
The Conformational Transition Pathways of ATP-Binding
Cassette Transporter BtuCD Revealed by Targeted
Molecular Dynamics Simulation
Jingwei Weng, Kangnian Fan, Wenning Wang*

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai,

People’s Republic of China

Abstract

BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B12 into the cell by
utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various
conformational states support the ‘‘alternating access’’ mechanism which proposes the conformational transitions of the
substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states.
The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding
domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD)
simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to
inward-facing (ORI) transition was found to be initiated by the conformational movement of NBDs. The subsequent
reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the
opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic
interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The
reverse inward-facing to outward-facing (IRO) transition was found to exhibit intrinsic diversity of the conformational
transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an
intermediate state in this process.
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Introduction

ATP-binding cassette (ABC) transporters constitute a large

membrane transport protein family [1,2]. They utilize the energy

of ATP hydrolysis to translocate substrates across the membrane.

In organisms, they facilitate nutrient uptake, antigen processing,

toxin extrusion [1] and some are also clinically relevant [3],

implicated in human genetic diseases such as cystic fibrosis [4],

multidrug resistance of cancer cells [5] and atherosclerosis [6].

ABC transporters have at least four domains, including two

transmembrane domains (TMDs) and two nucleotide binding

domains (NBDs). The cytoplasmic NBDs consist of a RecA-like

sub-domain (RSD) and a helical sub-domain (HSD). Two NBDs

are arranged head-to-tail, with the RSD of one NBD juxtaposing

the HSD of the other NBD, forming two nucleotide binding sites

at the interface. By binding and hydrolyzing ATP molecules at the

nucleotide binding sites, the NBD dimer switches between the

closed and open states [7,8]. While the sequence and structure of

NBDs are highly conserved among different ABC transporters,

those of TMDs are highly diverse. One TMD can be composed of

5 or 6 or even more transmembrane (TM) helices. Two TMDs

enclose a cavity at their interface which is proposed to be the

translocation pathway of substrates. The crystal structures of

various ABC transporters show that the substrate translocation

pathway at TMD is either at the inward-facing conformation or at

the outward-facing conformation [9,10]. The so-called ‘‘alternat-

ing-access’’ mechanism [11] proposed that the translocation

pathway switches between the inward-facing and the outward-

facing conformations through concerted motions of TMDs and

NBDs during the translocation cycle.

BtuCD is the vitamin B12 importer from Escherichia coli. It is a

dimer of dimer, consisting of two TMDs and NBDs respectively

(Figure 1a). Each TMD contains ten TM helices, distinct from the

usual five or six TM helices in other ABC transporters. TM5,

TM5a, TM8 and TM10 helices and the extended stretches

preceding TM3 (exTM3) enclose the translocation pathway at the

TMD dimer interface. The side-chains lining the translocation

pathway are mainly hydrophobic (Figure 1b). The translocation

pathway becomes wider at the middle part, the width of which is

large enough to accommodate a vitamin B12 molecule [12]. It is

referred as the uptake cleft, which accepts the substrate molecules

brought by the cognate periplasmic binding protein BtuF [13,14].

TM6 and TM7 helices of TMD extend into the cytoplasm with

the termini folding into two short helices, called L-loops

(Figure 1a), which directly interact with NBDs. The NBD dimer

of BtuCD adopts a canonical head-to-tail arrangement. Two
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nucleotide binding sites are formed with the Walker A motifs of

one NBD and the signature motifs (LSGGQ motif) of the opposing

NBD respectively at the dimer interface.

Different conformations of BtuCD were recently revealed by the

high-resolution crystal structures of the intact BtuCD [12] and its

homologous protein HI1470/1 [15]. The former represents an

outward-facing conformation (outBtuCD thereafter), the transloca-

tion pathway of which is occluded at the cytoplasmic side by a

hydrophobic constriction formed between TM5 helices and exTM3s.

The HI1470/1 importer has very similar fold [15] and biochemical

behavior with BtuCD [16]. In the crystal structure of HI1470/1, the

translocation pathway is occluded at the periplasmic side and opened

at the cytoplasmic side, thereby represents an inward-facing

conformation. The conformation of the NBD dimer in HI1470/1

is also different from that in outBtuCD. The HSDs get farther away

from each other and the nucleotide binding sites turn into a more

open state. These structures strongly support the ‘‘alternating access’’

mechanism, suggesting that the translocation pathway switches

between the outward and inward-facing conformations during the

translocation cycles. Therefore, revealing the detailed mechanism of

this conformational transition is critical for our understanding of the

working mechanism of this type of ABC importer.

Besides experimental efforts, molecular dynamics (MD) simu-

lation was also used to study the working mechanism of BtuCD

due to its unique strength in exploring protein dynamics [17,18].

