluor

488 and Alexa Fluor 594 (1:400; Molecular Probes, Eugene, OR)

for 2 h, and examined under a fluorescence microscope (Olympus

BX-51; Olympus, Tokyo, Japan).

Quantification of FJB, TUNEL, MPO, and Iba-1 staining
FJB, TUNEL, MPO, and Iba-1 staining was quantified on

stained sections at the level of 0.74 mm from the bregma. Three

sections per animal were viewed and photographed under a

microscope. FJB-, TUNEL-, MPO-, and Iba1-positive cells were

counted by sampling an area of 128061024 mm2 (for FJB, MPO,

and Iba1 staining) or 160061200 mm2 (for TUNEL staining)

immediately adjacent to the cortical contusion margin in 3

randomly selected, non-overlapping fields using a magnification

of 6200. The total number of FJB-, MPO-, and Iba1-positive

cells was expressed as the mean number per field of view.

Quantification of TUNEL staining was expressed as the

percentage of nuclei that were stained by the TUNEL method

divided by the total number of DAPI-stained nuclei. Analysis was

conducted by 2 independent experimenters who were blinded to

all animal characteristics. Interrater reliability in cell counts was

within 10%.

Western blot analysis
Mice were re-anesthetized and decapitated 1 day after CCI or

sham operation for western blot analysis. A 4-mm coronal section

was taken from the injured area over the parietal cortex, and then

homogenized in ice-cold protein extraction reagents (T-PER

reagent; Pierce Biotechnology, Rockford, IL) containing a

complete mini protease inhibitor cocktail (Roche). Nuclear

extracts were prepared using a nuclear protein extraction reagent

kit (Marligen Biosciences Inc., Rockville, MD). Western blots were

performed as previously described [48]. Briefly, equal amounts of

protein were separated by sodium dodecyl sulfate-polyacrylamide

gel, transferred to Immobilon-P membranes (Millipore, Billerica,

MA), blocked using 5% milk in PBS containing 0.1% Tween-20,

and probed with primary antibodies at 4uC overnight. Afterwards,

the membranes were washed and incubated with horseradish

peroxidase-linked anti-rabbit or anti-mouse secondary antibodies

(1:1000 dilution; Santa Cruz Biotechnology) for 2 h. The relative

intensity of each protein signal was normalized to the correspond-

ing b-actin intensity and quantified by densitometry analysis using

Image J software. The following primary antibodies and dilutions

were used: 1) rabbit polyclonal anti-claudin-5 (1:1000 dilution;

Invitrogen, Camarillo, CA); 2) rabbit polyclonal anti-ZO-1 (1:200

dilution; Invitrogen); 3) rabbit polyclonal anti-COX-2 (1:1000

dilution; Cayman Chemical, Ann Arbor, MI); 4) rabbit polyclonal

anti-TLR4 (H-80; 1:1000 dilution; Santa Cruz Biotechnology); 5)

rabbit polycloncal anti NF-kB p65 (1:1000 dilution, Santa Cruz

Biotechnology); 6) mouse monoclonal anti-b-actin (1:5000 dilu-

tion; Sigma); 7) rabbit polycloncal anti-Lamin A/C (1:1000

dilution, Santa Cruz Biotechnology).

Enzyme-linked immunosorbent assay
Brains from injured or sham control animals were removed

without fixation after cervical dislocation 1 day following surgery.

A 4-mm coronal section was taken from the injured area over the

parietal cortex, snap-frozen in liquid nitrogen, and stored at

270uC until use. ELISAs were performed to detect IL-1b, IL-6,

MIP-2, and MCP-1 in brain homogenates using commercially

available kits (R&D Systems, Minneapolis, MN). Tissue homog-

enates were diluted to correspond with the linear portion of the

respective standard curves as determined in preliminary studies.

All samples and standards were assayed in duplicate according to

the manufacturer’s instructions. Tissue cytokine and chemokine

concentrations were expressed as pg antigen per mg protein.

Gelatin zymography
One day after induction of TBI, mice were euthanized by

cervical dislocation and brains were removed without fixation.

Zymography was performed as previously described [48].

Briefly, equal amounts of protein (prepared in the same manner

as the samples for western blot analysis) were separated on a

10% Tris-glycine gel copolymerized with 0.1% gelatin as

substrate. After separation, the gel was washed twice in distilled

water (30 min each wash) and then, proteins within the gel were

renatured by incubation with 2.5% Triton-X-100 buffer for 1 h

at room temperature. After incubating with developing buffer

(0.05 M Tris-HCl pH 7.5, 0.2 M NaCl, 5 mM CaCl2, 0.05%

Brij-35, and 0.2 mM NaN3) at 37uC for 24 h, the gel was stained

with 0.05% Coomassie R-250 dye (Sigma) for 30 min followed

by destaining. Gelatinolytic activity (MMP-9: ,97 kDa) was

indicated by the detection of clear bands at the appropriate

molecular weight.

