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Abstract

Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the
isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of
metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to
understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods:
morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton
(utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing
nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites
of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes,
molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S.
glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S.
glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This
study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of
this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment
of this diverse soft coral genus.
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Introduction

Soft corals (Cnidaria: Anthozoa: Octocorallia) often equal or

exceed the total coverage of scleractinian corals in coral reef

ecosystems [1–4], and as dominant space-occupiers, important

structural components of coral reef communities, and contributors

to coral reef biomass [4,5], have been the subjects of biological

studies since the nineteenth century.

The subclass Octocorallia includes soft corals, gorgonians, and sea

pens. Most soft corals belong to the order Alcyonacea, which is

comprised of the families Xeniidae, Nephtheidae, and Alcyoniidae.

The family Alcyoniidae contains the genera Sinularia, Lobophytum and

Sarcophyton, and members of this group are among the dominant

benthic organisms in the coral reefs in Okinawa and other Pacific

Ocean areas [1,2,4,6]. Sarcophyton species are very hardy and are

dominant in many coral reef areas. Sarcophyton species are character-

ized by a distinct sterile stalk, a broad, flared, smooth, mushroom-

shaped top called a capitulum, and by the shape of their sclerites,

which are found in the interior coenenchymal tissue of the colony.

Most soft coral classification and identification has traditionally

been carried out by sclerite characterization. Verseveldt [7]

revised the classification of Sarcophyton after gross morphological

and microscopic examination of Sarcophyton species’ type speci-

mens. Since the taxonomic revision by Verseveldt [7], who

considered Sarcophyton to contain 35 valid species, an additional six

species of Sarcophyton have been described [8–13].

Recently, McFadden et al. [14] reported on the utility of

mitochondrial protein-coding gene MutS homolog (msh1) sequenc-

es for Sarcophyton and Lobophytum species identification. The study

showed that within Sarcophyton, specimens initially identified as

Sarcophyton glaucum by morphology could be divided into six very

distinct genetic clades, suggesting that this morphologically

heterogeneous species is actually a complex of cryptic species [14].

The soft coral genera Lobophytum and Sarcophyton are known to

have many secondary metabolites [15–17]. Secondary metabolites

in soft corals of Sarcophyton have been well characterized with the

advancement of instrumental analyses over the past four decades.

The soft coral egg-specific secondary metabolite PGA2 and some

diterpenes have been shown to cause contractions of soft coral

polyps and the expulsion of eggs during spawning [18], and similar

phenomenon by a secondary metabolite (sarcophytoxide) has been

reported from Sarcophyton glaucum [19]. These examples indicate
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one reproductive isolation factor may be due to chemical signals,

and that secondary metabolites may have important function. In

addition, some metabolites are toxic and used in competition for

space with scleractinian corals [20], and it is believed that

octocorals release chemical substances into the water as a

commonly used strategy to inhibit growth and survival of their

neighbors [21]. Furthermore, it is known in Sarcophyton glaucum that

secondary metabolites such as sarcophytoxide cause allelopathic

effects [19]. Thus, by focusing attention on secondary metabolites

it may be possible to better understand the environmental role of

soft corals in tropical waters.

One molecule, sarcophytol A, has attracted attention due to its

antitumor promoting activity [22]. As sarcophytol A was discovered

from Sarcophyton collected at Ishigaki Island, Okinawa, southern

Japan, researchers have investigated the chemical activity and three-

dimensional structure of the chemical [23–25]. Additionally, Koh et

al. [26] investigated the distribution of Sarcophyton species containing

sarcophytol A in Okinawa, and their study indicated that

composition of cembranoids in Sarcophyton is not related with

morphologically identified species. Subsequently, it was found that

two species, Sarcophyton trocheliophorum and Sarcophyton crassocaule,

appeared to be the source organisms of sarcophytol A [27], and not

only Sarcophyton glaucum as originally reported. During this study, it

was also noted that Sarcophyton glaucum’s chemical content varied to a

large degree and it was concluded there are at least nine chemotypes

within S. glaucum [27].

Thus, it is difficult to conclusively identify the source Sarcophyton

species of secondary metabolites from past studies’ data.