Employing conventional MD simulation method, Oloo et al [19]

explored the initial stage of the conformational transition of

BtuCD. Since the simulation time of dozens of nanoseconds is

several orders of magnitude shorter than the time scale of the

transportation cycle of about 1 s [20], the whole process of the

conformational transition of the transporter can not be monitored

[21,22]. To overcome this limitation, Sonne et al. adopted essential

dynamics sampling to bias the conformational change along a

preset generalized direction, and observed the tilt motion of each

TMD subunit, but the conformational changes in the translocation

pathway were still limited [23]. To date, the complete reorienta-

tion process of the translocation pathway at TMD is still obscure.

In this work, we studied the conformational transition of BtuCD

by targeted MD simulation method, in which external force was

used to accelerate the transitions between the outward-facing and

inward-facing states. Unlike the previous study [23], the external

forces in the targeted MD simulation were exerted on both TMD

and NBD, ensuring the synchronous conformational transition of

the whole protein. In addition, a homology structure of inward-

facing BtuCD (inBtuCD thereafter) based on the putative metal-

chelate-type transporter HI1470/1, which is more resembled to

BtuCD phylogenetically and structurally than the maltose trans-

porter, was used in the simulation. It was found that the outBtuCD-

to-inBtuCD transition is initiated by the conformational changes at

NBD dimer, and the conformational change of the translocation

pathway at TMD begins with the closing of the periplasmic gate.

The inBtuCD-to-outBtuCD transition showed significant structural

asymmetry, which was not observed in the reverse process.

Results

The homology modeling of inBtuCD structure
The inward-facing BtuCD structure (inBtuCD) was obtained

by homology modeling based on the crystal structure of

HI1470/1 (PDBID: 2NQ2), which shares .30% sequence

identity with BtuCD (See Methods for more details). The overall

architecture of inBtuCD is very similar with that of the inward-

facing HI1470/1 structure (Figure 1c). The Ca R.M.S.D. (root-

mean-square deviation) between the inBtuCD homology model

and the HI1470/1 crystal structure is 0.44 Å. The radius profile

of the translocation pathway (Figure S1) illustrates an opening

cytoplasmic gate with 4 Å in radius and an occluded periplasmic

gate with 0.3 Å in radius. This is a typical inward-facing

conformational state, in contrast to the outward-facing state in

outBtuCD crystal structure. Despite of the distinct conforma-

tions, the inner surface of the translocation channel remains

hydrophobic, with both the periplasmic side and the cytoplasmic

side lined by hydrophobic side-chains (Figure 1d). The uptake

cleft in the middle of the channel is lined by some polar residues

and is hardly changed upon the conformational switching of

TMD.

With the outBtuCD and inBtuCD structures in hand, we first

performed targeted MD simulations to investigate the outBtuCD-

to-inBtuCD (ORI) conformational transition, the details of which

will be discussed in the following sections.

Conformational changes of the NBD dimer is the first

step during the ORI transition. Eight 500-ps targeted MD

trajectories with different initial velocities were produced for the

ORI transition. Since the trajectories share great similarities in

the conformational changes, detailed analysis of a representative

one was shown below. It should be noted that due to the intrinsic

limitation of the targeted MD method, the time scales of the

targeted MD trajectories do not equal to the actual time of

transition progresses and are not even proportional to. However,

previous studies demonstrated that this method can give

qualitatively correct pathways of conformational changes

[24,25,26,27,28].

Conformational motions of the NBD dimer can be divided into

inter-domain and intra-domain motions. The inter-domain

motions are the most evident conformational changes at the

beginning of the simulation. The NBD dimer spins relative to

TMD dimer along the quasi-C2 axis of the whole transporter,

changing the relative orientation of the TMD and NBD dimers, as

was first revealed by normal mode analysis [29]. The spin angle

kept increasing from 30u to 38u in the first 250 ps, after which

fluctuated around 38u (Figure 2a). During most of the time of the

spin motion, the nucleotide-binding sites at NBD dimer interface

remained closed. The distance between the nucleotide-binding

motifs (Walker A motif on one NBD and LSGGQ motif on the

other) started to increase rapidly from 190 ps and lasted for several

hundred picoseconds until the end of the simulation, disrupting

the binding sites at the NBD dimer interface (Figure 2b). During

this process, there were also obvious intra-domain movements

inside each NBD. The HSD subunits underwent rotational

movement relative to RSDs, leading to the remarkable increase

of the distance between two HSDs after 170 ns (Figure 2c),

indicating that the opening of the binding sites is mainly due to the

conformational rearrangement of HSD in each NBD domain. In

summary, when the simulation begins, the NBD dimer experi-

enced overall motion, spinning around the quasi-C2 axis relative to

the TMD dimer, followed by intra-domain motions leading to

dissociation of the NBD dimer and disruption of the nucleotide-

binding sites.

