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Abstract

Background: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal
epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has
become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides
(MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria
including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially
mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses
and metabolic activities during late inflammation, in presence or absence of MOS, are unknown.

Methods and Principal Findings: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray
analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and
glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and
metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-a, IL-1 or IL-
6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression
in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts
revealed that MOS counteracted LPS’s detrimental inflammatory effects. Metabolic pathways are built to elucidate the
mechanisms by which VIRG host’s higher energy requirements were met: including gene up-regulations for intestinal
gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase
(CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host’s lower energy
demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation.

Conclusions: MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel
biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts.
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Introduction

Salmonella is a leading human food-borne pathogen, worldwide

[1]. The pathogen invades the intestinal epithelium by using its

specialized Type III secretory systems (T3SS) to cause acute

systemic or extra-intestinal inflammation [2]. Indeed, the intestine

is the portal of entry through which Salmonella triggers systemic

infections. However, although life-threatening, treatment of

Salmonella-induced systemic inflammation has received very little

interests in scientific investigations. The disease is frequently

caused by consumption of undercooked contaminated poultry

meat and meat products [3], which accidentally occur upon

exposure to intestine-residing Salmonella during chicken processing.

Over decades, low doses of sub-therapeutic antibiotics such as

virginiamycin (VIRG) have been administered daily in diets of

food-producing animals, including poultry, to control intestinal

pathogens. Unlike therapeutic antibiotics, sub-therapeutic antibi-

otics are macromolecules that exert localized bactericidal effects in

the intestines only. However, according to the World Health

Organization (WHO), such practice has debatably been associated

with emergence of multiple antibiotic-resistant strains of Salmonella

[4]. Today, not only has Salmonella become more difficult to

control in poultry production, but antibiotic treatment of

Salmonella-induced gastrointestinal and systemic infections has

become less successful among hospitalized patients, causing higher

death rates [1], [4]. Therefore, the development of natural

immuno-modulators that can prevent or treat Salmonella infections

in both poultry and humans is highly desirable. Evidence exist that

mannose-rich oligosaccharides (MOS), purified from cells walls of

Saccharomyces cerevisiae, competitively binds mannose-specific lectin,
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namely FimH, of Gram-negative bacteria expressing the Type 1

fimbriae, including Salmonella, thereby reducing their adherence to

mannose-containing glycoprotein receptors on intestinal epithelial

cells in humans and chickens [5], [6].

Innate immunity represents the first line of immune defense

against invading pathogens in both mammals and avian species.

Extracellular Toll-like receptor 4 (TLR-4) of innate immune cells,

including macrophages and dendritic cells, recognizes the LPS-

endotoxin in outer membranes of Gram-negative bacteria [7]. The

engagement of LPS to TLR-4 triggers a cascade of transduction

signaling resulting in inflammatory responses characterized by

secretion of pro-inflammatory cytokines, including IL-1 and IL-6

that orchestrate pathogen clearance [8]. But, innate immune

responses must be regulated exceptionally tightly because high IL-1

and IL-6 levels cause fever, anorexia and bodyweight (BW) losses

[9,10], catabolism of skeletal muscles [11–13] and adipose tissues

[14], and immunological diseases [15] in chickens, rats and humans.

Therefore, it is clear that an ideal immune response would be one

that can clear pathogens or antigens and be terminated soon after

infection. However, despite significant advances in our understand-

ing about inflammatory responses, molecular events of innate

immunity and metabolic activities during the period of late

inflammation are still not clear. Moreover, whether modulation of

intestinal mucosal immunity due to dietary MOS may suppress

Salmonella-induced systemic inflammation and reduce nutrient

mobilization is unknown. The regulatory immune responses

between intestinal mucosal and systemic immunity is well

recognized [16], [17]. Therefore, considering the human health

havoc due to sub-therapeutic antibiotic utilization among food-

producing animals, this study evaluated the effects of MOS and sub-

therapeutic antibiotics on innate immunity and nutrient metabolism

during late Salmonella LPS-induced systemic inflammation.

The experiment reported herein, conducted in a chicken model,

a frequently utilized biological model in nutrigenomic scientific

investigations [18], and using chicken-specific microarrays, reveals

that MOS and the VIRG antibiotic differently regulated

expressions of genes involved in innate immunity and metabolic

pathways during late systemic inflammation. Innate immune

responses were principally mediated by intestinal IL-3, but not IL-

1 or IL-6. In contrast to VIRG, MOS inherently induced innate

immune responses in non-challenged control hosts. Interestingly,

however, MOS terminated innate immune responses earlier than

VIRG and reduced glucose mobilization.

Results

LPS induced pathological symptoms, reduced feed intake and

BW, and increased liver size in MOS- and VIRG-fed chickens.

However, to make a clear distinction between the effects of MOS

and VIRG among hosts within the physiological (non-challenged

controls) and inflammatory (LPS-challenged) conditions, we relied

on microarray results that detailed the coordinately regulated

biological mechanisms underlying innate immunity and nutrient

metabolism. Tissue-specific RNA extracted from the intestines,

liver and skeletal muscles at 24 h post-LPS challenge were

analyzed using chicken-specific microarrays. All data files from

this experiment have been deposited into the MIAME compliant

Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.

gov/projects/geo (accession no. GSE28959).

LPS induced clinical symptoms in antibiotic- and MOS-
fed chickens

To provoke a systemic inflammatory response, chickens were

injected i.p. with a sublethal dose of LPS (3 ml of 100 mg LPS/L).

The reaction to LPS is a well-characterized innate immune response

[19]. Whether hosts were fed MOS or VIRG, LPS caused

symptoms of drowsiness, lethargy, ruffled feathers, moderate

diarrhea, starvation and withdrawal from water at 6 h post-LPS

injection, thus demonstrating success of our challenge model. These

clinical signs of innate immune response were most evident around

8 h after LPS injection. Clinical and behavioral changes due to LPS

injection have previously been reported in different animal species,

including chickens [9]. No signs of inflammatory responses were

observed among non-challenged control hosts. To assess patholog-

ical changes further, body temperatures were measured at 0, 2, 4, 6,

8, 12, 24 and 48 h post-LPS injection. Body temperature was

similar among all hosts prior (0 h) to LPS challenge (Figure S1A).

But, LPS markedly increased body temperatures of MOS- and

VIRG-fed hosts after 4 h of LPS challenge, and this effect persisted

through 24 h (Figure S1A and B). After 48 h, however, all hosts

regained their homeostatic state after termination of inflammatory

responses (Figure S1A and B).

LPS reduced feed intake and bodyweight gain, and
increased liver weight in antibiotic- and MOS-fed
chickens

LPS markedly reduced feed intake at 12 h (Figure S2A), but not

at 24 and 48 h, post-challenge despite VIRG and MOS

supplementations. In addition, LPS’s effects in reducing feed

consumption and inducing profuse diarrhea at 12 h led to severe

loss in BW gain (growth) (Figure S3A and C). However, depressed

BW gain persisted through 24 and 48 h post-LPS challenge. On

the other hand, increased liver weights were observed at 12 and

24 h among LPS-challenged hosts (Figure S4A and C). But, the

more profound increase in liver weights that occurred after 12 h

rather than 24 h (+0.66% vs +0.40% of BW) indicated that higher

liver metabolic activities might have occurred at 12 h post-LPS

challenge responsive to host’s higher energy demands. Moreover,

given the similarities in body temperatures, feed intake, and liver

weights between LPS-challenge and non-challenge control hosts, it

is clear that inflammatory responses were abated at 48 h post-LPS

challenge. All of these findings indicated that inflammatory

responses were more intense earlier than 24 h post-LPS challenge.

Therefore, based on the similarity in feed intake, depressed growth

and increased liver weights, but persistence in elevated body

temperatures, we concluded that 24 h post-LPS treatment

corresponded to late inflammation.

Main Effects: LPS increased innate immune responses
Our results revealed that LPS significantly increased innate

immune responses in intestinal tissues (Table 1) characterized by

IL-3 up-regulation, and down-regulation of the gene for zinc

finger CCCH-type containing 15 (ZC3H15), which negatively

regulates macrophage activation [20]. Additionally, the gene

coding for the signal transducer and activator of transcription 2

(STAT2), a signaling pathway that augments macrophage’s

phagocytic activities against pathogenic bacteria by inducing

inducible nitric oxide synthase (iNOS) and lysosomal enzymes

[21], was induced in the liver. But, down-regulation of genes were

observed for TLR 2 precursor (TLR2-2) that also recognizes and

binds LPS [22], gallinacin-1 alpha (Gal-1), a wide spectrum

antimicrobial peptide functionally equivalent to human b-

defensins [23], and putative CXCR1, an IL-8 receptor that binds

the IL-8 chemoattractant expressed by macrophages, monocytes

and neutrophils. Indeed, gene expression for 29–59-oligoadenylate

synthetase A (OAS*A), which is involved in viral RNA cleavage

inhibiting IFN-c-mediated viral infections [24], was intestinally
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down-regulated in the absence of viral infection. However,

differential immune gene expressions as observed in the intestines

and liver were not detected in muscle tissues.