Furthermore, secondary metabolites obtained from marine

organisms are often derived from symbiotic algae and/or

symbiotic bacteria [28,29]. Sarcophyton spp. contain endosymbiotic

dinoflagellate zooxanthellae (Symbiodinium spp.), but no study has

yet examined whether there are any relations between soft coral

chemotype, genotype (molecular phylogenetic clade), and their

Symbiodinium, despite many studies demonstrating the diversity of

Symbiodinium spp. found within different coral reef invertebrate

hosts [30,31].

In order to more fully understand the relationship between

secondary metabolites and Sarcophyton species, in this study we

examined specimens from Okinawa, Japan utilizing three

methods; 1) novel morphological examination of sclerites, 2)

chemotype identification, and 3) phylogenetic examination of both

Sarcophyton (utilizing msh1 sequences) and their endosymbiotic

Symbiodinium spp. (ITS-rDNA sequences). From our results, we

examine the production pattern of secondary metabolites by

Sarcophyton species, and theorize on the mechanism behind such

varied secondary metabolite production in this soft coral genus.

Results

Molecular phylogeny using mitochondrial msh1
sequences

Most specimens’ sequences (n = 31) were found to clearly belong

to a genus Sarcophyton clade, while three specimens (Sunabe 1, 10,

and Mizugama 4) were classified into a mixed clade consisting of

previously reported sequences from both Sarcophyton and Lobophy-

tum specimens (Fig. 1). All sequences could be aligned unambig-

uously. Of the 31 ‘‘clear’’ Sarcophyton sequences, 13 sequences were

identified as being from Sarcophyton trocheliophorum, 16 from

Sarcophyton glaucum, one from Sarcophyton elegans, with the remaining

one sequence not assignable to any previously reported species

group. All putative Sarcophyton trocheliophorum specimens had exactly

the same sequence regardless of sampling location. Sarcophyton

glaucum has previously been divided into six phylogenetic clades A–

F [14], and specimens from this study belonged to four of these

clades: four sequences within clade B sensu McFadden et al. [14],

one within C, five within D, and six within F.

Major compound analyses: Cembrene diterpenes
In total eight cembranoid diterpenes were identified (chemo-

types 1–8) (Fig. 2). The abundance of each chemotype at each

collection site is shown in Table 1. Among the detected

chemotypes, 20 specimens of chemotype 1 (2S,7S,8S-sarcophyt-

oxide) were most abundant, followed by chemotype 2 (2S,7R,8R-

sarcophytoxide) and chemotype 3 (2S,7R,8R-isosarcophytoxide).

The cembrenes found from the 34 specimens were as follows:

chemotype 1 - 2S,7S,8S-sarcophytoxide, 20 specimens (Sunabe 1,

5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, Zanpa 1, 5, 9,

Mizugama 6, 8, 11); chemotype 2 - 2S,7R,8R-sarcophytoxide, six

specimens (Sunabe 1, 2, 5, 16, 17, Mizugama 7); chemotype 3 -

2S,7R,8R-isosarcophytoxide, three specimens (Sunabe 6, 19,

Mizugama 4); chemotype 4–7,8-epoxy-1,3,11-cembratrien-15-ol,

one specimen (Sunabe 1); chemotype 5 - Sarcophytol A, one

specimen (Mizugama 4); chemotype 6 - Emblide, two specimens

(Zampa 6, 10); chemotype 7 - 7-hydroxy-1,3,11-cembratrien-20,8-

olide, two specimens (Zampa 3, 4); chemotype 8 - 7S,8S-epoxy-

1,3,11-cembratriene (Sunabe 10).

All specimens of Sarcophyton trocheliophorum included the same

chemotype, chemotype 1. Specimens of Sarcophyton glaucum clade F

included two chemotypes, 6 and 7. Chemotypes 6 and 7 have

lactone function and could be easily distinguished from the other

chemotypes. Specimens of Sarcophyton glaucum clade B included

only chemotype 1 with the exception of Sunabe 6, which had

chemotype 3. Specimens of Sarcophyton glaucum clade D included

chemotypes 1, 2 and 3. Though clades B and D included different

chemotypes, those chemotypes had similar chemical isomerism,

containing dihydro furan and epoxy groups. Sarcophyton glaucum

clades B and D, and Sarcophyton trocheliophorum included similar

chemotypes despite of clearly belonging to different clades.