Figure 1. Structures of BtuCD in outward-facing and inward-facing conformations. (a) The ribbon diagram of the crystal structure of
BtuCD (PDBID: 1L7V) in an outward-facing conformation, and (b) the close-up view of its translocation pathway, where the hydrophobic residues are
shown in stick model. (c) The ribbon diagram of the homology model structure of BtuCD in an inward-facing conformation, and (d) the close-up view
of its translocation pathway.
doi:10.1371/journal.pone.0030465.g001
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Reorientation of the translocation pathway began with
the closing of the periplasmic side

To describe the specific positions at the TMD channel, the

channel is divided into many layers along the direction of

membrane normal, each of which is denoted by a residue within

it. For example, T168 layer represents the position at the most

periplasmic side of the channel around T168. The conformational

changes at TMD happened later than the changes at NBDs and

began with the closing of the periplasmic side (Figure 3a). The

periplasmic side of the translocation pathway is enclosed by the C-

terminus of TM5 helix and the short extension TM5a helix. They

form a hydrophobic chamber in the outBtuCD state composed of

residues M160, I164 and Y165 on TM5, and L172, L175, M176,

Y177, M179 and M180 on TM5a (Figure 3b). When the

Figure 2. The conformational motions of NBD dimer. (a) The evolution of the spin angle between NBD and TMD during the ORI (light color)
and IRO (deep color) transitions. (b) The evolution of the distance between the nucleotide-binding motifs (Walker A and LSGGQ) during ORI
transition. (c) The evolution of the distances between the two NBDs and their sub-domains during the ORI transition.
doi:10.1371/journal.pone.0030465.g002
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periplasmic side closes, the helices are drawn together and the

residues form extensive hydrophobic interactions around I164 layer.

From 100 to 200 ps, the radius of the channel at I164 layer

decreased by 1 Å, followed by the contraction at T168 layer

(Figure 3a). The distance between TM5A/B and TM5aB/A decreased

linearly from the beginning of the simulation and reached the target

value at about 300 ps (Figure 3c). At 300 ps, the region between I164

and T168 layers forms a hydrophobic constriction with 1.5 Å in

radius and 6 Å in depth (green line in Figure 3a), which occludes the

access to the periplasm. During the last 200 ps, the T161 layer

contracted evidently and completed the closing of the periplasmic

gate (Figure 3a). The final structure at the periplasmic side was

almost identical to the target structure (Figure 3a). Upon the closing

of the periplasmic gate, the conformational changes of TM5 helices

can be viewed as becoming more upright by reducing the tilting

angle. This can be monitored by the distances between the two

equivalent Ca atoms on each TM5 helix (dpair). The periplasmic end

of TM5 helices experienced largest amplitude of changes, with dpairs

of I164s and T168s reducing by more than 13 Å (Figure 3d). This

was also observed in the previous conventional MD study [19,22].

The dpairs of residues (such as T161) farther from the periplasmic

end showed less steep decreases during the first 300 ps of the

simulations (Figure 3d).

The conformational changes at the cytoplasmic side
The opening of the cytoplasmic side happened later than the

closing of the periplasmic side. At 300 ps, the cytoplasmic side was

still occluded by S143 and V150 layers with a minimal radius of

about 1 Å. There is an intermediate state with both the periplasmic

and the cytoplasmic gates occluded around 300 ps (green line in

Figure 3a). The cytoplasmic side of the translocation pathway is

composed of the N-terminus of TM5 helix and exTM3 segment. In

the outBtuCD conformation, they enclose a hydrophobic constric-

tion at the cytoplasmic side which occludes the access of the

translocation pathway to the cytoplasm (Figure 4a). The cytoplas-

mic side began to open after the closing of the periplasmic side, i.e.

around 300 ps. The opening of the cytoplasmic side could be largely

attributed to the separation of the cytoplasmic ends of TM5 helices.

During 300 to 350 ps, the radius at S143 layer increased

dramatically. The distance (dpair) between the Ca atoms of two

S143 on TM5 increased by ca 10 Å during the simulation

(Figure 4b). The radius at L146 and V150 layers did not change

much, keeping the cytoplasmic side occluded. In the last 150 ps, the

pore at this region expanded further, but the cytoplasmic side was

not fully opened even at the end of the simulation. The pore radius

at V150 layer was around 3.0 Å, 1.5 Å less than the targeted value.

Therefore, the expanding of the region at V150 layer is the last step

and the ‘bottleneck’ for the conformational change of the

translocation pathway.

Looking into the details of V150 layer, we found that exTM3

plays an important role in regulating TM5 motions. Two residues

on exTM3, L85 and L90, participate in the formation of the

hydrophobic core that obstructs the cytoplasmic gate together with

L146, L147 and V150 on TM5 helices. Some hydrophobic

interactions, such as the side-chain packing between L85A/B-

L147B/A and L90A/B-L146A/B are very stable throughout the

simulation, firmly holding the connection between TM5 and

exTM3 (Figure 4c). These interactions could prevent two TM5

helices from being too far away from each other or being

misarranged during the gate opening. Other hydrophobic

interactions, such as L90A/B-V150B/A and L85A/B-L146A/B,

however, got disrupted simultaneously at about 300 ps

(Figure 4d), loosening the constraints of exTM3 to TM5 helices

and facilitating the separation of TM5 helices. The conformation

of exTM3 also became more extended, leading to the increase of

the distance between L85 and L90 in each segment. The extension

of exTM3 stretch and the disruption of the hydrophobic

interactions together accelerated the separation of TM5 helices

(Figure 4b), resulting in the remarkable expanding of the

translocation pore at the cytoplasmic side in the following 50 ps

(Figure 3a). TM5 helices and exTM3 stretches constitute a well-

designed device at the cytoplasmic side, in which the hydrophobic

interactions are elaborately arranged and provide both stability

and flexibility. Disruption of the hydrophobic interactions is most

likely the rate-limiting step of the outBtuCD-to-inBtuCD transi-

tion at the cytoplasmic side.

