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Abstract
Men and women differ in susceptibility to many diseases and in responses to treatment. Recent
advances in genome-wide association studies (GWAS) provide a wealth of data for associating
genetic profiles with disease risk; however, in general, these data have not been systematically
probed for sex differences in gene-disease associations. Incorporating sex into the analysis of
GWAS results can elucidate new relationships between single nucleotide polymorphisms (SNPs)
and human disease. In this study, we performed a sex-differentiated analysis on significant SNPs
from GWAS data of the seven common diseases studied by the Wellcome Trust Case Control
Consortium. We employed and compared three methods: logistic regression, Woolf’s test of
heterogeneity, and a novel statistical metric that we developed called permutation method to assess
sex effects (PMASE). After correction for false discovery, PMASE finds SNPs that are
significantly associated with disease in only one sex. These sexually dimorphic SNP-disease
associations occur in Coronary Artery Disease and Crohn’s Disease. GWAS analyses that fail to
consider sex-specific effects may miss discovering sexual dimorphism in SNP-disease
associations that give new insights into differences in disease mechanism between men and
women.
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Introduction
There are clear biological and physiological differences between men and women, including
differences in the incidence and progression of diseases. For instance, autoimmune diseases
such as rheumatoid arthritis, multiple sclerosis and lupus are known to be much more
prevalent in women (Compston and Coles 2008; Cutolo et al. 2003; Whitacre 2001).
Although recent studies suggest that sex-specific genetic architecture influences human
disease phenotypic traits (Arnold et al. 2009; Ober et al. 2008), many published genetic
association studies do not take sex into account beyond controlling for sex as a covariate.

Genome-wide association studies (GWAS) have been used to rapidly scan genetic markers
across the genomes of many individuals to find single nucleotide polymorphisms (SNPs)
associated with a particular phenotype or disease. A main purpose of GWAS is to find
polymorphisms that act as markers to highlight biological processes related to disease
phenotype. A SNP with different disease associations in males and females can provide
insight into sex differences that may further guide the discovery of how disease mechanisms
differ between men and women. Another application of GWAS is to find genetic variants for
prediction of individual disease risk (Ginsburg and Willard 2009). However, it is known that
GWAS results based on individuals of one ethnic group or geographic region may not
always apply to a different population (Rosenberg et al. 2010). Similarly, given the known
physiological sex differences in many diseases, GWAS results that are not stratified by sex
cannot be expected to predict disease risk with the same accuracy for both men and women.

Several of the first large-scale GWAS were carried out by the Wellcome Trust Case Control
Consortium (WTCCC) (Burton et al. 2007; WTCCC 2007), the largest of which compared
2,000 individuals in each of seven disease cohorts (bipolar disease, coronary artery disease,
Crohn’s disease, hypertension, rheumatoid arthritis, type 1 diabetes, and type 2 diabetes) to
3,000 individuals in a common control group. The WTCCC did not systematically analyze
sex differences, beyond performing an association test that combined male and female test
statistics and compared these against a 2 degrees-of-freedom or 4 degrees-of-freedom null
hypothesis of no disease association. While this test is sensitive to associations of greater
magnitude in one sex, the purpose of the test was to find additional SNPs significantly
associated with disease, rather than to show that the difference between male and female
associations is significant. Consequently, the investigators reported only a single SNP from
this analysis, rs11761231, which showed a stronger association for rheumatoid arthritis in
females that was absent in males, but cautioned that it was in an area of the genome with
high recombination and very weak linkage disequilibrium.