Real-time quantitative RT-PCR
Six hours after injury or sham surgery, mice were euthanized by

cervical dislocation and brains from both injured and sham

animals were removed without fixation. A 4-mm coronal section

was taken from the injured area over the parietal cortex, snap-
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frozen in liquid nitrogen, and stored at 270uC until use. Total

RNA was extracted from brain tissues using the RNeasy Mini Kit

(Qiagen, Valencia, CA) and subsequently subjected to reverse

transcription using SuperScript II RNase H reverse transcriptase

(Invitrogen). Real-time quantitative RT-PCR analysis was per-

formed on an ABI PRISM 7900 sequence detector (Applied

Biosystems, Foster City, CA). Primers and probes for IL-1b
(TaqMan Gene Expression Assay ID Mm00434228_ml), IL-6

(Mm00446190_ml), MIP-2 (Mm00436450_m1), MCP-1

(Mm00441242_m1), and COX-2 (Mm00478374_m1) were pur-

chased from Applied Biosystems. b-Actin (Rn00607939_s1) was

used as endogenous control. Thermal cycling was initiated with a

2-min incubation at 50uC, followed by a 10-min denaturation step

at 95uC and 40 cycles at 95uC for 15 s and 60uC for 1 min.

Relative quantities of the candidate genes and b-actin rRNA were

calculated using the previously described comparative threshold

cycle (Ct) method [25].

Electrophoretic mobility shift assay
Dissected cortices (prepared as in western blot analysis) were

extracted using a nuclear protein extraction reagent kit. EMSAs

were performed using a commercial kit according to the

manufacturer’s protocol (NF-kB EMSA kit; Panomics, Inc.,

Fremont, CA). Briefly, the double-stranded biotin-labeled NF-kB

oligonucleotide probe (59-AGTTGAGGGGACTTTCCCAGGC-

39) was incubated with the nuclear extracts in binding buffer and

poly[d(I-C)] for 30 min on ice. Samples were separated by

electrophoresis in 6% Tris-borate-EDTA (TBE) gels and trans-

ferred to nylon membranes. Oligonucleotides on the membranes

were fixed for 3 min using a UV crosslinker. After incubating with

blocking buffer at room temperature for 15 min, the membranes

were reacted with streptavidin-conjugated horseradish peroxidase

for another 15 min. After washing, the membranes were

incubated with detection buffer at room temperature for 5 min,

followed by incubation with chemiluminescent substrate solution

for another 5 min. Shifted bands corresponding to the protein/

DNA complexes were visualized relative to unbound double-

stranded DNA after exposure to a radiographic film. The

specificity of the binding reaction was evaluated by adding a 50-

fold excess of unlabeled probe to the protein/DNA reaction

mixture, which competes with the labeled DNA probe for binding

to the protein. For the supershift assay, a primary antibody

recognizing the p65 subunit of NF-kB (1:1000 dilution, Santa

Cruz) was incubated with the nuclear protein sample at 37uC for

1 h before performing the binding reaction. Optical densities of

the bands were quantified using Image J software.

Statistical analyses
Data are presented as the mean 6 standard error of the mean

(SEM). For comparisons among multiple groups, one-way or two-

way analysis of variance (ANOVA), followed by post-hoc

(Bonferroni) test, was used to determine significant differences.

Differences between 2 groups were tested using the Student’s t-test.

Statistical significance was set at P,0.05.

Author Contributions

Conceived and designed the experiments: S-FC C-CC T-HH. Performed

the experiments: S-FC C-CC P-YW C-YL. Analyzed the data: S-FC C-CC

T-HH Y-HW C-WL. Contributed reagents/materials/analysis tools: S-FC

C-CC T-HH P-YW C-YL Y-HW C-WL. Wrote the paper: S-FC C-CC.

References

1. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002)

Inflammatory response in acute traumatic brain injury: a double-edged sword.

Curr Opin Crit Care 8: 101–105.

2. Downes CE, Crack PJ (2010) Neural injury following stroke: are Toll-like

receptors the link between the immune system and the CNS? Br J Pharmacol

160: 1872–1888.

3. Dong XQ, Yu WH, Hu YY, Zhang ZY, Huang M (2011) Oxymatrine reduces

neuronal cell apoptosis by inhibiting Toll-like receptor 4/nuclear factor kappa-

B-dependent inflammatory responses in traumatic rat brain injury. Inflamm Res

60: 533–539.

4. Chen G, Shi J, Jin W, Wang L, Xie W, et al. (2008) Progesterone administration

modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical

contusion. Ann Clin Lab Sci 38: 65–74.