The phylogenetic group classified to the ‘‘mixed’’ Sarcophyton-

Lobophytum clade includes six chemotypes and in this clade no

relationship between chemotype and molecular phylogenetic clade

was apparent.

Morphological analyses
Sarcophyton spp. were examined morphologically by observing

colony growth form and sclerite characters. We examined sclerites

with a light microscope for species identification. Sclerite

identification followed Verseveldt [7], with ‘‘clubs’’ being club

sclerites in the surface layer of the disc.

Sarcophyton colonies have a mushroom-shaped polypary consisting

of a smooth and marginally folded disc, which projects beyond a

clearly differentiated base or stalk (Fig. 3). Surface sclerites were

usually long-handled clubs with poorly differentiated heads and fairly

sparse, simple ornamentation. Sarcophyton glaucum and closely related

Sarcophyton cinereum were identified by the presence of moderately

ornamented clubs [7] though there was a range of development of the

warts and in the sclerites’ length. Sarcophyton glaucum possessed clubs

usually 0.10–0.17 mm in length, and rarely more than 0.35 mm in

length, with the clubs having low, rounded processes. Sarcophyton

cinereum possessed clubs usually 0.15–0.2 mm long, with the longest

measuring 0.70 mm, and the clubs had warty heads. However, using

existing identification keys [7], sclerite differences between Sarcophyton

glaucum and Sarcophyton cinereum could not be determined.

After obtaining a phylogenetic tree based on msh1 sequences, we

re-examined the sclerites with a scanning electron microscope

(SEM; S-3500N: Hitachi High-Technologies). Sclerites from the

capitulum surface of Sarcophyton were usually long-handled clubs

Chemotype Diversity of Sarcophyton
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with poorly differentiated heads and fairly sparse and simple

ornamentation. This was seen particularly in specimens of the

most dominant species, Sarcophyton glaucum. According to the

molecular phylogeny, Sarcophyton glaucum was comprised of four

clades and we therefore compared the sclerites of clades B, D, F of

S. glaucum (Fig. 4).

Clade D sclerites were longer than sclerites of clades B and F

(nested ANOVA, length, D.F = B, P,0.05), and the warts were

comparatively concentrated on the head. The sclerites of clade F

were comparatively short and slim (nested ANOVA, width,

D.B.F, P,0.05). These values are summarized in Table 2.

Analyses of covariance (ANCOVA) showed that the slope of

regression line between length and width was statistically different

between clade B and clade F (P,0.001), and between clade D and

clade F (P,0.001), but not between clade B and clade D (P = 0.78).

However, the adjusted mean significantly differed between clade B

and D (P,0.001) (Fig. 5).

Sarcophyton trocheliophorum could be easily identified by the

presence of torch-shaped small sclerites in the surface of the

capitulum (Fig. S1)

Phylogenetic analysis of Symbiodinium ITS-rDNA
Most obtained Symbiodinium ITS-rDNA sequences were found to

match most closely with Symbiodinium clade C sensu LaJeunesse [30]

with 96–100% identity (data from NCBI GenBank) and all novel

sequences from this study belonged to clade C, consisting of

numerous sequences closely related to type C1 sensu LaJeunesse

[30]. Chemotypes were graphed onto to the resulting Symbiodinium

ITS-rDNA phylogenetic tree (Fig. S2), but no relation between

Symbiodinium ITS-rDNA and chemotype was discernable.

Discussion

The molecular phylogenetic tree based on msh1 revealed two

large and very well-supported clades; one including only

Sarcophyton and the other a mix of Sarcophyton and Lobophtum).

Similar to a previous report on intergeneric diversity in Sarcophyton

[14] clades of Sarcophyton glaucum were observed. Uniquely,

correlations between Sarcophyton chemotypes and molecular

phylogenetic clades were observed in this study.