A few more recent GWAS have included sex-specific analyses, including studies on the
regulation of uric acid concentrations (Kolz et al. 2009), and sex-specific associations near
LYPLAL1 with adiposity and fat distribution (Heid et al. 2010; Lindgren et al. 2009). In
cases of schizophrenia and bipolar disorder, specific SNPs in the RELN gene were found to
be associated with disease in females but not males (Goes et al. 2010; Shifman et al. 2008).
Previous studies have also shown a sex difference in the DLG5 gene in pediatric Crohn’s
disease patients, with a polymorphism providing female-specific protection from disease
(Biank et al. 2007a, b; Browning et al. 2008). We have also investigated 71 meta-analysis
confirmed loci in Crohn’s disease and found sexual dimorphism in the ATG16L1 gene, and
additionally found sex-specific parental transmission distortion in this region in multiple
populations (Liu et al. 2011). These examples provide evidence that genetic studies that
ignore sex-specific effects could fail to identify sexual dimorphism in genes that contribute
to risk for complex diseases. However, a limitation of many of these studies is that they
directly compare SNP disease association p values between males and females without
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rigorously testing the statistical significance of the sex differences. The previous studies
were also limited to single diseases or single genes.

In this study, we present a systematic sex-specific analysis of the original WTCCC study of
seven diseases. We apply stringent filtering criteria to focus our analysis on the most
biologically relevant SNPs. We then employ three statistical measures to assess the
statistical significance of the differential sex-specific results. Here, we ask a different
question than in previous sex-differentiated analyses performed by the WTCCC and other
groups. Rather than combining male and female association tests to find disease loci that
would otherwise not be called significant, we directly test for sex differences in disease-
associated loci using three methods, one of which we developed, called PMASE. Using
PMASE, we found significantly sexually differentiated SNPs in important loci in coronary
artery disease and Crohn’s disease.

Materials and methods
Study participants and data quality control

The data for our analysis were obtained from the original WTCCC study of 2,000 cases for
each of seven complex human diseases (BD, CAD, CD, HT, RA, T1D, and T2D) and 3,000
shared controls (1,500 from the 1958 British Birth Cohort, and 1,500 blood donors recruited
specifically for this project). Access to the data was authorized by the WTCCC. Genotyping
was carried out using the Affymetrix GeneChip 500K Mapping Array Set, which comprises
500,568 SNPs (WTCCC 2007). We applied quality control criteria at both the SNP level and
the individual level. We exclude all 31,011 SNPs and 809 individuals that were excluded
during quality control checks in the original WTCCC study. To limit the impact of genotype
calling errors, we combine the genotype calls made by the two algorithms used by the
WTCCC, Chiamo (Marchini et al., in preparation) and BRLMM (Affymetrix). For each
SNP, we individually consider the genotype calls of both programs for each individual; if
the calls made by the two algorithms differ, or if one of the two algorithms does not make a
call, then the genotype of the individual for this SNP is considered unknown. Finally,
individual participants with more than 5% of unknown genotypes are excluded from our
analysis, and for each disease, SNPs with more than 5% of unknown genotypes are also
excluded. Supplementary Table 1 lists the number of SNPs and individuals used for analysis
in each disease after filtering.

Selection of genome-wide significant SNPs
We used a Chi-square test with two degrees of freedom to compute disease association test
statistics and p values. Similar to the WTCCC, we used the control cohort of 3,000
individuals as a common control group for each disease-control comparison. We
recomputed disease association p values for each disease using the filtered data (described
above) and applied a Bonferroni correction to the SNP p values for each disease. We limited
our analysis to SNPs with a Bonferroni-corrected p value < 0.05 (raw p value < 1.7 × 10−7)
in the sexes combined in each disease.

Filtering SNPs based on linkage disequilibrium
Multiple SNPs that are in tight linkage disequilibrium (LD) with each other are often all
associated with a disease. In such a situation, there is often one single SNP (which might not
have been genotyped) that is functionally linked to the disease, whereas the other ones are
only associated because of their high LD with that SNP (HapMap 2005). Therefore, testing
all SNPs in a region of high LD is redundant and unnecessarily increases the hypothesis
space without gaining biologically distinct tests. In addition, it may bias our analysis to a
particular region that may be overrepresented on the chip. To perform LD filtering for these
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genome-wide significant SNPs, we used linkage disequilibrium data from the HapMap
cohort of US Utah residents with northern and western European ancestry (CEU) (HapMap
2005). We considered two SNPs to be in LD if the pair-wise r2 value exceeds 0.8. Among a
set of SNPs in tight LD, we only wanted to consider the SNP with the best disease
association p value for further analysis. Therefore, we applied a greedy algorithm to each set
of SNPs occurring on the same chromosome for each disease. We ranked SNPs by p value
(most significant to least significant) and iteratively eliminated lower-ranked SNPs with
pair-wise r2 values >0.8. Using the LDheatmap package in R (Graham 2006), we
constructed plots of LD blocks. The set of SNPs that were selected using this method were
analyzed for sex-specific effects.