Main Effects: LPS increased glucose mobilization and
modified fatty acid metabolism

During acute inflammation, starvation alters host’s carbohy-

drate, protein and fat metabolisms that are orchestrated by

synergistically-operated pro-inflammatory cytokines, to meet the

body’s energy requirements. Subsequent to rapid glucose absorp-

tion and oxidative utilization, blood glucose level is maintained by

liver glycogenolysis, catabolism of skeletal muscles that generates

and mobilizes amino acids for liver gluconeogenesis [12], [13], and

catabolism of adipose tissues that triggers liver lipolysis [14].

However, here, we observed that glucose mobilization occurred

differently during late inflammation than during immunologically

non-challenged conditions. LPS significantly increased intestinal

gluconeogenesis by increasing gene expression for phosphoenol-

pyruvate carboxykinase 1 (PEPCK), a key gluconeogenic enzyme

that synthesizes phosphoenolpyruvate from oxaloacetate (Table 1).

Evidently, intestinal glycolysis and cholesterol synthesis were

repressed as indicated by gene down-regulations for phosphopy-

ruvate hydratase (ENO2), which converts 2-phosphoglycerate into

phosphoenolpyruvate, and 3-hydroxy-3-methylglutaryl-CoA re-

Table 1. Genes identified as differentially expressed due to main LPS effects1.

Gene Gene symbol Gene ID Fold change P-value Gene regulation by LPS2

Intestine

Immune response

Interleukin 3 IL-3 474356 1.03 0.00328 +

Toll-like receptor 2 precursor TLR2-2 769014 0.98 0.00596 2

Zinc finger CCCH-type containing 15 ZC3H15 423992 0.98 0.03575 2

29–59 oligoadenylate synthetase A OAS*A 395908 0.96 0.02579 2

Gallinacin-1 alpha Gal-1 395841 0.99 0.09106 2

Metabolism

Phosphoenolpyruvate carboxykinase 1 PEPCK 396458 1.05 0.00497 +

Phosphopyruvate hydratase ENO2 395689 0.94 0.00018 2

3-hydroxy-3-methylglutaryl-CoA reductase HMGCR 395145 0.95 0.00004 2

Others

Myosin, heavy polypeptide 7, cardiac muscle MYH7 395350 1.03 0.01938 +

Actin alpha 2, smooth muscle, aorta ACTA2 423787 0.98 0.04217 2

Myosin light polypeptide 9 regulatory MYL9 396215 1.04 0.02469 +

Liver

Immune response

Signal transducer and activator of
transcription 2

STAT2 6773 1.04 0.00018 +

Putative CXCR1 isoform I and II
(IL-8 receptor)

CXCR1 430652 0.97 0.02406 2

Metabolism

Enoyl-CoA hydratase EHHADH 424877 1.05 0.00017 +

Protein phosphatase 1 PPP1R8 419564 1.03 0.00818 +

Malic enzyme 1 ME 374189 1.03 0.03684 +

59-AMP-activated protein kinase
gamma-2

PRKAG2 420435 1.03 0.00190 +

Others

Deiodinase Type 2 DIO2 373903 0.95 0.00043 2

Iroquois homeobox protein 1 IRX1 374185 1.05 0.00136 +

Potassium voltage-gated channel
shaker-related subfamily No 3

KCNA3 404303 1.06 0.00008 +

Skeletal muscle

Metabolism

6-phosphofructokinase (PFK-1) PFKM 374064 0.95 0.00001 2

Others

Atrial natriuretic factor precursor NPPA 395765 1.03 0.00005 +

1Pooled LPS-challenged hosts: MOS+VIRG (antibiotic) groups; The complete raw data have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.
nlm.nih.gov/projects/geo (accession no. GSE28959).

2+: up-regulated genes by LPS; 2: down-regulated genes by LPS.
doi:10.1371/journal.pone.0030323.t001
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ductase (HMGCR), which catalyzes the rate-limiting step in the

mevalonate pathway converting 3-hydroxy-3-methylglutaryl-CoA

(HMG-CoA) into mevalonate [25], respectively. The high rates of

glucose synthesis and glucose trafficking across intestinal epithelial

cells enhanced intestinal contractions as indicated by myosin heavy

polypeptide 7 cardiac muscle (MYH7) and myosin light polypeptide 9

regulatory (MYL9) up-regulations [26]. Contrary to expectations,

gluconeogenesis did not occur in the liver. Intriguingly, LPS up-

regulated genes coding for malic enzyme (ME), a key enzyme

involved in fatty acid synthesis catalyzing the oxidative decarbox-

ylation of malate to pyruvate, NADPH and carbon dioxide [27],

and enoyl-CoA hydratase (EHHADH), a key enzyme involved in

b-oxidation of fatty acids [28]. Therefore, metabolic energy to

support late inflammation was derived mostly from increased fatty

acid de-novo biosynthesis followed by its catabolism. Unexpectedly,

LPS up-regulated gene for 59-AMP-activated protein kinase

gamma 2 (PRKAG2), a low energy sensor that represses acetyl-

CoA carboxylase and HMG-CoA reductase to inhibit fatty acid

and cholesterol biosynthesis, respectively [29]. In muscle tissues,

down-regulation of the gene for 6-phosphofructokinase (PFKM), a

regulatory enzyme that converts fructose-6-phosphate into fruc-

tose-1,6-biphosphate, suppressed the glycolytic pathway, whereas

atrial natriuretic factor precursor (NPPA) up-regulation caused vasodi-

latation to increase blood flow [30]. Taken together, all these

findings reveal a clear disassociation between glucose mobilization

and the biosynthesis and b-oxidation of fatty acids. These

discrepancies could be attributed to MOS’s immune-stimulatory

effects among non-challenged control hosts, as discussed later.

MOS increased innate immune responses in non-
challenged control chickens

Because MOS increases Salmonella and E. coli clearance of the

intestines [5], we thought that MOS may suppress innate immune

responses under inflammatory conditions rather than VIRG

thereby reducing catabolism of body reserves. However, MOS

significantly increased innate immune responses among non-

challenged control hosts than VIRG. For instance, several innate

immune genes were induced by MOS in the intestines, including

IL-3, TLR-3, TLR2-2 and Gal-1 (Table 2). Moreover MOS up-

regulated liver genes for putative CXCR1, IL 13 receptor alpha 2

(IL13RA2), which is a specific IL-13 receptor, and CD3

glycoprotein (CD3), which increases T cell activation and signaling

of humoral immunity [31]. But, STAT2 was down-regulated.

MOS increased glucose mobilization and metabolism in
non-challenged control chickens

Augmentation in immune responses by MOS among non-

challenged control hosts significantly increased glucose mobilization

and metabolism. MOS down-regulated the gene for heat shock

protein 1 (HSPE1), which folds and activates newly synthesized

linear proteins into functional 3-D proteins [32]; thus, deactivated

proteins were increasingly utilized in intestinal gluconeogenesis as

mediated by PEPCK up-regulation (Table 2). Increased intestinal

contractions, in part due to increased glucose absorption across

epithelial cells, were mediated by MYH7 up-regulation but not

MYH11 and MYL9. Correspondingly, NPPA was up-regulated to

ascertain high glucose flux into the liver via the hepatic portal vein.

Therefore, to increase the glucose-uptake capacity of liver cells,

MOS induced the gene for deiodinase type 2 (DIO2), reported to

reduce insulin resistance by increasing intracellular triiodothyronine

(T3) levels [33]. Furthermore, down-regulation of potassium voltage-

gated channel shaker-related subfamily 3 (KCNA3) significantly increased

insulin-stimulated glucose uptake through the GLUT4 glucose

transporter, as reported by [34]. As evidenced by ENO2 up-

regulation, high liver glucose increased liver glycolytic activities for

energy generation. ME and EHHADH down-regulations repressed

liver fatty acid biosynthesis and b-oxidation, respectively. There-

fore, elevated intestinal gluconeogenesis and liver glycolysis were

sufficient to meet the host’s energy demands.