The core region in the translocation pathway
Besides the flexible periplasmic and cytoplasmic ends, there is a

rigid part in the middle of the translocation pathway (Figure 3a), to

which we refer as the core region. The core region is mainly

composed of I154 and S157 layers, spanning from 15 to 30 Å

along the membrane normal. It encloses a cavity at the center of

TMD with more than 4 Å in radius. The space is large enough to

accommodate the substrate molecule, so proposed to be the uptake

cleft [12]. The core region consists of G153 and I154 on TM5

helix, G92 and N95 on TM3 helix, G89 on exTM3, A310 on

TM10 and A252, G254 and F255 on the extended stretches

preceding TM8 (exTM8) (Figure 5a), which are arranged into a

ring in the middle of the translocation pathway. The residues in

the core region have the smallest dpair differences (Ddpair) between

inBtuCD and outBtuCD conformations. The Ddpairs are always

less than 3.7 Å in value and quite small compared with those of

the residues in the flexible periplasmic and the cytoplasmic sides

along the translocation pathway (Figure 5b). The evolution profiles

of dpairs in the core region are smooth without abrupt changes

(Figure S2), suggesting that the core region is very stable during the

conformational transition. Moreover, the core region would also

contribute to the stability of TMD dimer interface by holding

TM5A/B and TM10B/A helices together. Hydrophobic packing

between I154A/B, F255B/A and A310B/A closely associates the

helices and serves as a hinge point for the tilting motion of TM5

helices in the conformational transition.

The conformational transition from inward-facing to
outward-facing state

We also conducted eight 500 ps targeted MD trajectories for the

transition from the inward-facing to the outward-facing confor-

mation (IRO). Unlike the ORI transition, the repeatability of the

trajectories in the IRO process is poor. The spatio-temporal order

of the conformational changes exhibited diversity among different

trajectories. Nevertheless, common features can still be identified

among the trajectories. One of the common features is that the

spin motion between BtuC and BtuD dimers was always the very

first step in the IRO transition, and the eight trajectories gave very

similar evolution profiles of the spin angle (Figure 2a). The spin

angle began to decrease decently from 38u to about 30u within the

first 200 ps and kept constant in the remaining time (Figure 2a). It

is interesting that the spin motion between TMD and NBD was

also the first step during the ORI transition, implying that the

rigid body rotation of TMD and NBD is the prerequisite of the

following conformational changes inside TMD and NBD.

Comparison of the spin angle variations in the transitions from

reverse directions clearly shows that these changes follow different

pathways on the potential energy surface (Figure 2a).

The second common feature among the trajectories of the IRO

transition is that the translocation pore at TMD always

experienced an intermediate state during 300 to 400 ps with both
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gates occluded just as in the ORI process. The minimal radius of

the cavity at either the periplasmic side or the cytoplasmic side was

around 2 Å, the size of which is too small for a B12 molecule to go

through. The BtuCD-F structure supports the idea of a double-

occluded cavity by presenting a similar radius profile (Figure S3).

The third common feature is that the rigid region at the middle of

the translocation pore behaved similarly with the counterpart in

the ORI transition, providing structural stability during the large-

scale conformational change.

Structural asymmetry during the conformational
transitions

During the conformational transitions, the structural symmetry of

the homodimer of BtuCD may be broken. In order to quantitatively

measure the extent of the conformational asymmetry during ORI

or IRO transition, we defined an asymmetry coefficient Casymm (see

Method for the detail), the larger value of which denotes higher

degree of structural asymmetry and the value of zero represents

strictly symmetric dimer. By this definition, the structures of

outBtuCD and inBtuCD are neither exactly symmetric. The Casymm

values of the initial structures of outBtuCD and inBtuCD are 0.16

and 0.37 Å respectively. With respect to the initial static structures,

Casymm increased at the beginning of the simulations, which can be

attributed to the thermal motions of the system. During the ORI

transition, the Casymm value remained essentially constant, indicating

that the conformational symmetry did not change (Figure 6a). If the

structure of BtuCD at the beginning of the trajectory can be

considered as essentially symmetric, the evolution of Casymm value

suggests that the ORI transition did not break the structure

symmetry of the homodimer. In contrast, the evolution of Casymm

Figure 4. Conformational changes at the cytoplasmic side of the translocation pathway. (a) Close-up bottom view from the cytoplasmic
side of the translocation pore. Hydrophobic residues are shown with stick model. (b) Evolution of dpairs of residues at the cytoplasmic side along the
simulation trajectory of ORI transition. (c) Cartoon representation of the hydrophobic network at the cytoplasmic gate in outBtuCD and inBtuCD. (d)
Evolution of minimal distances between residues L90-V150 and L85-L146 during the ORI transition.
doi:10.1371/journal.pone.0030465.g004