PMASE: Permutation-based method to compute sex-difference p values
For each SNP that passed all the filtering criteria, we performed disease association tests
separately in males and females using a Chi-square test with two degrees of freedom (male
cases vs. male controls for each disease, and similarly for females). We then computed the

absolute value of the difference between the Chi-square statistic for males ( ) and the Chi-

square statistic for females . A large ΔMF may indicate a difference in
disease association between males and females; however, other factors could also cause this.
Those factors include differences in sample sizes (as a larger sample size will lead to a more
significant test statistic for the same effect size), and the fact that for very significant
associations, there may be large differences between the Chisquare statistics of the two
groups due to random chance. We, therefore, needed to specifically assess the statistical
significance of the difference ΔMF given the overall genotype counts of the SNP of interest.

To assess the significance of the ΔMF statistic for a given SNP, we perform N = 10,000
random sex-label swappings. In each swapping, individuals’ sex labels are randomly re-
labeled amongst the cases (and separately for the controls) while keeping the genotype
information intact. This means that the number of “male” and “female” labels and the total
counts for each genotype are the same as in the original experiment. Each label swapping is
equivalent to a random sampling of male and female individuals under the null hypothesis
that there is no difference in allele frequencies between males and females. We perform
disease association tests separately in individuals with “male” labels and “female” labels.
We then compute the absolute value of the difference between the Chi-square statistic for

“male” labels ( ) and “female” labels . From the N samplings, we
computed the fraction that has a difference in Chi-square statistics that is greater than or

equal to the observed value of ΔMF as: . This fraction represents
the empirical probability of obtaining a statistic ΔR at least as extreme as the observed ΔMF
under the null hypothesis, and is thus a p value, which we term the “sex difference p value.”
Due to the nature of random swappings, the p value for each SNP will vary slightly across
different runs of PMASE. This variation is small and occurs only in the third decimal point,
and has no downstream effect on the decision to call a SNP significant using false discovery
rate calculation (discussed below). In the plots (Fig. 2, Supplementary Figs. 1, 2), each point

represents a pair of Chi-square statistics ( ). Points in the green regions represent
swappings that have a ΔR at least as extreme as ΔMF.

Logistic regression with genotype-sex interaction term
We performed logistic regression with a genotype-sex interaction term to assess the effect of
sex on genotype. Using the following multivariate logistic regression model for a single
SNP, we model the probability of the outcome variable (the cohort to which an individual
belongs, case or control) as a function of predictor variables X1 and X2 (genotype and sex).
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We use pi to represent the probability of belonging to the disease class, and model the
natural logarithm (ln) of the odds of the probabilities. Letting m represent the minor allele
and M the major allele in the controls, we coded genotype (X1) as MM = 0, Mm = 1, and
mm = 2. Sex (X2) was coded as male = 1, female = 2. We represented the effect of sex on
genotype by including the interaction term X1X2. We tested the significance of the
interaction term using a likelihood ratio test comparing the full model with the interaction
term and the reduced model without the interaction term, and report p values. The likelihood
ratio test statistic follows a Chi-square distribution with one degree of freedom:

 where F refers to the full model as shown above and R refers to the
reduced model without the β3X1X2term.