LPS mediated innate immune responses differently
within MOS and antibiotic chicken groups

So far, we reported inherent immune-stimulatory effects due to

independent LPS and MOS treatments. Therefore, simultaneous

administration of these treatments was expected to intensify the

inflammatory responses. Interestingly, however, our results

revealed that MOS counteracted the detrimental effects of LPS

on innate immunity. Although we observed intestinal down-

regulation of the gene for IL-10, an anti-inflammatory cytokine

that causes negative-feedback on secretions of pro-inflammatory

cytokines [35], neither IL-3, as observed due to LPS (Table 1)

treatment alone, nor any other pro-inflammatory cytokines were

induced (Table 3). To further support MOS’s effect in alleviating

inflammatory responses, we observed down-regulations of TLR2-

2, TLR-3 and OAS*A, and IL13RA2 and CD3 in intestinal and liver

tissues, respectively. In MOS-fed hosts, innate immune responses

after LPS challenge were principally mediated by ZC3H15 down-

regulation that enhanced macrophage activation. In VIRG hosts,

however, intestinal IL-3 and TLR-3 up-regulations (Table 4)

revealed higher LPS-induced inflammatory responses.

LPS mobilized energy differently within MOS and
antibiotic chicken groups

To further evidence that MOS reduced innate immune

responses, here we report that LPS failed to induce gluconeogen-

esis or any other major nutrient mobilization processes among

MOS-fed hosts (Table 3). Previously, however, we observed

increased intestinal gluconeogenesis due to LPS in the absence of

MOS (Table 1). These results, together with reduced liver glucose

uptake mediated by DIO2 down-regulation and KCNA3 up-

regulation, led us to believe that liver glucose levels were

sufficiently high to meet the host’s energy demands. However,

reduced glycolytic activities, due to ENO2 down-regulation,

demonstrated that liver glucose levels were abnormally low.

Intriguingly, despite reduced glycolysis, we observed up-regulation

of the gene for ATP citrate synthase (CS), which catalyzes citrate

synthesis from acetyl Co-A and oxaloactetate. Given that citrate is

the key regulatory substrate of the TCA cycle, our results indicated

that host’s energy demands were likely met mainly via the TCA

cycle. We also observed that glucose utilization for energy caused

down-regulation of UDP glucose pyrophosphorylase 2 (UGP2), which

reduces liver glycogen synthesis [36], whereas PRKAG2 up-

regulation repressed fatty acid and cholesterol biosynthesis.

Finally, MOS down-regulated the gene for a-actin 2 in intestinal

smooth muscles (ACTA2) that reduced intestinal contractions

[37], whereas MYH11 and MYL9 were up-regulated. Down-

regulation of HMGCR repressed intestinal cholesterol synthesis.

Contradictorily, despite VIRG supplementation, LPS challenge

profoundly increased gluconeogenesis, as indicated by PEPCK up-

regulation in the intestines (Table 4). Evidently, MYH7 was up-

regulated whereas ENO2 and HMGCR were down-regulated to

suppress intestinal glycolysis and cholesterol synthesis, respectively.

But, high glucose influx into the liver increased glycolytic activities

through ENO2 up-regulation. Therefore, glucose metabolites were

most increasingly utilized in TCA cycle for energy generation.

Surprisingly, CS was down-regulated and citrate was instead
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utilized in fatty acid biosynthesis, as demonstrated by increased

expressions of genes for ATP citrate lyase (ACLY), which catalyzes

citrate cleavage into acetyl Co-A and oxaloacetate [38], [39], ME

and fatty acid synthetase (FAS; as shown in Figure 1A). PFKM

down-regulation and NPPA up-regulation occurred in muscle

tissues of both MOS- and VIRG-fed hosts.

MOS increased innate immune responses in LPS-
challenged chickens

In comparisons to LPS-challenged hosts fed VIRG, the additive

immune stimulatory effects of LPS and MOS significantly

increased innate immune responses as demonstrated by intestinal

IL-3 up-regulation, and down-regulation of IL-10 and ZC3H15

(Table 5). But, TLR-3, the corresponding receptor to IL-3, was

repressed in the intestines. STAT2 was up-regulated in the liver.

MOS mobilized energy differently than antibiotic in LPS-
challenged chickens

Despite increased immune responses in LPS-challenged hosts

fed MOS, these chickens faced no detrimental nutrient mobiliza-

tion processes when compared to LPS-injected hosts fed VIRG.

Intestinal gluconeogenesis did not occur although newly-synthe-

Table 2. Genes identified as differentially expressed due to MOS in non-challenged control hosts1.

Gene Gene symbol Gene ID Fold change P-value
Gene regulation by
MOS2

Intestine

Immune response

Interleukin 3 IL-3 474356 1.05 2.98E-05 +

Toll-like receptor 3 TLR3 422720 1.04 0.00687 +

Toll-like receptor 2 precursor TLR2-2 769014 1.03 0.00984 +

29–59 oligoadenylate synthetase A OAS*A 395908 1.15 0.00000 +

Gallinacin-1 alpha Gal-1 395841 1.03 0.00145 +

Metabolism

Phosphoenolpyruvate carboxykinase 1 PEPCK 396458 1.11 0.00007 +

Others

Myosin, heavy polypeptide 7, cardiac muscle MYH7 395350 1.04 0.01797 +

Secreted protein acidic cysteine-rich SPARC 386571 0.94 0.00023 2

Myosin, heavy chain 11, smooth muscle MYH11 396211 0.87 0.00000 2

Heat shock 10 kDa protein 1 HSPE1 395948 0.90 0.00057 2

Myosin light polypeptide 9 regulatory MYL9 396215 0.93 0.00117 2

Atrial natriuretic factor precursor NPPA 395765 1.05 0.00005 +

Iron regulatory protein 1 IRP1 373916 0.92 0.00000 2

Liver

Immune response

Interleukin 13 Receptor Alpha 2 IL13RA2 422219 1.05 0.00002 +

Signal transducer and activator of transcription 2 STAT2 6773 0.97 0.02042 2

Putative CXCR1 isoform I and II (IL-8 receptor) CXCR1 430652 1.07 0.00018 +

CD3 glycoprotein CD3D 396518 1.04 0.00010 +

Metabolism

Enoyl-CoA hydratase EHHADH 424877 0.95 0.01192 2

Protein phosphatase 1 PPP1R8 419564 0.97 0.04035 2

Phosphopyruvate hydratase ENO2 395689 1.05 0.00362 +

Malic enzyme 1 ME 374189 0.96 0.05583 2

Others

Deiodinase Type 2 DIO2 373903 1.05 0.02708 +

Potassium voltage-gated channel shaker-related
subfamily No 3

KCNA3 404303 0.95 0.00649 2

Skeletal muscle

Others

NK2 transcription factor related locus 5 NKX2-5 396073 1.18 0.00000 +

Desmin DES 395906 0.89 0.00011 2

1Control hosts: MOS-fed chickens v/s VIRG-fed chickens; The complete raw data have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.
nih.gov/projects/geo (accession no. GSE28959).

2+: up-regulated genes by MOS; 2: down-regulated genes by MOS.
doi:10.1371/journal.pone.0030323.t002
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sized proteins were deactivated by HSPE1 down-regulation

(Table 5). Again, our results about CS up-regulation demonstrate

that energy was essentially derived from increasingly synthesized

citrate in the liver. Under the effects of LPS, MOS repressed

glycogen synthesis by down-regulating UGP2; glycolysis by down-

regulating ENO2; fatty acids biosynthesis by down-regulating

Table 3. Genes identified as differentially expressed due to LPS within MOS-fed hosts1.

Gene Gene symbol Gene ID Fold change P-value Gene regulation by LPS2

Intestine

Immune response

Interleukin 10 IL-10 428264 0.97 0.00343 2

Toll-like receptor 3 TLR3 422720 0.95 0.00024 2

Toll-like receptor 2 precursor TLR2 -2 769014 0.96 0.00036 2

Zinc finger CCCH-type containing 15 ZC3H15 423992 0.95 0.00012 2

29–59-oligoadenylate synthetase A OAS*A 395908 0.82 0.00000 2

Gallinacin-1 alpha Gal-1 395841 0.96 0.00013 2

Metabolism

Phosphopyruvate hydratase ENO2 395689 0.93 0.00434 2

3-hydroxy-3-methylglutaryl-CoA
reductase

HMGCR 395145 0.95 0.00338 2

Others

Secreted protein acidic cysteine-rich SPARC 386571 1.04 0.01425 +

Myosin, heavy chain 11, smooth muscle MYH11 396211 1.10 0.00015 +

Actin alpha 2, smooth muscle, aorta ACTA2 423787 0.94 0.00006 2

Myosin light polypeptide 9 regulatory MYL9 396215 1.10 0.00006 +

Iron regulatory protein 1 IRP1 373916 1.04 0.01284 +

Liver

Immune response

Interleukin 13 Receptor Alpha 2 IL13RA2 422219 0.97 0.00431 2

Signal transducer and activator of
transcription 2

STAT2 6773 1.07 0.00000 +

Putative CXCR1 isoform I and II
(IL-8 receptor)

CXCR1 430652 0.93 0.00007 2

CD3 glycoprotein CD3D 396518 0.98 0.04308 2

Metabolism

UDP Glucose Pyrophosphorylase 2 UGP2 373900 1.00 0.00492 2

Enoyl-CoA hydratase EHHADH 424877 1.10 0.00000 +

Protein phosphatase 1 PPP1R8 419564 1.06 0.00017 +

Phosphopyruvate hydratase ENO2 395689 0.91 0.00000 2

ATP citrate synthase CS 1431 1.07 0.00092 +

59-AMP-activated protein kinase
gamma-2

PRKAG2 420435 1.07 0.00001 +

Others

Deiodinase Type 2 DIO2 373903 0.94 0.00134 2

Iroquois homeobox protein 1 IRX1 374185 1.09 0.00001 +

Endothelial PAS domain protein 1 EPAS1 395596 1.10 0.00033 +

Potassium voltage-gated channel
shaker-related subfamily No 3

KCNA3 404303 1.13 0.00000 +

Skeletal muscle

Metabolism

6-phosphofructokinase (PFK-1) PFKM 374064 0.95 0.00058 2

Others

Atrial natriuretic factor precursor NPPA 395765 1.03 0.00417 +

1Hosts fed MOS: LPS-challenged v/s non-challenged controls; The complete raw data have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.
nlm.nih.gov/projects/geo (accession no. GSE28959).