Sarcophyton glaucum specimens formed at least four distinct

subclades (B, C, D, and F). Clade F consisted of chemotypes 6

and 7, which contain emblide and an analogue encompassing a e-
lactone ring in their structure and therefore clade F likely retains a

different set of biosynthetic pathways from the other Sarcophyton

glaucum clades. Clade B consisted of chemotypes 1 and 3, clade C

of chemotype 2, and clade D of chemotypes 1, 2, and 3. By

examining the structures of these chemotypes by high performance

liquid chromatography (HPLC) and Nuclear Magnetic Resonance

Figure 1. Phylogenetic analyses of Sarcophyton species and relationship with chemotypes. Phylogentetic tree of an alignment of utilizing
mitochondrial protein-coding genes MutS homolog msh1 sequences for Sarcophyton specimens constructed by the maximum likelihood (ML)
method. Values at branches represent ML, neighbor-joining (NJ) and maximum parsimony (MP) method bootstrap values, respectively. Monophylies
with more than 95% Bayesian posterior probabilities are shown by thick branches. Sequences in bold without GenBank accession numbers are msh1
sequences newly obtained in this study. Color dots indicate different chemotypes as described in this study. For chemotype information see Figure 2
and for specimen information see Table 1.
doi:10.1371/journal.pone.0030410.g001

Figure 2. Structures of cembranes from Sarcophyton species identified in this study. Colored dots next to each cembrane are the same as
in other figures.
doi:10.1371/journal.pone.0030410.g002
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(NMR), it was determined that the structures of chemotypes 1, 2,

and 3 are isomeric. The structures of chemotype 1 and chemotype

2 were diastereomeric, while those of chemotype 3 and

chemotypes 1 and 2 were structurally isomeric (or regioisomeric).

These results mean that these clades likely share similar

biosynthetic or oxidative enzymes involved in the production of

cembranoids. Additionally, all three examined specimens (Sunabe

1, 10, Mizugama 4) belonging to the ‘‘mixed clade’’ of Sarcophyton

and Lobophytum were also found to have mixed chemotypes

(Sunabe 1 - chemotypes 1, 2 and 4; Sunabe 10 - chemotypes 1 and

8; Mizugama 4 - chemotypes 3 and 5). This situation could

potentially be caused by interspecific hybdrization, as previously

suggested by McFadden et al. [14].

The current confused situation of Sarcophyton taxonomy is caused

by the combination of three problems; 1) relatively few diagnostic

morphological characters available for study in Sarcophyton, 2) our

present lack of understanding of intraspecific variation of

diagnostic morphological characters within this genus, and 3) a

historical lack of taxonomic and ecological work on Sarcophyton

[14]. Therefore, molecular phylogenetic analyses alone are not yet

sufficient to clearly identify Sarcophyton specimens. However, our

results suggest that detailed, morphometric examinations of

sclerites may greatly aid in clarifying the meaning of molecular

phylogenetic analyses of Sarcophyton species. The outcome of

chemotype and statistical analyses of sclerites fully supported the

molecular phylogenetic analyses’ results. In this study, sclerite

examination detected differences between three Sarcophyton glaucum

subclades. Therefore, we expect that further in-depth examina-

tions may yield additional diagnostic morphological characters.

Based on the all results of this study, we propose that clades B, D

Figure 3. In situ photographs of colonies of Sarcophyton. A. Sarcophyton trocheliophorm, Sunabe 12. B. Sarcophyton glaucum clade B, Sunabe
13. C. Sarcophyton glaucum clade C, Mizugama 7. D. Sarcophyton glaucum clade D, Sunabe 17. E. Sarcophyton glaucum clade F, Zanpa 3. F.
Sarcophyton ehrenbergi mixed clade, Sunabe 1.
doi:10.1371/journal.pone.0030410.g003

Table 1. Summary of field sites and chemotypes.

Chemotype No

Sampling
site Sample size 1 2 3 4 5 6 7 8 9

Sunabe 23 14 5 2 1 1

Zanpa 10 3 1 1 3 2

Mizugama 11 3 1 2 1

Total 44 20 6 5 1 1 3 2 1 1

For chemotype information see Figure 2.
Specimens obtained from three field sites (April 2007-November 2007) were
collected at depths of 5–20 m (see Materials and Methods).
doi:10.1371/journal.pone.0030410.t001
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and F of Sarcophyton glaucum should be formally classified into

independent species in the future.

All Sarcophyton specimens contained Symbiodinium clade C sensu

LaJeunesse [30], belonging to closely related ITS-rDNA types.