Woolf’s test of heterogeneity
Woolf’s test is a method for testing the heterogeneity of 2 × 2 contingency tables over
multiple strata (Woolf 1955). The method tests whether the log odds ratios (ORs) are the
same in all strata. For our case, the strata are male and female and we test if the allelic odds
ratios for disease association are equal between male and female for a single SNP. This test
is sensitive both to ORs in opposite directions (the allele is protective for one sex and risky
for the other) as well as in the same direction but of different magnitude. We represent
allelic counts for males and females separately for one SNP in 2 × 2 contingency tables such
as the following:

Cases Controls

Has allele ‘A’ a b

No allele ‘A’ c d

We then compute a pooled OR using the Mantel–Haenszel method:

where k =2 sex strata and Ti = ai + bi + ci + di

Then the Woolf’s Chi-square statistic is

where k = 2 sex strata and .

False discovery rate calculation
We computed q values for all SNPs tested in each disease. We applied the same procedure
to estimate q values for each statistical test used. For each disease, we randomly shuffled the
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sex labels of disease individuals 1,000 times (and separately also for control individuals).
Let the number of SNPs tested in a particular disease be S, and let X be a particular SNP for
which we are estimating the q value. Using the PMASE method as an example, we count the
number of times the randomly generated PMASE p values of any of the S SNPs is smaller
than the actual PMASE value of the SNP X. We compute the q value for each test as the
proportion of times (out of 1,000) we get a smaller random p value for that test in any of the
S SNPs.

Manual inspection of significant results
We manually inspected the intensity plots for each SNP with a significant sex difference.
We plotted the normalized signal data generated from the Affymetrix intensity (‘CEL’) files
by the WTCCC. We then manually inspected the quality of the genotype calling, and
verified that there is no suspicious difference in signal intensity between male and female
samples. This manual inspection led to the exclusion of rs2734973 due to too many
disagreeing calls between the two genotype-calling algorithms (Supplementary Fig. 3).

Results
In this study, we carried out sex-specific analysis of genome-wide significant disease-
associated SNPs. We used three statistical approaches to assess the significance of sex-
specific SNPs, including logistic regression, Woolf’s test, and a novel method that we
developed, called permutation method to assess sex effects (PMASE). We applied these
methods to GWAS data across seven complex diseases [bipolar disease (BD), coronary
artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA),
type 1 diabetes (T1D), and type 2 diabetes (T2D)] in a sex-specific manner to discover SNPs
with disease association of greater magnitude in one sex.

Selection of disease-associated SNPs
Our stringent SNP selection process had two main purposes: data quality control, and
restriction of our hypothesis space to test only the most biologically relevant loci for sex
differences in disease association. Figure 1 shows the sequential filtering steps that we took
to narrow down our set of SNPs. The remaining numbers of SNPs and patients used for our
analysis are shown in Supplementary Table 1. There is previous scientific support for
reducing the number of hypotheses prior to testing, in order to reduce the proportion of false
discoveries that are simply due to testing too many redundant hypotheses (Chen et al. 2008).
Since we are only interested in sex differences in association with disease, we restricted our
analysis to only those loci significantly associated with the disease of interest in both sexes
combined. To select these SNPs, we calculated disease association p values (see “Materials
and methods”) and selected SNPs with a Bonferroni-corrected p value <0.05 (raw p value
<1.7 × 10−7). After this step, there were 523 SNPs remaining across five diseases (Fig. 1).
BD and HT did not have any SNPs that were genome-wide significant. T1D had 337
significant SNPs, RA had 136 SNPs, CD had 29 SNPs, T2D had 11 SNPs, and CAD had ten
genome-wide significant SNPs (Table 1). We also performed filtering based on linkage
disequilibrium for the SNPs from each disease (see “Materials and methods”). We
performed sex-specific disease association analysis only on the 280 SNPs remaining after
LD filtering, which included 186 SNPs in T1D, 72 in RA, 15 in CD, 4 in T2D, and 3 in
CAD (Fig. 1; Table 1).