2+: up-regulated genes by LPS; 2: down-regulated genes by LPS.
doi:10.1371/journal.pone.0030323.t003
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Table 4. Genes identified as differentially expressed due to LPS within antibiotic-fed hosts1.

Gene Gene symbol Gene ID Fold change P-value
Gene regulation by
LPS2

Intestine

Immune response

Interleukin 3 IL-3 474356 1.04 0.00404 +

Toll-like receptor 3 TLR3 422720 1.03 0.01264 +

29–59-oligoadenylate synthetase A OAS*A 395908 1.13 0.00000 +

Metabolism

Phosphoenolpyruvate carboxykinase 1 PEPCK 396458 1.12 0.00002 +

Phosphopyruvate hydratase ENO2 395689 0.94 0.01255 2

3-hydroxy-3-methylglutaryl-CoA reductase HMGCR 395145 0.95 0.00369 2

Others

Myosin, heavy polypeptide 7, cardiac muscle MYH7 395350 1.03 0.04746 +

Myosin, heavy chain 11, smooth muscle MYH11 396211 0.92 0.00094 2

Atrial natriuretic factor precursor NPPA 395765 1.03 0.00679 +

Iron regulatory protein 1 IRP1 373916 0.96 0.02641 2

Liver

Metabolism

ATP citrate lyase ACLY 395373 1.04 0.04584 +

Phosphopyruvate hydratase ENO2 395689 1.05 0.00869 +

Malic enzyme 1 ME 374189 1.06 0.01385 +

ATP citrate synthase CS 1431 0.96 0.03024 2

Skeletal muscle

Metabolism

6-phosphofructokinase (PFK-1) PFKM 374064 0.95 0.00246 2

Others

Atrial natriuretic factor precursor NPPA 395765 1.03 0.00416 +

1Hosts fed antibiotic (VIRG): LPS-challenged v/s non-challenged controls; The complete raw data have been deposited in the Gene Expression Omnibus (GEO) database,
www.ncbi.nlm.nih.gov/projects/geo (accession no. GSE28959).

2+: up-regulated genes by LPS; 2: down-regulated genes by LPS.
doi:10.1371/journal.pone.0030323.t004

Figure 1. RT-qPCR validation of microarray data. LPS up-regulated liver ACLY, ME and FAS among VIRG-fed hosts (A). But, LPS down-regulated
these genes in MOS- than VIRG-fed host (B). Intestinal PEPCK was up-regulated among control hosts fed MOS (C), and by LPS among VIRG-fed hosts
(D). Data are presented as mean 6 SEM (n = 6). *, P,0.01 by Scheffe’s t test.
doi:10.1371/journal.pone.0030323.g001
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ACLY, ME and FAS (Table 5 and Figure 1B); and cholesterol

biosynthesis by up-regulating PRKAG2. Liver KCNA3 was up-

regulated in the absence of high glucose influx. Indeed, these

findings are very similar to those observed when comparing MOS-

fed hosts in the LPS-challenged and non-challenged control

groups.

Real-time quantitative PCR and liver metabolite
measurements

To confirm our microarray data, we performed quantitative

RT-qPCR analysis on three differentially expressed genes, and

measured concentrations of specific liver metabolites. Figure 1

and Tables 2, 4 and 5 show that PEPCK, ACLY and ME

expression patterns correlated strongly with microarray results.

Moreover liver citrate and pyruvate levels were in agreement with

gene expression results (Figure 2). FAS, not present on the array

utilized in this study, expression (Figure 1) was determined by

RT-qPCR. All RT-qPCR efficiency (E) values were in between

93 to 100%.

Discussion

Molecular events underlying late inflammation and subsequent-

ly nutrient mobilization, in response to pathogens or antigens, are

still not clear. Interestingly, at 24 h post-LPS challenge, micro-

array results revealed that innate immune responses were

principally mediated by IL-3, a pro-inflammatory cytokine that

has received little scientific investigations, together with other

innate immune mediators (Table 1). Few studies reported IL-3 as

playing key roles in linking innate and adaptive immunity. IL-3 is

critical for the differentiation of monocytes into dendritic cells, and

contributes in proliferation and survival of dendritic cells [40];

dendritic cells are involved in Th cell response. While IL-1 and IL-

6 were consistently up-regulated during intense inflammatory

responses in poultry [41] and mice [42], here we report that these

Table 5. Genes identified as differentially expressed due to LPS between MOS- and antibiotic-fed hosts1.

Gene Gene symbol Gene ID Fold change P-value Gene regulation by MOS2

Intestine

Immune response

Interleukin 3 IL-3 474356 1.03 0.00871 +

Interleukin 10 IL-10 428264 0.96 0.00028 2

Toll-like receptor 3 TLR3 422720 0.96 0.00053 2

Zinc finger CCCH-type containing 15 ZC3H15 423992 0.96 0.00100 2

29–59-oligoadenylate synthetase A OAS*A 395908 0.84 0.00000 2

Gallinacin-1 alpha Gal-1 395841 0.98 0.03227 2

Others

Actin alpha 2 smooth muscle aorta ACTA2 423787 0.94 0.00017 2

Heat shock 10 kDa protein 1 HSPE1 395948 0.92 0.00756 2

Liver

Immune response

Signal transducer and activator of
transcription 2

STAT2 6773 1.03 0.02089 +

Metabolism

UDP Glucose Pyrophosphorylase 2 UGP2 373900 0.92 0.00009 2

ATP citrate lyase ACLY 395373 0.93 0.00017 2

Phosphopyruvate hydratase ENO2 395689 0.91 0.00000 2

Malic enzyme 1 ME1 374189 0.92 0.00012 2

ATP citrate synthase CS 1431 1.11 0.00000 +

59-AMP-activated protein kinase
gamma-2

PRKAG2 420435 1.05 0.00290 +

Others

Iroquois homeobox protein 1 IRX1 374185 1.06 0.00268 +

Endothelial PAS domain protein 1 EPAS1 395596 1.09 0.00158 +

Potassium voltage-gated channel
shaker-related subfamily No 3

KCNA3 404303 1.07 0.00045 +

Skeletal muscle

Others

NK2 transcription factor related
locus 5

NKX2-5 396073 1.14 0.00000 +

1LPS-challenged hosts: MOS-fed chickens v/s VIRG-fed chickens; The complete raw data have been deposited in the Gene Expression Omnibus (GEO) database, www.
ncbi.nlm.nih.gov/projects/geo (accession no. GSE28959).

2+: up-regulated genes by MOS; 2: down-regulated genes by MOS.
doi:10.1371/journal.pone.0030323.t005
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pro-inflammatory cytokines were not differentially expressed

during late inflammation. These results evidenced that inflamma-

tion is a time-dependent biological immune reaction, regulated by

different immune mediators. Most interestingly, our results

revealed that dietary MOS modulated innate immune responses

and nutrient metabolisms differently than VIRG.

Our finding that MOS increased immune responses of non-

challenged control hosts, but here principally mediated by

intestinal IL-3, is consistent with published data [43-45], thereby

revealing its inherent immune-stimulatory properties. Although

the mechanism by which MOS inherently stimulates immunity is

unclear, it may be associated with the antigenic properties of yeast

cell walls. In contrast, VIRG did not confer such immune

stimulatory effects because antibiotics lack antigenic properties.

During immune stimulation, an energy-demanding biological

process, and the consequential reduction in feed intake, the host’s

metabolic activities were coordinately regulated to increase energy

availability for metabolism. Liver gluconeogenesis, involving

muscle catabolism, usually occurs during intense inflammation

and starvation [12]. However, here, we observed that gluconeo-

genesis occurred only in the intestines. Additionally, during the

process of glucose synthesis, the preferential utilization of amino

acids from ingested feed spared skeletal muscle catabolism.