However, in total eight chemotypes were found within Sarcophyton

specimens, and there was no meaningful correlation between

Symbiodinium and chemotype. Further support can be found from

the azooxanthellate soft coral genus Dendronephthya soft coral, in

which several types of diterpenes are found [32] despite the lack of

Symbiodinium. Thus, we believe it is unlikely Symbiodinium is involved

in the synthesis of the chemical examined in this study.

It is noteworthy that some interspecific, different clades have

similar secondary metabolites. We suspect that the secondary

metabolites of Sarcophyton may have some kind of relationship with

their environment although this was not examined in this study. By

focusing on the relationship between chemotype and sampling site,

some indicative patterns are apparent. Chemotypes 6 and 7 were

only found at Zanpa regardless of Sarcophyton clade. Clades B, C, D

of Sarcophyton glaucum were not collected in Zanpa, and clade F was

not obtained in Sunabe. At Mizugama, located between Sunabe

and Zanpa on the west coast of Okinawa, all clades except clade B

were present. Clades B, C and D have chemotypes 1, 2 and 3, and

were dominant at Sunabe, while clade F with chemotypes 6 and 7

was dominant at Zanpa. From these results, it appears that

chemotypes of Sarcophyton glaucum are related to both environment

(sampling location) and species-group/molecular phylogenetic

clade. However, Sarcophyton trocheliophorum had similar chemotypes

regardless of sampling site, and it is not known if our theory is

therefore applicable to Sarcophyton species in general.

It is already known that soft corals have significant diversity of

secondary metabolites and it has been speculated that such

chemicals are used for allelopathic effects in soft coral [19,33–35].

However, the function of secondary metabolites could be related

to survival in different environments, as our results demonstrate a

relationship between species, sampling site, and secondary

metabolite variation. In Sinularia, it has been reported that

compounds may be influenced by the environment [36]. This

theory should be investigated in the near future.

Currently, research on soft coral ecological, reproductive, and

behavioral differences has not progressed well as soft coral

taxonomy is confused, and the confused taxonomy in turn hinders

studies on these topics. We suggest that research on secondary

metabolite variation could be an important key in understanding

soft coral ecology, reproduction, behavioral differences, and

classification. We consider it possible that variation in secondary

metabolites may be related to environmental adaptation and

adaptive evolution in soft corals.

Materials and Methods

Collection of specimens
Sarcophyton specimens were collected from a depth range of 5–

20 m by SCUBA at three locations (Sunabe 26u199N; 127u449E,

Zanpa 26u269N; 127u429E, and Mizugama 26u219N; 127u449E)

on the west coast of Okinawa Island in 2007 (Fig. 6). No specific

permits were required for the described field studies. The three

locations examined in this study are popular public diving spots

and are not privately owned, and are not in a protected area. This

study did not involve any endangered or protected species. The

numbers of specimens from each collection site were: 23 from

Sunabe, 10 from Zampa, and 11 from Mizugama, respectively.

Specimens were designated Sunabe 1 to Sunabe 23, Zampa 1 to

Zampa 10, Mizugama 1 to Mizugama 11. Specimens were

separated into subsamples for chemical analyses, morphological

analyses, and genetic analyses. Genetic subsamples were fixed in

70–99% cold ethanol and kept at 230uC until DNA extraction.

DNA extraction
Each genetic subsample was cut into small pieces of approx-

imately 20 mg, and treated with 20 mL proteinase K in 180 mL

ALT buffer for 4–6 h at 56uC. Then, total genomic DNA was

extracted from each specimen using a spin-column DNeasy

Animal DNA Extraction kit following the manufacturer’s protocol

(QIAGEN, Tokyo, Japan).

PCR analyses of mitochondrial msh1: Sarcophyton
The 59 end of the mitochondrial msh1 gene was amplified by

PCR using the primers ND42599F (59-GCCATTATGGTTAAC-

TATTAC-39) and Mut-3458R (59-TSGAGCAAAAGC-

CACTCC-39) [14]. The PCR reaction used 20 pmol of each

primer, 4 mL of dNTP mix, 0.25 mL of Taq polymerase, 5 mL of

Taq Buffer, and 1mL of raw genomic DNA. Several samples were

cloned into the pCR2.1 vector of the TOPO TA Cloning Kit

(Invitrogen, Carlsbad, CA, USA). All primers were anchored in an

adjacent mitochondrial gene to prevent amplification of genes

from nuclear or symbiont (Symbiodinium spp.) genomes. PCR

products were sequenced using an ABI PRISM Big Dye

Terminator cycle sequencing kit Ver. 3.1 (Applied Biosystems,

Foster City, CA) with a DNA sequences system (Model 3100 or

3130, Applied Biosystems).