PMASE finds 13 sex-specific SNPs
We applied our method PMASE to assess the statistical significance of sex differences in
disease association. We first computed the strength of association separately for male and
female cohorts for each of the 280 SNPs that we selected, using a Chi-square test with two
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degrees of freedom. We then applied a permutation-based metric to assess the significance
of the difference in disease-association values between males and females. We generated the
empirical distribution of the male and female Chi-square statistics for each SNP based on
10,000 random sex-label permutations of the original data (see “Materials and methods”).
The empirical distribution is used to compute a p value of how likely we are to see a
difference in the male and female Chi-square statistics that is as or more extreme than the
observed difference, given the genotype frequencies of the SNP. We call this p value as the
“sex-difference p value.” This method is more precise than simply comparing male and
female p values for a SNP, since direct comparison of p values is not possible when male
and female sample sizes differ (as is the case with all disease cohorts in the WTCCC data),
and large differences are not necessarily significant (see “Materials and methods”). The
permutation testing ensures that the findings are not due to any sample-size imbalance
between male and female cohorts, and gives an exact test for the difference observed
between male and female disease association strengths for each SNP.

Figure 2 shows an example of how PMASE works, where we plot the Chi-square statistic
for T1D SNP rs480092 in males and females. As a background, we plotted the Chi-square
values from label swapping as ordered pairs, with the female Chi-square values on the x axis
and the male Chi-square values on the y axis. We calculated the sex-difference p value as the
proportion of simulations where the absolute value of the difference between the male and
female Chi-square statistics exceeded the observed difference (visually, this corresponds to a
point falling in the green shaded regions of the plot), yielding a sex-difference p value of
0.0191. For an example of a Chi-square plot of a SNP that is not called significant by
PMASE, see Supplementary Fig. 1.

PMASE yielded 13 SNPs with significant sex-difference p values (p<0.05). The results for
all SNPs that are called significant out of 280 SNPs by PMASE are shown in Table 2. In
total, we find one SNP in CAD, two in CD, three in RA and seven in T1D that show
evidence of sex-specific effects. Figure 3 shows overall association results for each disease
and highlights the 13 loci with evidence of more significant association in each sex, among
the 280 SNPs that were selected for sex-difference testing. Individual Chi-square plots for
these SNPs can be found in the Supplementary Materials. We excluded rs2734973 after
inspection of the intensity plot (see “Materials and methods” and Supplementary Fig. 3),
giving 12 significant SNPs. Genotype counts for these SNPs are in Supplementary Table 2.

Sex-specific association testing using two other methods
To confirm that our results could be replicated, we compared results from PMASE with two
standard methods of assessing subgroup differences, logistic regression and Woolf’s test of
heterogeneity. We included a genotype-sex interaction term in the regression model to
account for the effect of sex on genotype and performed a likelihood ratio test (see
“Materials and methods”). We found that eight SNPs were called significant by both
PMASE and regression. There were four SNPs that regression calls significant, but PMASE
does not (Table 3). We found that while the SNPs rs3094123 and rs2596571 in T1D are
close to being significant by PMASE, the other two SNPs in RA (rs3128963 and rs9348904)
have high PMASE p values. Chi-square plots for these four SNPs can be found in
Supplementary Fig. 1. We additionally used Woolf’s test, which measures heterogeneity of
effect sizes (Woolf 1955). In this study, we use odds ratios to measure effect size, so
Woolf’s test detects significant differences in odds ratios between men and women for the
disease. In total, seven SNPs overlapped between all three methods (Table 3). This gave us
higher confidence in these sexually dimorphic SNPs since they could be replicated across
three different tests. While these comparisons were encouraging, we do not require
significance across three tests as a criterion for reporting—as detailed below, we use the
false discovery rate for each test as a stringent correction of significant results.
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Correction for false discovery rate reveals three sexually dimorphic SNPs
We computed false discovery rates on a disease-specific basis to account for the multiple
tests performed in each disease (see “Materials and methods”). We computed q values
separately for each type of test and set a false discovery rate (FDR) threshold of 0.2. From
PMASE, three SNPs in total have q values less than this threshold. In CAD, we found one
SNP, rs7865618 on chromosome 9p21 that was significantly differentiated between the
sexes. The 9p21 region and more specifically rs7865618 have been previously reported to
have significant associations with CAD and T2D (Harismendy et al. 2011; Koch et al.
2011). rs7865618 has a PMASE p value of 0.0261 (q value = 0.053) for CAD and higher
OR in males than females (male OR = 1.38, female OR = 1.16). The male p value is 1.38 ×
10−8 but the association is absent in females (female p value = 0.17). We checked the
association of rs7865618 with T2D, and while it is not overall genome-wide significant in
WTCCC, there does appear to be a slightly stronger male association (male p value = 2.85 ×
10−3, female p value = 0.086). For CD, two SNPs pass the FDR threshold and are both in
the gene ATG16L1 on chromosome 2. rs3792106 has a PMASE p value of 0.0016 (q value =
0.04) and higher OR in females than males (Table 2). rs6431654 has a PMASE p value of
0.011 (q value = 0.18) and a similar difference in ORs between male and female. For both
logistic regression and Woolf’s test, no SNP passes this false discovery threshold. The four
additional SNPs found by regression (Table 3) also do not pass the false discovery threshold.