Glucose, mobilized to the liver, was then rapidly metabolized via

increased glycolytic activities to meet host’s elevated energy

demands during the inflammatory response (summarized in

Figure 3). Nevertheless, as previously reported [6], [46], MOS’s

immune-stimulatory effects did not profoundly mobilize glucose

and had no detrimental effects on feed intake or growth.

Both LPS and MOS triggered elevated innate immune

responses and glucose mobilization. However, our results that

none of the pro-inflammatory cytokines were up-regulated due to

continual MOS intake followed by LPS challenge (Tables 3 and

S1, S2, S3) revealed that MOS counteracted LPS’s detrimental

effects on immunity. We also observed that energy demands of

hosts fed MOS were sufficiently met by increased TCA cycle-

derived energy. Contrastingly, VIRG failed to counteract or

reduce LPS’s inflammatory effects, as indicated by increased IL-3

expression (Table 4). The higher energy demands of VIRG hosts

necessitated glucose mobilization through intestinal gluconeogen-

esis and increased liver glycolytic activities. Based on these

findings, we conclude that dietary MOS helped terminate LPS-

induced inflammation earlier than VIRG. This beneficial effect of

MOS may be explained by its inherent immune-stimulatory

properties that caused mild immune stimulation, thereby ‘arming’

the body’s defense mechanisms to rapidly and efficiently clear the

endotoxin.

However, increased TCA activities surprisingly occurred among

hosts fed MOS despite their reduced glycolytic activities. Although

fatty acid and cholesterol synthesis genes are coordinately down-

regulated during LPS-triggered systemic inflammation [47], we

observed increased liver de novo fatty acid synthesis among hosts fed

VIRG despite increased intestinal gluconeogenesis and liver

glycolysis. Generally, fatty acid synthesis, which converts excess

energy into energy reserves, occurs only when dietary carbohy-

drate intake exceeds immediate energy requirements. But, we

observed a reduction in feed intake due to LPS challenge. Because

inflammation is a dynamic biological immune reaction, molecular

events at 24 h post-LPS challenge are a consequence of earlier

immunological events. To help explain these apparently conflict-

ing observations, we will briefly consider nutrient mobilization

during intense inflammation. Whereas glycogenolysis and gluco-

neogenesis are frequently reported during intense inflammation,

significant mobilization and catabolism of glucose may have

significantly increased liver glucose and its glucose metabolites,

including acetyl Co-A, pyruvate and citrate, levels in both MOS-

and VIRG-fed hosts. In the absence of innate immune responses

at 24 h post-LPS challenge, increased activity of CS, a key enzyme

involved in TCA cycle, revealed that energy demands of MOS-fed

hosts were mainly derived from liver glucose/glucose metabolites

that accumulated earlier. Evidently, intestinal gluconeogenesis and

liver glycolysis were not necessary and repressed (summarized in

Figure 4).

In VIRG-fed hosts, however, elevated innate immune responses

at 24 h post-LPS challenge required higher energy. Insufficient

energy derived from accumulated liver glucose/glucose metabolites

Figure 2. Concentrations of liver metabolites. Among VIRG-fed hosts, LPS reduced liver citrate, but increased pyruvate levels (A). However,
higher citrate and lower pyruvate levels were observed in liver of LPS-challenged hosts fed MOS than VIRG (B). Data are presented as mean 6 SEM
(n = 6). *, P,0.05, **, P,0.01 by Scheffe’s t test.
doi:10.1371/journal.pone.0030323.g002

Yeast Cell Wall Anti-Inflammatory Effects

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e30323



necessitated further glucose mobilization and catabolism through

intestinal gluconeogenesis and liver glycolysis, respectively. Howev-

er, as evidenced by ACLY up-regulation, exceptionally high liver

citrate levels, which accumulated during intense inflammation,

triggered CS down-regulation. Citrate is well recognized as a potent

allosteric negative-feedback inhibitor of CS activity and plays a

crucial role in liver metabolic activities. Evidently, to rapidly

catabolize and deplete the accumulated liver cytosolic citrate after

its efflux from the mitochondria where it is synthesized, (i) ACLY up-

regulation generated high acetyl Co-A levels, (ii) ME up-regulation

increased liver NADPH concentrations, (iii) whereas FAS up-

regulation synthesized palmitate, the major fatty acid that ultimately

yields long fatty acid chains, from acetyl Co-A, NADPH and

malonyl Co-A, which is synthesized from acetyl Co-A by acetyl Co-

A carboxylase (summarized in Figure 5). ACLY, ME and FAS are

key lipogenic enzymes that convert liver cytoplasmic citrate into

fatty acids. The preferential acetyl Co-A and NADPH utilization in

de novo fatty acid biosynthesis mediated by ACLY, ME and FAS up-

regulations is consistent with published reports [48]. In previously

fasted and refed rats and chickens, increased liver lipogenesis was

also mediated by ACLY, ME and FAS up-regulations [49], [50].

While increased glucose mobilization and decreased fatty acid

synthesis have frequently been reported during intense inflamma-

tion [47], [51], here we report that the liver rapidly metabolized

citrate into fatty acids to restore its citrate homoeostatic level during

late inflammation in addition to glucose mobilization for body

energy requirements.

In agreement with O’Hea and Leveille [52], we observed that

livers in chickens derived most of the NADPH required for fatty

acid synthesis from the ME reaction, whereas livers in rats

obtained about 65% of NADPH from the pentose phosphate

pathway [53]. Collectively, these findings indicate that significantly

more glucose was mobilized from the intestine and more glucose

metabolites accumulated in the liver of VIRG hosts during the

period of intense inflammation than MOS-fed hosts, and that

VIRG failed to terminate innate immune responses earlier. But,

when challenged with LPS, we observed an elevation in innate

immune responses, principally mediated by intestinal IL-3, among

hosts fed MOS than VIRG. Although these results were not

surprising considering the additive immune-stimulatory effects of

MOS and LPS, no major nutrient mobilization processes occurred

among LPS-challenged hosts fed MOS (summarized in Figure 6).

TCA-derived energy from high liver glucose and glucose

metabolites which accumulated earlier than 24 h of LPS challenge

was sufficient to meet energy demands of the hosts fed MOS.

Livers and kidneys are well-recognized gluconeogenic organs in

humans and mice [54], [55]. Whereas the intestine is equivocally

reported as a gluconeogenic organ in mice [56], [57], we are

among the first to demonstrate that the chicken small intestine, but

not skeletal muscles, is also a gluconeogenic organ that was

regulated by PEPCK. We have discussed the increased intestinal

gluconeogenesis at 24 h post-LPS challenge. Given that MOS and

VIRG are not absorbed across the intestinal epithelium, these

macromolecules produce localized effects in the intestines.

Figure 3. Schematic illustration of the effects of MOS versus VIRG on glucose metabolism in control hosts. (i) MOS increased intestinal
gluconeogenesis by up-regulating PEPCK; (ii) the high glucose influx into the liver was rapidly metabolized by glycolysis as mediated by ENO2 up-
regulation; (iii) TCA-derived energy from glycolytic substrates, down-regulated ME and EHHADH which reduced fatty acid synthesis and b-oxidation,
respectively.
doi:10.1371/journal.pone.0030323.g003
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Therefore, all our findings evidenced cross talks between intestinal

mucosal immunity and systemic immunity. This is the first study

demonstrating that MOS can beneficially modulate innate

immunity and nutrient metabolism during late systemic inflam-

mation.

In summary, late inflammation was principally modulated by

IL-3. In contrast to antibiotics like VIRG, MOS elicited several

beneficial responses: (i) terminated Salmonella LPS-induced system-

ic inflammation earlier, presumably due to its inherent intestinal

innate immune-stimulatory properties; and (ii) reduced the

magnitude of glucose mobilization. Therefore, this study poten-

tiates the use of natural immuno-modulators, such as a MOS, to

attenuate Salmonella-induced systemic inflammation both among

human and animal hosts, and without posing the risk of antibiotic-

resistance development.

Materials and Methods

Chickens, experimental diets and LPS challenge
Hatched chicks (Cobb 500 broilers) were raised in two groups

(n = 64/group). In each bird group (8 cages/diet), half was fed a

diet containing MOS (2 kg/ton BioMosH; Alltech Inc., Nicholas-

ville, KY) or virginiamycin (16.5 mg/kg), as described [46]. To

induce an acute inflammatory response, group 1 hosts (n = 64)

were injected i.p. with 3 ml of Salmonella Typhimurium LPS

(100 mg LPS/L, Sigma-Aldrich, ON, Canada) whereas group 2

control hosts were saline-injected at 14 d of age. All animal

procedures were approved by the McGill Animal Care Committee

(protocol number 5399). All hosts had free access to feed and

water.

Bodyweight, feed intake and body temperature
measurements

All non-challenged control (saline-injected) and LPS-challenged

hosts were individually weighed at 0 (initial BW), 12, 24 and 48 h

post-injection to determine BW gain relative to initial BW.