Figure 4. Sclerites of Sarcophyton glaucum clades B, D and F,
and their averages length and width. All sclerites shown are
surface sclerites; Clade B obtained from specimens Sunabe 6 and
Sunabe 13; Clade D from Sunabe 2, Sunabe 19; Clade F from Zanpa 3,
Mizugama 5, Mizugama 9. Images were taken using a scanning electron
microscope.
doi:10.1371/journal.pone.0030410.g004

Table 2. Mean and standard deviation (SD) of length and
width (mm) from sclerites of each phylogenetic clade.

Clade n Length Width

mean±SD* mean±SD*

Clade B 4 0.228960.0602a 0.028260.0042a

Clade D 5 0.314660.0820b 0.034860.0068b

Clade F 5 0.209660.0739a 0.023860.0051c

*Values were calculated based on pooled data.
Letters following SD values indicate different statistical significances in nested
ANOVA.
Each specimen had 100 sclerites examined.
doi:10.1371/journal.pone.0030410.t002

Chemotype Diversity of Sarcophyton
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PCR analyses of ITS-rDNA: Symbiodinium
The internal transcribed spacer of ribosomal DNA (ITS-rDNA)

was amplified using primers ITS-4 (59-TCCTCCGCTTATTGA-

TATGC-39) [37] and zooxanthellae-specific zITSf (59-

CCGGTGAATTATTCGGACTGACGCAGT-39) [38,39]. The

purified PCR-amplified DNA fragments were cloned into the

pCR2.1 vector of the TOPO TA Cloning Kit (Invitrogen,

Carlsbad, CA, USA). Several clones of ITS-1 - 5.8S rDNA -

ITS-2 from each site were sequenced using an ABI PRISM Big

Dye Terminator cycle sequencing kit Ver. 3.1 (Applied Biosys-

tems, Foster City, CA) with a DNA sequencing system (Model

3100 or 3130, Applied Biosystems).

Novel sequences from this study are available at GenBank

under the accession numbers AB665446-AB665479 (msh1) and

AB665603-AB665723 (ITS-rDNA) (Table S3).

Phylogenetic analyses
Nucleotide sequences were assembled and proofread using

Sequence Scanner v1.0 software, and aligned using MEGA 4 [40].

Members of the genera Sinularia and Dampia were included as

outgroup taxa of the msh1 alignment (Table S1). For the

Symbiodinium ITS-rDNA alignment, Symbiodinium sp. 1591 type

C91 (GenBank accession number AJ291519) [41] was included as

the outgroup (Table S2). Consequently, two alignments were

generated, one of soft coral msh1 sequences (34 taxa; 735 base

pairs) and one of Symbiodinium ITS-rDNA sequences (121 taxa; 704

base pairs). Both alignments are available upon request from the

corresponding author. The datasets of msh1 alignments and ITS-

rDNA alignments were separately subjected to maximum-

likelihood (ML) and neighbor-joining (NJ) [42] analyses. In

addition, phylogenetic trees of msh1 were obtained using MrBayes

and maximum parsimony method (MP) analyses. ML analyses

were performed using PhyML online web server [43]. PhyML was

performed using an input tree generated by BIONJ with the

general time-reversible model [44] of nucleotide substitution

incorporating invariable sites and a discrete gamma distribution

(eight categories) (GTR+I+C). The proportion of invariable sites, a

discrete gamma distribution and base frequencies of the model

were estimated from the dataset. PhyML bootstrap trees (1000

replicates) were constructed using the same parameters as the

individual ML trees. The NJ tree was constructed using maximum

composite likelihood model. Support for NJ branches was tested

by bootstrap analysis of 1000 replicates. The NJ and MP methods

were conducted using MEGA 4. Bayesian phylogenetic analyses

were conducted using MrBayes 3.1.2 [45] with a GTR+I+C model

run for 10,000,000 generations with sampling of trees at 100-

generation intervals (burn-in = 1500 generations).