Discussion
In this study, we have demonstrated that using a sex-specific approach to analyze results
from genome-wide association studies can reveal polymorphisms that are significantly
associated with disease in only one sex. We applied our approach to seven common complex
diseases to discover novel loci that exhibit putative sex differences in disease association.
We proposed a method, PMASE, which discovered sexually dimorphic SNPs in important,
previously known disease-associated regions. These findings could shed new light into sex-
related differences in disease mechanisms.

We find evidence of sex differences in SNPs in CAD and CD after correcting for false
discovery. The CAD SNP rs7865618 is located on chromosome 9p21, an important region
known to be involved in coronary artery disease (Helgadottir et al. 2007; McPherson 2010).
We find that the association of this SNP with disease is male-specific, which is in agreement
with the male-bias in incidence of CAD (Lerner and Kannel 1986). The two loci in CD are
in an intronic region of the gene ATG16L1 (Autophagy related 16-like 1), which has been
demonstrated in multiple studies to confer increased risk for CD (Cotterill et al. 2010;
Hampe et al. 2007; Lacher et al. 2009; Rioux et al. 2007; WTCCC 2007). Here we show that
multiple loci in this gene have female-specific disease association. The association for
rs3792106 in females is stronger than the association of the SNP in males and females
combined and is not genome-wide significant in males alone. We previously discovered
sexual dimorphism in ATG16L1 using a hypothesis-driven approach focusing on replicated
CD risk loci (Liu et al. 2011), and now we are showing that a more agnostic approach also
discovers this result. These SNPs showing evidence of sexual dimorphism in disease risk
should be further confirmed in studies with larger overall sample size, however they
represent potentially interesting findings, given the known sex differences in prevalence for
these diseases.

While we report sex-specific associations that are genome-wide significant in combined-sex
analysis, there are likely more SNPs with weaker overall associations but significant sex-
specific associations. Our stringent filtering process limits us from finding these SNPs. By
focusing only on combined genome-wide significant SNPs, our method may be
underpowered for finding effects significant only in one sex. In some cases, the disease
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cohorts were not sufficiently powered to discover more weakly associated SNPs (some
cohorts included only 400 individuals of one sex). It is interesting to note here that the single
SNP reported by the WTCCC in their sex-differentiated analysis, rs11761231 in RA, did not
meet our Bonferroni correction for disease association significance (nor did it meet
WTCCC’s threshold in the original study) and was not included in our analysis. A study that
included balanced numbers of individuals and larger cohorts would enable a more thorough
investigation of sex-specific effects at a truly genome-wide level. One explanation for the
additional SNPs in RA discovered by regression analysis but not by PMASE is that RA is
one of the most sex-unbalanced cohorts. By chance, our permutation method may be slightly
more likely to generate sampling distributions with many more extreme group differences in
these unbalanced cohorts, thus resulting in large PMASE p values (see Supplementary Fig.
1). A method for finding sex differences which takes into consideration unbalanced sample
sizes and variances is Welch’s T test on sex-specific regression coefficients as described in
Heid et al. (2010). Future genome-wide association studies should consider recruiting large
numbers of both male and female cases and controls to enable genome-wide sex-specific
analysis.