Figure 3. Conformational changes at the periplasmic side of the translocation pathway. (a) Variation of the radius of the translocation
pore during the ORI transition. The Z coordinate is along the membrane normal, and the layers denoted with residues are labeled. (b) Close-up top
view from the periplasmic side of the translocation pore. Hydrophobic residues are shown with stick model. (c) Evolution of distances between Ca
atoms on residues Y165 and M176 during the ORI transition. (d) Evolution of dpairs of residues at the perplasmic gate along the simulation trajectory
of ORI transition.
doi:10.1371/journal.pone.0030465.g003

Targeted MD Simulation of ABC Transporter BtuCD

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e30465



during IRO transition exhibited distinct feature with that of the

ORI transition. The protein experiences obvious asymmetric

conformational movements in this process despite the fact that the

initial and end structures are both symmetric (Figure 6a). All eight

trajectories have similar profiles of Casymm evolution, suggesting that

the asymmetry is an intrinsic property of the transition process. This

is in agreement with our previous normal mode analysis studies of

BtuCD, in which the intrinsic conformational flexibility suggested

symmetric conformational change in ORI transition and asym-

metric conformational change in IRO transition [29].

In order to explore the spatial distribution of the conformational

asymmetry, we defined asymmetrical residue pairs (ARPs) during

the conformational transitions by a coefficient Aij (see Methods).

Residue pairs with Aij more than 0.8 Å were picked out as ARPs

and depicted on the structure of BtuCD (Figure 6b,c,d). In the

IRO transition, totally 587 ARPs are distributed all over the

Figure 5. The core region in the middle of the translocation pathway. (a) The residues involved in core region are shown with stick model.
TM5a helices are removed for a clear view. (b) Differences of dpairs of residues between outBtuCD and inBtuCD states. The residues involved in the
core region are colored cyan.
doi:10.1371/journal.pone.0030465.g005
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protein, with 272 ARPs locating at TMD, 263 at NBD and 52 at

the TMD-NBD interface (Figure 6b). The regions with high

conformation asymmetry include the Walker-A motif in NBD,

BtuC-BtuD interface, L-loop, a3-a4 loop, and the periplasmic

loops, such as the TM1-TM2 loop and the TM9-TM10 loop.

Consistent with the analysis of Casymm, there are much less ARPs

during the ORI transition (totally 179), which are mainly located

at the periplasmic side of BtuC subunit, and at the Walker-A motif

in BtuD subunit (Figure 6c).

The structural asymmetry in the conformational transitions is

reminiscent of the crystal structure of BtuCD-F, in which the

TMD domain adopts asymmetric conformation. Analysis of the

BtuCD-F structure shows that most of the ARPs locate at TMD

region (169 out of 174) and only a few at the BtuC-BtuD interface

(Figure 6d). The main characteristics of the conformational

asymmetry in BtuCD-F structure resemble those in the confor-

mational transitions manifested in the targeted MD simulations,

especially those of the ORI transition. The major difference is

that there is no structural asymmetry at NBD in BtuCD-F. Note

that the ARP analysis of the targeted MD trajectories reflects the

average structural feature during the conformational change,

whereas BtuCD-F represents a snapshot in these processes.

Another possible explanation is that the difference arises from

the effect of BtuF association which has not been considered in the

simulation.

Discussion

Crystal structures and biochemical studies suggest that BtuCD

undergoes large scale conformational change during the translo-

Figure 6. Structural asymmetry in the conformational transitions. (a) Variation of asymmetry coefficient Casymm along the trajectories of the
IRO (deep color) and ORI (light color) transitions. The asymmetry residue pairs (ARPs) in the IRO transition (b), ORI transition (c) and in the BtuCD-
F structure (d). ARPs with Aij$2.0 Å are denoted by thick blue lines, those with 1.0#Aij,2.0 (Å) are denoted by green lines, and those with
0.5#Aij,1.0 (Å) are denoted by thin pink lines.
doi:10.1371/journal.pone.0030465.g006
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cation process, switching between the inward-facing and outward-

facing conformations as many other members of ABC transport-

ers. However, BtuCD has several unique characteristics, such as

the TMD with 10 TM helices [12], the asymmetry intermediate

structure [30,31], the high basal ATPase activity without the

presence of either the cognate periplasmic binding protein or the

substrate molecule [20] and the extra high binding affinity with its

cognate periplasmic binding protein without the substrate

molecule [16]. All these are quite different from other ABC

importers, such as the maltose importer MalFGK. Various

assumptions of the coupling mechanism of the conformational

transitions of BtuCD have been proposed, including the negatively

coupling of NBD dimer interface and TM5 cytoplasmic end

motion [30], uncoupling between NBDs and TMDs [22], or even

an entirely new double-round mechanism [16]. Here we studied

the whole cycle of the conformational transitions using targeted

MD simulations, revealing several interesting features of the

conformational dynamics of BtuCD.