Major compound identification
Specimens for chemical analyses were extracted with acetone

two times, and the acetone solution was then filtered and

concentrated under vacuum, with the residual material was

Figure 5. Scatter plot and regression line of length and width of sclerites of each Sarcophyton glaucum clade. Horizontal axis: width of
sclerites, vertical axis: length of sclerites.
doi:10.1371/journal.pone.0030410.g005
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partitioned between CH2Cl2 and water. The lipophilic portion

was subjected for chemical analyses. Each CH2Cl2 extract was

analyzed first with thin layer chromatography (TLC) and 1H

NMR (Nuclear Magnetic Resonance) to examine whether a

dominant marker cembrane existed or not. Then, the presence of

major cembranoid was confirmed qualitatively by high perfor-

mance liquid chromatography (HPLC) equipped with a photodi-

ode array detector using an ODS column with linear gradient

elution profile. 1H and 13C NMR spectra ware taken on a Jeol A-

500 by dissolving extracts or pure compound in CDCl3 using

tetramethylsilane as an internal standard.

Structure identification of cembrane diterpenes
Observed compounds (designated compounds 1–8) were

identified by comparing NMR spectral data with those previously

published after obtaining nearly pure material with separation on

column, TLC, or HPLC.

Analysis of sclerites
From the capitulum of each specimen, a small portion (0.4 cm2)

was removed and treated with 10% sodium hypochlorite. After

removal of excess hypochlorite with water, sclerites were observed

under light microscope at 6400 magnification. Subsequently,

spicules for Sarcophyton glaucum and Sarcophyton trocheliophorum were

observed with a scanning electron microscope (SEM; S-3500N:

Hitachi High-Technologies) to examine sclerite size and potential

morphological differences between different specimens. For each

specimen, morphological traits (length and center width) of

sclerites (n = 100) were measured with ImageJ 1.44 software (NIH).

A nested ANOVA was used to examine the effect of genetic

clade on morphological traits (length or width of sclerites). Firstly,

a nested ANOVA was conducted using data from all clades.

Secondary, if the effect of clade was significant (P,0.05), nested

ANOVA was performed for each of all possible pairs of clades (i.e.

clade F vs B, B vs D, or D vs F). P-values from the analyses were

adjusted with Bonferroni correction. Analyses of covariance

(ANCOVA) were performed to examine the difference in ratio

of length and width of sclerites among clades (Sarcophyton glaucum B,

D, F). We evaluated discrepancies in P values for each data set,

considering significant differences at P values of 0.001. Statistical

analysis was performed using R software (version 2.12.0; R

Foundation for Statistical Computing, Vienna, Austria).

Supporting Information

Figure S1 Sclerites of Sarcophyton trocheliophorum.
Surface sclerites of Sunabe 7 are shown. Images were taken using

a scanning electron microscope.

(TIF)

Figure S2 Phylogenetic analyses of Symbiodinium spp.
Neighbor-joining (NJ) tree of an alignment of nuclear internal

transcribed spacer of ribosomal DNA (ITS rDNA) sequences of

Figure 6. Map of collection sites of specimens examined in this study. Okinawa Island is located in southern Japan.
doi:10.1371/journal.pone.0030410.g006
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symbiotic Symbiodinium dinoflagellates (clade C) associated with

genus Sarcophyton. Values at branches represent NJ and maximum

likelihood (ML) bootstrap values, respectively. (2) indicates

bootstrap values ,50%. Sequences in bold without GenBank

accession numbers are ITS-rDNA sequences obtained in this

study. Colored dots indicate chemotypes as in Figure 2.

(TIF)

Table S1 List of mitochondrial protein-coding gene MutS

homolog msh1 sequences from previous studies used in phyloge-

netic analyses in the present study. Species, GenBank accession

numbers, geographic origin, latitude and longitude, and collection

date are also shown.

(DOC)

Table S2 List of internal transcribed spacer of ribosomal DNA

(ITS-rDNA) sequences from previous studies used in phylogenetic

analyses in the present study. Species, GenBank accession

numbers, geographic origin, and host species are shown.

(DOC)

Table S3 Collection information for specimens included in

molecular phylogenetic clade.

(DOC)
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