Average feed consumption of chickens was calculated at similar

time points. Body temperatures were recorded after 0, 2, 4, 6, 8,

12, 24 and 48 h of saline or LPS injection using a thermocouple

rectal probe thermometer (Physitemp Instruments Inc., Clifton,

NJ).

Liver weights and tissue samples collection
Chickens (n = 8/diet/group) were randomly euthanized at 12,

24 and 48 h post-injection and liver weights of respective chickens

were expressed relative to their final BW. At 24 h after saline and

LPS injections, liver, intestine (jejunum) and skeletal muscle (breast

meat) samples (n = 6 /diet/group) were immediately snap frozen

in liquid nitrogen, and stored at 280uC for later RNA extraction.

Figure 4. Schematic illustration of MOS effects on glucose metabolism between control and LPS-challenged hosts. (i) LPS triggered no
major intestinal metabolic activities; (ii) in absence of glucose mobilization, liver glucose uptake and transport were repressed by DIO2 down-
regulation and KCNA3 up-regulation, respectively; (iii) glycolysis and glycogen synthesis were coordinately reduced by ENO2 and UGP2 down-
regulation, respectively; (iv) CS up-regulation increased TCA-derived energy from high liver pyruvate; (v) PRKAG2 up-regulation inhibited fatty acid
and cholesterol biosynthesis.
doi:10.1371/journal.pone.0030323.g004
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Microarray analysis
After 24 h, total RNA was extracted from liver, intestine

(jejunum) and skeletal muscle (breast) tissues using Trizol reagent

and Purelink RNA Mini Kit (Invitrogen). Isolated total RNA was

quantified on the basis of its absorption at 260 nm using a

NanodropH ND-1000 spectrophotometer (NanoDrop Technolo-

gies, Wilmington, DE), and visualized on an agarose gel to check

quality. RNA was retrotranscribed into Cy3 or Cy5 aminoallyl

labelled cDNA and hybridized onto chicken-specific focused

oligonucleotides microarrays. The microarray platform used

(accession number GPL13457) and data files (accession number

GSE28959) are registered at the MIAME compliant National

Centre for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) archive (http://ncbi.nlm.nih.gov/projects/geo).

Briefly, 70mers chicken-specific oligonucleotides, obtained from

Operon Biotechnologies Inc. (Germantown, MD), were spot

printed on UltraGAPS Amino-Silane Coated Slides (Corning

Inc., Acton, MA) as described [58]. Each oligonucleotide sequence

(probe) was replicated 12 times per array.

cDNA labeling and microarray hybridization
A total of 12 microarrays was used per tissue and chicken group

(n = 6/diet) in a 262 factorial design and complete interwoven

loop arrangement (Figure S5; [59]). First, RNA was retro-

transcribed into aminoallyl labelled cDNA using the ChipShot

Indirect Labelling and Clean-Up System Kit (Promega, Madison,

WI) and Cy3 or Cy5 fluorescent dye (Amersham Biosciences

Corp., Piscataway, NJ) according to the manufacturer’s recom-

mendations. Reverse transcription was carried out at 42uC for 2 h,

followed by RNase H digestion for 15 min at 37uC. Briefly, a

reactive amine derivative of 5-(3-aminoallyl)-29-deoxyuridine 59-

triphosphate was incorporated during reverse transcription.

Subsequent to reverse transcriptase reaction, succinimidyl esters

of Cy3 or Cy5 were covalently bonded to aminoallyl-labelled

cDNAs. Cy-3 and Cy-5 labelled cDNA were then purified,

combined and hybridized to the array for 24 h in darkness by

making use of the Pronto Plus! Microarray Hybridisation Kit

(Corning Inc., NY).

Microarray data analysis
Hybridized arrays were scanned twice at 65% (Cy3) and 50%

(Cy5) laser power using a ScanArray GX PLUS Microarray

Scanner (PerkinElmer Life and Analytical Sciences, Shelton, CT)

to obtain Cy3:Cy5 intensity ratios of labelled cDNA hybridized to

complementary oligonucleotide sequences on the array. Spot

intensity data were extracted using the ScanAlyze Software

(Standford University, Standford, CA) and analyzed using the

JMP Genomics software (SAS Institute Inc., Cary, NC). Data were

log2 transformed prior to normalization by using locally weighted

regression and smoothing, first within array (ratio analysis) and

then across arrays (Lowess normalization). Normalized data were

monitored by distribution analysis of the transformed data. Finally,

Figure 5. Schematic illustration of VIRG effects on glucose metabolism between control and LPS-challenged hosts. (i) LPS increased
intestinal gluconeogenesis by up-regulating PEPCK; (ii) mobilized glucose increased liver glycolytic activities through ENO2 up-regulation; (iii) CS
down-regulation reduced utilization of glycolytic substrates by the TCA cycle for energy; (iv) ACLY, ME and FAS up-regulations increased liver fatty
acid biosynthesis from high liver citrate.
doi:10.1371/journal.pone.0030323.g005
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the normalized log2 transformed data were analyzed using a two-

way ANOVA, as described [60]. Expression values were modeled

as: Yijklm = m+Ai+Cj+Dk+Il+DIkl+eijklm, where m represents the

overall mean value, Ai: random effect for arrays (i = 1, 2…..12), Cj:

main effect of Cy-dye (j = Cy-3 or Cy-5), Dk: main effect of diet

(k = MOS or VIRG), Il: main effect of injection (l = saline or LPS),

and DIkl: interaction effect between diet and injection, and eijklm:

random error. Mean intensities were tested using the false

discovery rate (FDR) multiple comparison t test and differentially

expressed genes were declared at P,0.05. Finally, for each

pairwise comparison, significantly different genes were filtered

based on their mean intensity values to determine up- or down-

regulated genes due to diet, injection and diet*injection.

Real-time quantitative PCR analysis
Real-time quantitative PCR (RT-qPCR) was used for validation

of differential gene expressions observed in microarrays. Total

RNA was retrotranscribed into cDNA by using 1 mg total RNA

and iScript cDNA Synthesis Kit (Bio-Rad, ON, Canada),

following the manufacturer’s instructions. RT-qPCR was per-

formed using the Bio-Rad CFX384 RT-qPCR Detection System,

SsoFast Evagreen Supermix (Bio-Rad) and primer-set sequences

(Table 6). RT-qPCR reactions were performed at 95uC for 5 min,

followed by 39 cycles of 95uC for 15 s and 60uC for 30 s. A

melting curve program was included at the end of each RT-qPCR

to verify presence of a unique product. Relative intestinal (PEPCK)

and liver (ACLY, ME, CS and FAS) gene expression levels were nor-

malized to GAPDH or beta-2 microglobulin, respectively. The expression

stability of the reference genes were tested using the geNorm software

(available at: http://medgen.ugent.be/,jvdesomp/genorm/). Sam-

ples were analyzed in technical duplicates, and differential gene

expressions were determined using the comparative standard curve

method.

Liver metabolites measurements
Liver citrate and pyruvate levels were measured by specific

enzymatic reactions using the Citrate and Pyruvate Assay Kits

(BioVision, CA, USA), following the manufacturer’s instructions

with few modifications. Briefly, 0.5 g of liver tissues were

homogenized completely by sonication in 700 mL of respective

buffer solutions and then centrifuged at 15,000 g for 10 mins to

remove cell debris. After the supernatant was deproteinized using

the Deproteinizing Sample Preparation Kit (BioVision), a 100 mL

sample volume was used for analysis. Reaction mix was prepared

without buffer dilution.

Statistical analysis
Except for microarray data, all data were analyzed as a two-way

ANOVA and a 262 factorial arrangement to determine the main

effects of diet and injection, and their interaction effects by using

Figure 6. Schematic illustration of LPS effects on glucose metabolism between MOS- and VIRG-fed hosts. (i) LPS caused no major
intestinal metabolic activities in MOS-fed hosts; (ii) in absence of liver glucose mobilization, KCNA3 was up-regulated, whereas ENO2 and UGP2 down-
regulation reduced glycolysis and glycogen synthesis, respectively; (iii) CS up-regulation increased TCA cycle-derived energy from high liver pyruvate;
(iv) ACLY, ME and FAS down-regulations inhibited liver fatty acid biosynthesis; whereas PRKAG2 up-regulation inhibited fatty acid and cholesterol
biosynthesis.
doi:10.1371/journal.pone.0030323.g006
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the MIXED procedure of SAS (SAS Institute, 2003). For

bodyweight, liver weight and body temperature data, a Nested

Model Design was also employed with cages nested within

diet*injection, as follows: Yijkl = m+Dieti+Injectionj+Dieti*Injec-

tionj+Cageijk+eijkl, where m represents the overall mean value,

Dieti: fixed effect of diet (i = MOS or VIRG), Injectionj: fixed

effect of injection (j = saline or LPS), Dieti * Injectionj: interaction

effect between diet and injection, Cageijk: random effect of cage

nested within diet*injection (k = 1,2,…8), and eijkl: random error.