The targeted MD simulations revealed that during the ORI

transition of TMD the conformational changes at the periplasmic

side are generally ahead of those at the cytoplasmic side, and there

exists an intermediate state of TMD with both gates of the

translocation pore closed. The priority of the periplasmic gate

closure is supported by several lines of experimental and

computational studies. First, the crystal structure of BtuCD-F

complex presents an occlusion state with its translocation pathway

closed to both sides of the membrane [31], consistent with the

observations in our simulation as closing the periplasmic gate

while holding the cytoplasmic gate occluded would directly lead

the protein to the occlusion state. Recently, the conformational

dynamics of BtuCD was studied by extensive electron paramag-

netic resonance (EPR) experiments with pulsed electron electron

double resonance (DEER) technique, as well as continuous wave

(cw) EPR spectra [30,32]. The measured inter-spin distance

distributions of residues located at the periplasmic and cytoplasmic

ends of TM5 showed that the distance of the periplasmic residue

168 decreased upon docking of BtuF, while those of the

cytoplasmic residues would not change until the binding of

nucleotide [32]. This suggests that the closed cytoplasmic gate has

higher conformational stability than the periplasmic gate. Similar

behavior was also reported in the previous conventional MD

simulations [22]. In the limited simulation time, partial closing of

the periplasmic gate was observed while the ctoplasmic side

remained occluded [22]. Therefore, the order of conformational

changes of TMD during the ORI transition most likely reflects the

intrinsic conformational flexibility of the periplasmic and cyto-

plasmic gates at the outward-facing state of BtuCD, which is

manifested in both experimental and computational studies. In

respect of the functional significance, this order of conformational

change of TMD ensures that the contracting motion of the

periplasmic side would first occlude the access to the periplasm,

preventing the substrate molecule in the central cavity from re-

diffusing into the periplasm. In vitro characterization of substrate

binding showed that only free BtuF binds vitamin B12 with high

affinity, whereas neither BtuCD nor BtuCD-F complex can bind

substrate efficiently [16]. The lack of high affinity binding site of

substrate on the surface of the translocation pore provides

evidence for the functional importance of the conformational

change order in the translocation pore. It is interesting to compare

with the case of ABC exporter MsbA. Previous targeted MD

simulation of the ORI transition of MsbA revealed that unlike

BtuCD the conformational rearrangement of the periplasmic side

of TMD is the last step in the process [25]. This is also consistent

with the requirement of the unidirectional substrate translocation

in MsbA because the late conformational change of periplasmic

end ensures that the high affinity substrate binding site is only

exposed to the cytoplasm when the translocation pore switches to

the inward-facing state [33]. It is most likely that the different

functional requirements of BtuCD importer and MsbA exporter

are partly encoded in the order of conformational changes of

TMD during ORI transition. It would be interesting to see

whether this order of conformational change is conserved in other

types of ABC importers, such as MalFGK and MetNI etc.

The targeted MD simulations also showed that the conforma-

tional change at NBD was the first step in the whole process of

ORI transition. Similar situation was found in the ORI

transition of MsbA exporter [25], suggesting that the nucleotide

binding and/or hydrolysis triggers the conformational change at

TMD. The EPR experiments showed that in the absence of

nucleotide the BtuCD transporter remains in the outward-facing

state, which is consistent with the crystal structure of apo-BtuCD

[12,30]. Without nucleotide, the association of BtuF promoted

the closing of the periplasmic gate, but the cytoplasmic gate was

still remained in an immobile conformation [30] and the inter-

spin distances of the cytoplasmic residues did not change [32].

The inter-spin distances of the cytoplasmic residues 141 and 142

increased and the cytoplasmic gate switched into highly mobile

conformation only upon addition of nucleotide [30,32], support-

ing the idea that the conformational movement at the NBDs is

the power stroke of conformational reorientation of TMD.