We could have included more SNPs in our analysis and chosen a less-stringent threshold for
LD filtering to discover possible secondary associations or SNP–SNP interactions.
However, we chose the stringent thresholds to focus on known important regions and to
control for multiple testing by choosing only one SNP per region. This could be expanded in
future analyses. Due to our requirement of significant disease-associated SNPs as input to
PMASE, it was difficult to find SNPs with opposite effects in males and females in which
one allele is protective for one sex while the other allele increases disease risk for the other
sex (similar to (Sirota et al. 2009)). These SNPs would not have had significant overall
disease associations since the opposite effects in males and females would cancel each other.
Therefore, our approach is underpowered to discover flipped effects. Larger overall sample
sizes and less stringent thresholds may allow for discovery of these flipped effects on a
genome-wide scale. Simulation approaches have shown that if these flipped effects exist,
adding sex analysis can increase, rather than decrease, the power of a study (Magi et al.
2010). Testing more SNPs with PMASE, however, would be more computationally
intensive and this is a limitation of the PMASE method in comparison to logistic regression
or Woolf, which do not require permutation testing. The Woolf method is able to find
flipped effects but at the cost of testing all SNPs and losing many possible findings to
multiple testing correction. PMASE is the most appropriate for a two-stage study design like
the one we have taken here, in which some initial filtering of redundant hypotheses is first
performed.

We considered several alternative explanations for the sex differences we observed. First,
we visually inspected the signal intensities from the genotyping chip, and found no sign of
genotype calling errors (except for one SNP, which we excluded), or other unusual
differences between male and females. Second, we considered the possibility that the
significant differences between the two groups could be due to a confounding factor rather
than an actual difference in disease association. A possible confounding factor in the context
of sex-specific disease association is disease prevalence itself, as a large number of diseases
have very different incidence rates in men and women. Given that the control individuals
represent a sample of the general population, it is likely that a fraction of those control
individuals might have a genetic predisposition to the disease but have not yet been
diagnosed or do not exhibit symptoms yet. This is a well-known phenomenon in the context
of GWAS that leads to a decrease in the statistical power of the study. Therefore, if the
prevalence of the disease is higher in one sex, the statistical power of the study in that sex
would be lower, which could explain why a SNP shows stronger association in the other sex.
The sex-specific p values we find for Crohn’s disease are more strongly associated with CD
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in female even though CD has a higher prevalence in females (Kappelman et al. 2007). This
indicates that we have enough power to detect an effect in females despite the female
controls possibly having a higher incidence (and genetic predisposition) of CD. In other
words, the large difference we observe in disease association is not likely confounded by a
difference in disease prevalence. We find the same situation in the case of CAD, with higher
prevalence in males (Lerner and Kannel 1986) and stronger disease association in males.

An oft-mentioned limitation of GWAS is the “missing heritability” problem. The SNPs
discovered using GWAS often explain only a tiny fraction of heritability for a particular
disease, and have a small effect on increasing an individual’s disease risk (Manolio et al.
2009). However, new advances in using GWAS data along with environmental studies and
gene expression analysis in mice are yielding new insights into gene–environment
interactions (Cadwell et al. 2010). Studying sex differences can help provide a missing link
in terms of different gene-endocrine and gene–environment interactions in males and
females. These SNPs can lead to discovery of genes and pathways under differential
regulatory control and causing different disease progression in males and females. For
example, it is possible that these SNPs lie near binding sites for sex hormones and lead to
differential transcriptional control of key genes. This could be investigated in future
experiments and may provide insight into novel sex-specific disease mechanisms and help
explain why some diseases have a higher prevalence in one sex. These results demonstrate
that GWAS and other large-scale genetic association studies should take sex into account,
and report sex-specific results.