5. Chen G, Zhang S, Shi J, Ai J, Qi M, et al. (2009) Simvastatin reduces secondary

brain injury caused by cortical contusion in rats: possible involvement of TLR4/

NF-kappaB pathway. Exp Neurol 216: 398–406.

6. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. (1997) A human homologue

of the Drosophila Toll protein signals activation of adaptive immunity. Nature

388: 394–397.

7. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, et al. (2007) Pivotal

role for neuronal Toll-like receptors in ischemic brain injury and functional

deficits. Proc Natl Acad Sci U S A 104: 13798–13803.

8. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, et al. (2007) Toll-like

receptor 4 is involved in brain damage and inflammation after experimental

stroke. Circulation 115: 1599–1608.

9. Tai MC, Tsang SY, Chang LY, Xue H (2005) Therapeutic potential of

wogonin: a naturally occurring flavonoid. CNS Drug Rev 11: 141–150.

10. Wakabayashi I, Yasui K (2000) Wogonin inhibits inducible prostaglandin E(2)

production in macrophages. Eur J Pharmacol 406: 477–481.

11. Lee H, Kim YO, Kim H, Kim SY, Noh HS, et al. (2003) Flavonoid wogonin

from medicinal herb is neuroprotective by inhibiting inflammatory activation of

microglia. FASEB J 17: 1943–1944.

12. Huang GC, Chow JM, Shen SC, Yang LY, Lin CW, et al. (2007) Wogonin but

not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced

iNOS gene expression and NO production in macrophages. Int Immunophar-

macol 7: 1054–1063.

13. Piao HZ, Choi IY, Park JS, Kim HS, Cheong JH, et al. (2008) Wogonin inhibits

microglial cell migration via suppression of nuclear factor-kappa B activity. Int

Immunopharmacol 8: 1658–1662.

14. Chi YS, Lim H, Park H, Kim HP (2003) Effects of wogonin, a plant flavone from

Scutellaria radix, on skin inflammation: in vivo regulation of inflammation-
associated gene expression. Biochem Pharmacol 66: 1271–1278.

15. Huang WH, Lee AR, Yang CH (2006) Antioxidative and anti-inflammatory
activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci

Biotechnol Biochem 70: 2371–2380.

16. Cho J, Lee HK (2004) Wogonin inhibits ischemic brain injury in a rat model of

permanent middle cerebral artery occlusion. Biol Pharm Bull 27: 1561–1564.

17. Piao HZ, Jin SA, Chun HS, Lee JC, Kim WK (2004) Neuroprotective effect of

wogonin: potential roles of inflammatory cytokines. Arch Pharm Res 27:

930–936.

18. Cho J, Lee HK (2004) Wogonin inhibits excitotoxic and oxidative neuronal

damage in primary cultured rat cortical cells. Eur J Pharmacol 485: 105–110.

19. Son D, Lee P, Lee J, Kim H, Kim SY (2004) Neuroprotective effect of wogonin

in hippocampal slice culture exposed to oxygen and glucose deprivation.
Eur J Pharmacol 493: 99–102.

20. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma.
Neuroscience 129: 1021–1029.

21. Zweckberger K, Eros C, Zimmermann R, Kim SW, Engel D, et al. (2006) Effect
of early and delayed decompressive craniectomy on secondary brain damage

after controlled cortical impact in mice. J Neurotrauma 23: 1083–1093.

22. Anderson KJ, Miller KM, Fugaccia I, Scheff SW (2005) Regional distribution of

fluoro-jade B staining in the hippocampus following traumatic brain injury. Exp
Neurol 193: 125–130.

23. Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK (1998) Experimental
brain injury induces regionally distinct apoptosis during the acute and delayed

post-traumatic period. J Neurosci 18: 5663–5672.

24. Chen SF, Hsu CW, Huang WH, Wang JY (2008) Post-injury baicalein improves

histological and functional outcomes and reduces inflammatory cytokines after
experimental traumatic brain injury. Br J Pharmacol 155: 1279–1296.

25. Chen SF, Hung TH, Chen CC, Lin KH, Huang YN, et al. (2007) Lovastatin
improves histological and functional outcomes and reduces inflammation after

experimental traumatic brain injury. Life Sci 81: 288–298.

26. Racke MK, Drew PD (2009) Toll-like receptors in multiple sclerosis. Curr Top

Microbiol Immunol 336: 155–168.

27. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS

injury and disease. Br J Pharmacol 147 Suppl 1: S232–S240.

28. Wang X, Jung J, Asahi M, Chwang W, Russo L, et al. (2000) Effects of matrix

metalloproteinase-9 gene knock-out on morphological and motor outcomes after
traumatic brain injury. J Neurosci 20: 7037–7042.

Wogonin Reduces TLR4/NF-ÎuB Signaling in TBI
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