Differences among treatment means were tested using Scheffe’s t

test and statistical significance declared at P,0.05.

Supporting Information

Figure S1 Innate immune-stimulatory effects of LPS caused

elevation in body temperatures. Antibiotic (VIRG)- and MOS-fed

hosts were injected i.p. with LPS. At 0, 2 and 48 h after injection,

body temperatures were not different between LPS-challenged

and non-challenged control (saline) hosts (A), or between VIRG-

and MOS-fed hosts within the LPS-challenged or control group,

respectively (B), or between hosts fed VIRG and MOS (C).

However, in comparison with control hosts, LPS significantly

increased (P,0.05) body temperatures at 4, 6, 8, 12 and 24 h post-

injection (A). But, such increase in body temperatures were not

observed between VIRG and MOS hosts within the LPS-

challenged or control group, respectively (B), or between VIRG-

and MOS-fed hosts irrespective of injection type (C). Results are

expressed as mean 6 SEM. Supercripts: (a,b) denote statistical

differences among treatment means at a particular time point,

P,0.05, Scheffe’s multi-comparison t-test.

(PDF)

Figure S2 The effects of LPS injected i.p. on feed intake in

antibiotic- (VIRG) and MOS-fed hosts. LPS significantly reduced

feed intake (P,0.05) at 12 h post-injection (A). However, feed intake

was not different between hosts fed the VIRG and MOS diet (B), or

between VIRG and MOS hosts within the LPS-challenged or non-

challenged control (saline) group, respectively (C). At 24 and 48 h

post-injection, feed intake was not different between LPS and

control hosts (A), hosts fed the VIRG and MOS diet (B), or between

VIRG and MOS hosts within the LPS-challenged or control group,

respectively (C). Results are expressed as mean 6 SEM. Supercripts:

(a,b) denote statistical differences among treatment means at a

particular time, P,0.05, Scheffe’s multi-comparison t-test.

(PDF)

Figure S3 The effects of LPS injected i.p. on bodyweight (BW)

gain in antibiotic- (VIRG) and MOS fed hosts. LPS significantly

reduced BW (P,0.05) after 12, 24 and 48 h of injection (A). In

contrast to MOS-fed hosts, those fed VIRG grew faster (P,0.05)

at 48 h only (B). But, BW gain was not different between VIRG

and MOS hosts within the LPS-challenged or non-challenged

control (saline) group, respectively (C). Results are expressed as

mean 6 SEM. Supercripts: (a,b) denote statistical differences

among treatment means at a particular time point, P,0.05,

Scheffe’s multi-comparison t-test.

(PDF)

Figure S4 The effects of LPS injected i.p. on liver weights of

antibiotic- (VIRG) and MOS fed hosts. LPS significantly increased

(P,0.05) liver weights at 12 and 24 h post-injection, but not after

48 h (A). However, at all times, liver weights were not different

between hosts fed the VIRG and MOS diet (B), or between VIRG

and MOS hosts within the LPS-challenged or non-challenged control

(saline) group, respectively (C). Results are expressed as mean 6 SEM.

Supercripts: (a,b) denote statistical differences among treatment

means at a particular time, P,0.05, Scheffe’s multi-comparison t-test.

(PDF)

Figure S5 Schematic of the 262 factorial experimental design in

an interwoven loop arrangement for each tissue (liver, intestine or

skeletal muscles). Diet6Injection is denoted as VC (VIRG6non-

challenged control hosts), VL (VIRG6LPS-challenged hosts), BC

(MOS6non-challenged control hosts), and BL (MOS6LPS-

challenged hosts). Each arrow represents an array (total: 12)

consisting of 2 aminoallyl labelled cDNA, either Cy-3 or Cy-5.

(PDF)

Table S1 Fold change and P values of gene expressions due to

prebiotic and antibiotic in intestinal tissues of non-challenged

control and LPS-challenged birds.

(XLSX)

Table S2 Fold change and P values of gene expressions due to

prebiotic and antibiotic in liver tissues of non-challenged control

and LPS-challenged birds.

(XLSX)

Table S3 Fold change and P values of gene expressions due to

prebiotic and antibiotic in skeletal muscle tissues of non-challenged

control and LPS-challenged birds.

(XLSX)
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Table 6. Primers-set sequences used to analyze gene expression by quantitative PCR.

Gene Forward primera Reverse primera
Amplicon
length (bp)

PubMed Accession
No.

PEPCK CTGCTGGTGTGCCTCTTGTA TTCCCTTGGCTGTCTTTCC 259 NM_205471

ACLY GGCGTGAATGAACTGGCTAAC TAGTCTTGGCATAGTCATAGGTCTGTTG 79 NM_001030540

ME TGCCAGCATTACGGTTTAGC CCATTCCATAACAGCCAAGGTC 175 NM_204303

FAS TGAAGGACCTTATCGCATTGC GCATGGGAAGCATTTTGTTGT 96 NM_205155

GAPDH TGCCATCACAGCCACACAGAAG ACTTTCCCCACAGCCTTAGCAG 123 NM_204305

Beta-2
microglobulin

AAGGAGCCGCAGGTCTA CTTGCTCTTTGCCGTCATAC 151 Z48921

aSequences are indicated from 59 end to 39 end of oligonucleotides.
doi:10.1371/journal.pone.0030323.t006

Yeast Cell Wall Anti-Inflammatory Effects

PLoS ONE | www.plosone.org 14 January 2012 | Volume 7 | Issue 1 | e30323



References

1. CDC (2011) Salmonella Serotype Enteritidis. Available at: http://www.cdc.gov/

nczved/divisions/dfbmd /diseases/salmonella_enteritidis/ Accessed: July 1,

2011.

2. Griffin AJ, McSorley SJ (2011) Development of protective immunity to

Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4:

371–382.

3. Zhao C, Ge B, De Villena J, Sudler R, Yeh E, et al. (2001) Prevalence of

Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey,

pork, and beef from the Greater Washington, D.C., area. Appl Environ

Microbiol 67: 5431–5436.

4. WHO (2011) Complacency kills. Antibiotic resistance still on the rise in Europe.

WHO raises the alert on World Health Day. World Health Organization

website (accessed 2011 Oct 3). Available: http://www.euro.who.int/en/what-

we-publish/information-for-the-media/sections/latest-press-releases/complacency-

kills.-antibiotic-resistance-still-on-the-rise-in-europe.

5. Ofek I, Beachey EH (1978) Mannose binding and epithelial cell adherence of

Escherichia coli. Infect Immun 22: 247–254.

6. Baurhoo B, Letellier A, Zhao X, Ruiz-Feria CA (2007) Cecal populations of

lactobacilli and bifidobacteria and Escherichia coli populations after in vivo

Escherichia coli challenge in birds fed diets with purified lignin or

mannanoligosaccharides. Poult Sci 86: 2509–2516.

7. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, et al. (1999) Cutting

edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to

lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol

162: 3749–3752.

8. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate

immunity. Cell 124: 783–801.

9. Xie H, Rath NC, Huff GR, Huff WE, Balog JM (2000) Effects of Salmonella

Typhimurium lipopolysaccharide on broiler chickens. Poult Sci 79: 33–40.

10. Harden LM, du Plessis I, Poole S, Laburn HP (2008) Interleukin (IL)-6 and IL-1

beta act synergistically within the brain to induce sickness behavior and fever in

rats. Brain Behav Immun 22: 838–849.

11. Doyle A, Zhang GH, Fattah EAA, Eissa NT, Li YP (2011) Toll-like receptor 4

mediates lipopolysaccharide-induced muscle catabolism via coordinate activa-

tion of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 25:

99–110.

12. Flores EA, Bistrian BR, Pomposelli JJ, Dinarello CA, Blackburn GL, et al. (1989)

Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the

rat. A synergistic effect with interleukin 1. J Clin Invest 83: 1614–1622.

13. Holecek M, Skopec F, Sprongl L, Pecka M (1995) Protein metabolism in specific

tissues of endotoxin-treated rats: effect of nutritional status. Physiol Res 44:

399–406.

14. Feingold KR, Staprans I, Memon RA, Moser AH, Shigenaga JK, et al. (1992)

Endotoxin rapidly induces changes in lipid metabolism that produce

hypertriglyceridemia: low doses stimulate hepatic triglyceride production while

high doses inhibit clearance. J Lipid Res 33: 1765–1776.

15. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the

pathogenesis of human disease. Nat Immunol 5: 975–979.

16. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, et al. (2011) Recognition of

peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity.

Nat Med 16: 228–231.