We have proposed a method to quantify sex differences in disease association in a genome-
wide association study, and demonstrated that our approach finds 12 polymorphisms in
CAD, CD, RA, and T1D that showed sex-specific association with increased disease risk.
After correcting for multiple hypothesis testing, three SNPs are significant using PMASE.
We believe that this is one of the first systematic demonstrations of putative sexually
dimorphic loci in multiple common complex diseases. Our approach can easily be
generalized to apply to any other GWAS in which any binary population feature (not
necessarily sex) is present. We propose that the inclusion of sex in the analysis of genetic
association studies is necessary to obtain a more complete picture of individual disease risk.
A deeper understanding of molecular sex differences will aid in the development of more
personalized prevention, diagnosis, and treatment of human disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The analysis pipeline for each of seven diseases. We performed sequential filtering steps and
applied stringent quality control criteria at both the SNP and individual level. We then
performed disease-control association analysis on each sex separately
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Fig. 2.
Chi-square statistics for T1D SNP rs480092 from 10,000 random label permutations. Lines
are drawn to indicate the actual male (blue) and female (red) Chi-square statistics from the
disease genotype data. The sex difference p value is 0.0191, and is calculated from the
proportion of random permutations where the absolute value of the difference between male
and female Chi-square statistics is more extreme than the actual difference we observed
from the real data (upper left corner and lower right corner of the plot, shaded in green).
The position corresponding to the ordered pair of the actual male and female Chi-square
statistics is highlighted in yellow (color figure online)
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Fig. 3.
Genome-wide scan for seven diseases highlighting sex-specific SNPs. The log10 of the
disease association p values for SNPs are plotted against chromosomal position for each of
seven diseases. The separate male p value and female p value are plotted for each SNP. The
280 SNPs considered for sex-specific effects are colored in green. SNPs with a sex-
difference p value <0.05 are colored in red and blue, with the female p value in red and the
male p value in blue. Red open upper arrows and dark blue lower arrows highlight these
SNPs as well, respectively. All panels are truncated at 1 × 10−15, although some markers
exceed this significance threshold (e.g., chromosome 6 in T1D and RA). The red and blue
horizontal lines indicate the Bonferroni correction for each disease (color figure online)
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Table 1

280 SNPs tested for sex-specific effects across diseases

Disease Number of genome-wide significant SNPs Number of SNPs remaining after LD filtering

T1D 337 186

RA 136 72

CD 29 15

T2D 11 4

CAD 10 3

BD 0

HT 0

Total 523 280

Genome-wide significance (p value<1.7 × 10−7 in combined sexes) was assessed using a Bonferroni correction on the disease association p values
for all SNPs for a given disease. Sex-specific association analysis was performed on the SNPs that remained after performing LD filtering in each
disease
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Table 3

Sex-specific association using PMASE, logistic regression and Woolf’s test

Disease SNP PMASE p value Regression p value Woolf p value

CAD rs7865618 0.0214 0.0989 0.0776

CD rs3792106 0.0019 0.0300 0.0370

rs6431654 0.0101 0.0365 0.0376

RA rs3134926 0.0296 0.0804 0.0584

rs4947244 0.0127 0.0844 0.105

rs3132666 0.0225 0.109 0.111

T1D rs2763979 0.0031 0.0051 0.0030

rs4148873 0.0088 0.0122 0.0095

rs3131622 0.0226 0.0208 0.0205

rs480092 0.0191 0.0328 0.0293

rs3134926 0.0285 0.0338 0.0245

rs12660883 0.0371 0.0367 0.0518

Additional SNPs called significant by regression but not by PMASE

RA rs3128963 0.427 0.00787 0.00816

rs9348904 0.738 0.0132 0.0158

T1D rs3094123 0.0610 0.0394 0.0768

rs2596571 0.0981 0.0420 0.0924

The likelihood ratio test p values from logistic regression and the Woolf’s test p values are shown for each SNP that is called significant by
PMASE. Neither logistic regression nor Woolf’s test finds any SNP with a q value <0.2
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