However, the coupling relationship between TMD and NBD in

BtuCD is a long debated question. The crystal structures of

BtuCD and HI1470/1 demonstrated that the outward-facing

state TMD corresponds to a more closed conformation of NBD

dimer, and vise versa, whereas the EPR studies showed that the

ATP binding led to higher mobility and opening of the

cytoplasmic gate at TMD [30,32]. Uncertainties exist in both

structural and EPR experimental studies. Crystal structures were

obtained in nucleotide-free states and the effect of crystal packing

can not be excluded, while AMPPNP used in the EPR study was

previously shown not to be able to mimic ATP to support NBD

dimerization [34]. Furthermore, in the EPR experiments S141

and T142 located at the cytoplasmic end of TM5 helices were

spin-labeled and used to monitor the cytoplasmic gate movement

[32]. Nevertheless, our simulation results demonstrated that the

opening of the cytoplasmic gate was limited by the region

between L146 and V150 layers, rather than the most cytoplasmic

end of the TM5 helices. For example, around 350 ps in the

targeted MD trajectory of ORI transition the pore radius in the

proximity of S141 and T142 was very close to that in the inward-

facing structure, but the cytoplasmic gate still remained closed at

L146 layer (Figure 3a). This reminds us that uncertainties exist in

choice of the spin probes and it should be more cautious in

interpreting the results of EPR experiments. Here, our targeted

MD simulation is based on the two crystal structures, which

implies the first model of coupling relationship. Under this

presumption, the targeted MD trajectories strongly suggest that

the separation of NBD dimer initiates the following conforma-

tional movement in TMD. The way of signal transduction from

NBD to TMD in BtuCD is, however, quite different from that in

MsbA. In MsbA, the separation of NBD subunits directly drives

the opening of the cytoplasmic gate of TMD [25]. The BtuCD is

more like a leverage system, in which L-loop at the TMD-NBD

interface serves as a pivot that transfers the separation motion of

NBD dimer to the contracting motion at the periplasmic end of

TMD. The different mechanical designs may explain why the

observed NBD separation in BtuCD is limited while that in MsbA

is much larger.
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The asymmetric conformation of translocation pore observed

in crystal structure of BtuCD-F complex is a unique feature for

BtuCD, which has not been found in other ABC transporters.

Our previous normal mode analyses of BtuCD and HI1470/1

suggested that symmetric conformational movement is responsi-

ble for the ORI transition, whereas the asymmetric conforma-

tional movement results in IRO transition. The results of

targeted MD simulation are generally consistent with the normal

mode analyses. The structural asymmetry in the IRO transition

is much more obvious than that in the ORI transition, thereby

crystal structure of BtuCD-F may represent a snapshot in the

process of IRO transition. However, the asymmetry is confined

in the TMD region in the crystal structure of BtuCD-F, while

during the IRO transition NBD dimer exhibits significant

asymmetric arrangement in addition to the TMDs. The closure

of the two nucleotide binding sites did not show any cooperativity

in the IRO transition, while in the reverse process the two

binding sites were disrupted at almost the same time (Figure 2b).

The concomitant asymmetric conformational motions of NBD

and TMD were also observed in the normal mode analysis [35].

We note that the targeted MD simulation trajectories of the IRO

transition show remarkable diversity. The poor repeatability of

the trajectories likely reflects the intrinsic diversity of the

conformational transition pathways from inward-facing to

outward-facing state, rather than the dependence of the

computational protocol which showed good repeatability in the

ORI transition. This is reminiscent of the conformational

diversity of both periplamic and cytoplasmic ends of TM5 in

the absence of BtuF observed in the EPR data analysis [32].

Without BtuF, the transporter BtuCD has a high basal ATPase

activity, and experimental kinetic analysis demonstrated that on

average BtuCD resides longer in the ADP-bound state than in the

ATP-bound or the transition-state-like (Mg2+ATP/vanadate)

intermediates [16], suggesting that ADP is bound to BtuCD

during the restoring process to the outward-facing state.

It is worth noting that the present study did not take into

account the periplasmic binding protein BtuF. BtuF was shown

to bind with BtuCD with high affinity and dissociate from the

transporter upon ATP and substrate binding [16]. However, we

do not exactly know whether BtuF is bound to the transporter

during the conformational transitions, and there is no structural

information of BtuF bound to the outward-facing or inward-

facing BtuCD. EPR study demonstrated that BtuF affects the

flexibility of periplasmic gate but not the cytoplasmic gate, and

normal mode analysis showed that BtuF does not change the

main feature of the low frequency normal modes of BtuCD.

Revealing the exact role of BtuF on the conformational

transitions of BtuCD will await further structural and

biochemical studies of the intermediate states in the transloca-

tion cycle.

Finally, we should bear in mind, however, that the targeted MD

method has its own limitations. Although this method allows us to

explore the slow conformational transition (ms to ms) during

computational accessible time scale, the relative transition process

is not necessarily proportional to actual time. Therefore, it can at

most generate qualitatively a correct transition pathway. On the

other hand, targeted MD method cannot guarantee that the

obtained trajectories follow the globally lowest free energy

pathway. Despite these drawbacks, the targeted MD method

remains an attractive technique in exploring large scale confor-

mational transition due to its computational efficiency, and many

recent applications have shown that this method can provide

useful information[24,25,26], especially in the close interplay with

experimental results.

Methods

Conventional molecular dynamics
The simulations were performed with NAMD 2.6 [36] using

CHARMM27 force field [37,38,39]. TIP3 water model [40] was

used for the solvent. Constant temperature was maintained by

Langevin dynamics for non-hydrogen atoms with a damping

coefficient of 1 ps21. Constant pressure was maintained at 1 bar by

the Nosé-Hoover Langevin piston method [41,42]. The oscillation

period was set to 200 fs, the damping time scale was set to 100 fs

and anisotropic cell was used. Non-bonded and PME calculations

were performed every time step. Short-range interaction was

smoothed at 10 Å and truncated at 12 Å. Long-range electrostatic

interactions were calculated using the particle mesh Ewald (PME)

method [43] with a grid density of 1 Å23. The integration step was

set to 2 fs and all bonds involved hydrogen atom was constrained.