17. Galdeano CM, Nunez IN, de LeBlanc AD, Carmuega E, Weill R, et al. (2011)

Impact of a probiotic fermented milk in the gut ecosystem and in the systemic

immunity using a non-severe protein-energy-malnutrition model in mice. BMC

Gastroenterology 11: 64.

18. Stern CD (2005) The chick; a great model system becomes even greater. Dev

Cell 8: 9–17.

19. Lopez-Bojorquez LN, Dehesa AZ, Reyes-Teran G (2004) Molecular mecha-

nisms involved in the pathogenesis of septic shock. Arch Med Res 35: 465–479.

20. Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey

and expression profiling of CCCH-zinc finger family reveals a functional module

in macrophage activation. PLoS One 3: e2880.

21. Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P (2002) IFNs and

STATs in innate immunity to microorganisms. J Clin Invest 109: 1271–1277.

22. Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M (1998) Human toll-like

receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med

188: 2091–2097.

23. Hasenstein JR, Lamont SJ (2007) Chicken gallinacin gene cluster associated with

Salmonella response in advanced intercross line. Avian Dis 51: 561–567.

24. Behera AK, Kumar M, Lockey RF, Mohapatra SS (2002) 29–59 Oligoadenylate

synthetase plays a critical role in interferon-gamma inhibition of respiratory

syncytial virus infection of human epithelial cells. J Biol Chem 277:

25601–25608.

25. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature

343: 425–430.

26. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi XX, et al. (2009) A

family of microRNAs encoded by myosin genes governs myosin expression and

muscle performance. Dev Cell 17: 662–673.

27. Hillgartner FB, Charron T (1998) Glucose stimulates transcription of fatty acid

synthase and malic enzyme in avian hepatocytes. Am J Physiol 274: E493–501.

28. Waterson RM, Hill RL (1972) Enoyl coenzyme A hydratase (crotonase).

Catalytic properties of crotonase and its possible regulatory role in fatty acid

oxidation. J Biol Chem 247: 5258–5265.

29. Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the

key sensor of cellular energy status. Endocrinology 144: 5179–5183.

30. Nsenga R, Cheng L, Mei’an HE, Tangchun WU (2009) The role of natriuretic

peptide precursor A gene polymorphism in the development of coronary heart

disease in Chinese Han population. Front Med China 3: 437–442.

31. Letourneur F, Klausner RD (1992) Activation of T cells by a tyrosine kinase

activation domain in the cytoplasmic tail of CD3 epsilon. Science 255: 79–82.

32. Ostermann J, Horwich AL, Neupert W, Hartl FU (1989) Protein folding in

mitochondria requires complex formation with hsp60 and ATP hydrolysis.

Nature 341: 125–130.

33. Chidakel A, Mentuccia D, Celi FS (2005) Peripheral metabolism of thyroid

hormone and glucose homeostasis. Thyroid 15: 899–903.

34. Xu J, Wang P, Li Y, Li G, Kaczmarek LK, et al. (2004) The voltage-gated

potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad

Sci USA 101: 3112–3117.

35. Taylor A, Verhagen J, Blaser K, Akdis M, Akdis CA (2006) Mechanisms of

immune suppression by interleukin-10 and transforming growth factor-beta: the

role of T regulatory cells. Immunology 117: 433–442.

36. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, et al.

(2003) Control of glycogen deposition. FEBS Lett 546: 127–132.

37. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, et al. (2007) Mutations

in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and

dissections. Nat Genet 39: 1488–1493.

38. Cheema-Dhadli S, Halperin ML, Leznoff CC (1973) Inhibition of enzymes

which interact with citrate by (–)hydroxycitrate and 1,2,3,-tricarboxybenzene.

Eur J Biochem 38: 98–102.

39. Pearce NJ, Yates JW, Berkhout TA, Jackson B, Tew D, et al. (1998) The role of

ATP citrate-lyase in the metabolic regulation of plasma lipids - Hypolipidaemic

effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor

SB-201076. Biochemical J 334: 113–119.

40. Ebner S, Hofer S, Nguyen VA, Furhapter C, Herold M, et al. (2002) A novel

role for IL-3: human monocytes cultured in the presence of IL-3 and IL-4

differentiate into dendritic cells that produce less IL-12 and shift Th cell

responses toward a Th2 cytokine pattern. J Immunol 168: 6199–6207.

41. Kogut MH, He H, Kaiser P (2005) Lipopolysaccharide binding protein/CD14/

TLR4-dependent recognition of Salmonella LPS induces the functional activation

of chicken heterophils and up-regulation of pro-inflammatory cytokine and

chemokine gene expression in these cells. Anim Biotechnol 16: 165–181.

42. Park EJ, Lee JH, Yu GY, He GB, Ali SR, et al. (2010) Dietary and Genetic

Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6

and TNF Expression. Cell 140: 197–208.

43. Gao J, Zhang HJ, Yu SH, Wu SG, Yoon I, et al. (2008) Effects of yeast culture in

broiler diets on performance and immunomodulatory functions. Poult Sci 87:

1377–1384.

44. Gomez-Verduzco G, Cortes-Cuevas A, Lopez-Coello C, Avila-Gonzalez E,

Nava GM (2009) Dietary supplementation of mannan-oligosaccharide enhances

neonatal immune responses in chickens during natural exposure to Eimeria spp.

Acta Vet Scand 51: 11.

45. Szymanska-Czerwinska M, Bednarek D, Zdzisinska B, Kandefer-Szerszen M

(2009) Effect of tylosin and prebiotics on the level of cytokines and lymphocyte

immunophenotyping parameters in calves. Central Eur J Immunol 34: 1–6.

46. Baurhoo B, Ferket PR, Zhao X (2009) Effects of diets containing different

concentrations of mannanoligosaccharide or antibiotics on growth performance,

intestinal development, cecal and litter microbial populations, and carcass

parameters of broilers. Poult Sci 88: 2262–2272.

47. Yoo JY, Desiderio S (2003) Innate and acquired immunity intersect in a global

view of the acute-phase response. Proc Natl Acad Sci USA 100: 1157–1162.

48. Morral N, Edenberg HJ, Witting SR, Altomonte J, Chu T, et al. (2007) Effects of

glucose metabolism on the regulation of genes of fatty acid synthesis and

triglyceride secretion in the liver. J Lipid Res 48: 1499–1510.

49. Kochan Z, Karbowska J, Swierczynski J (1997) Unususal increase of lipogenesis

in rat white adipose tissue after multiple cycles of starvation-refeeding.

Metabolism 46: 10–17.

50. Wang PH, Ko YH, Chin HJ, Hsu C, Ding ST, et al. (2009) The effect of feed

restriction on expression of hepatic lipogenic genes in broiler chickens and the

function of SREBP1. Comp Biochem Physiol 153: 327–331.

51. Ceciliani F, Giordano A, Spagnolo V (2002) The systemic reaction during

inflammation: The acute-phase proteins. Protein and Peptide Letters 9:

211–223.

52. O’Hea EK, Leveille GA (1968) Lipogenesis in Isolated Adipose Tissue of

Domestic Chick (Gallus Domesticus). Comp Biochem Physiol 26: 111–120.

53. Flatt JP, Ball EG (1966) Studies on the metabolism of adipose tissue. XIX. An

evaluation of the major pathways of glucose catabolism as influenced by acetate

in the presence of insulin. J Biol Chem 241: 2862–2869.

54. Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, et al. (1998) Human

kidney and liver gluconeogenesis: evidence for organ substrate selectivity.

Am J Physiol 274: E817–826.

Yeast Cell Wall Anti-Inflammatory Effects

PLoS ONE | www.plosone.org 15 January 2012 | Volume 7 | Issue 1 | e30323



55. Eid A, Bodin S, Ferrier B, Delage H, Boghossian M, et al. (2006) Intrinsic

gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty
rats. J Am Soc Nephrol 17: 398–405.

56. Croset M, Rajas F, Zitoun C, Hurot JM, Montano S, et al. (2001) Rat small

intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50: 740–746.
57. Martin G, Ferrier B, Conjard A, Martin M, Nazaret R, et al. (2007) Glutamine

gluconeogenesis in the small intestine of 72 h-fasted adult rats is undetectable.
Biochem J 401: 465–473.

58. Druyan S, de Oliveira JE, Ashwell CM (2008) Focused microarrays as a method

to evaluate subtle changes in gene expression. Poult Sci 87: 2418–2429.
59. Garosi P, De Filippo C, van Erk M, Rocca-Serra P, Sansone SA, et al. (2005)

Defining best practice for microarray analyses in nutrigenomic studies. Br J Nutr

93: 425–432.
60. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, et al. (2001)

Assessing gene significance from cDNA microarray expression data via mixed
models. J Comput Biol 8: 625–637.

Yeast Cell Wall Anti-Inflammatory Effects

PLoS ONE | www.plosone.org 16 January 2012 | Volume 7 | Issue 1 | e30323