The BtuCD protein (PDBID: 1L7V) was inserted into POPE

(palmitoyl-oleoyl phosphatidyl-ethanolamine) bilayer by ‘‘shrink-

ing’’ method [44]. The whole system was then solvated and

chloride anions were positioned randomly among the solvent to

neutralize the system. Periodic boundary conditions were used.

There were totally 138423 atoms in a rectangular box with the size

of 10661056118 Å3, including 1110 residues, 316 POPE lipids,

20 chloride anions and 27251 water molecules. The whole system

was first energy-minimized. Then the solvent was equilibrated for

200 ps with the protein and the lipids fixed. Then the solvent and

the lipids were together equilibrated for 3 ns with only the protein

constrained. The final structure was used as the initial structure in

the targeted molecular dynamics (MD) simulation.

Homology modeling
The inward-facing BtuCD structure (inBtuCD) was built with

MODELLER 9v4 [45], which could automatically derive a set of

homology structures after the related structure and its alignment

with the target sequence are given to it. The related structure came

from the inward-facing crystal structure of HI1470/1 (PDBID:

2NQ2). HI1470/1 shares .30% sequence identity and a very

similar topology with BtuCD. The missing fragments in HI1470/1

crystal structure, including the N-terminus of TM1 helix (residue 1

to 4), the extracellular loop 1 (ECL1, residue 20 to 56) and the N-

terminus of TM5 helix (residue 140 to 146), were patched up by

the corresponding fragments in the BtuCD crystal structure

(PDBID: 1L7V). Then MODELLER was employed to produce a

homology model assemble. The inBtuCD structure with the lowest

DOPE score was picked out for as the target structure in the

simulation.

Targeted molecular dynamics
Targeted MD [46] drives a structure to the target using an

external potential which can be described as:

UTMD~
1

2

k

N
r:m:s:d:(t){r:m:s:d: � (t)½ �2

where r.m.s.d.(t) is the instantaneous best-fit r.m.s.d. of the current

coordinates to the target coordinates, r.m.s.d.*(t) is the preset

r.m.s.d. value for the current time step, and k is the force constant

and N the number of targeted atoms. r.m.s.d.*(t) was set to start at

4.11 Å (the best-fit r.m.s.d. between the initial and target

structures) and decreased to 0 Å monotonically. The external

forces were imposed on all the 1100 Ca atoms in BtuCD with a

force constant of 5550 kcal/mol/Å2. The time step was set to 1 fs,

and the coordinates were saved every 500 steps for further

analysis.
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Data analysis
The profile of the translocation pathway was calculated using

HOLE [47] and the residues enclosing the pathway were also

defined by it. The trajectories were analyzed by VMD [48] using

tcl scripts. All the 3D graphics were produced by Pymol (http://

www.pymol.org) and VMD. The definition of the spin angle

between the TMD and NBD dimers [35] utilizes the outBtuCD

crystal structure of BtuC and BtuD dimers (referred as oBtuC and

oBtuD below) as the reference structures. For a given BtuCD

structure, oBtuC and oBtuD dimers are minimally R.M.S.D.

overlapped onto the TMD and NBD parts of the structure

respectively. As a result, oBtuC and oBtuD dimers are in a new

arrangement which reflects the relative positions of TMD and

NBD parts in the given structure. The spin angle is defined as the

angle between the lines connecting the mass centers of the oBtuC/

oBtuD subunits.

The asymmetry coefficient Casymm as:

Casymm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Npair

X
d

crys
ij

ƒd0

dij{di0 j0
� �2

vuut

where dij is the distances between the Ca atoms of residue i and j

and di0 j0 is the counterpart in the opposite half of the protein. Npair

is the number of selected residue pairs.

A residue pair is defined only when its separation distance dij is

less than the cutoff value d0, which was set to 8 Å in this study. In

BtuCD, 3177 residue pairs are selected, including 1798 residue

pairs in BtuC (TMD), 1257 residue pairs in BtuD (NBD), 76

residue pairs across the BtuC-BtuD interface, 30 residue pairs

across BtuC-BtuC’ interface and 16 residue pairs across BtuD-

BtuD’ interface.

The coefficient Aij defining ARPs for each residue pair i-j

during the conformational transition is set as the quadratic mean

value of dij{di0j0 along the trajectory.
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Figure S1 The radius profile of the translocation
pathway of inBtuCD structure.

(JPG)

Figure S2 Variation of dpairs of the residues in the core
region along the simulation trajectory.
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Figure S3 The radius profile of the translocation
pathway of BtuCDF structure (PDBID: 2QI9).
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