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Abstract
Conventional, static magnetic resonance imaging (MRI) is able to provide a vast amount of
information regarding the anatomy and pathology of the musculoskeletal system. However,
patients, especially those whose pain is position dependent or elucidated by movement, may
benefit from more advanced imaging techniques that allow for the acquisition of functional
information. This manuscript reviews a variety of advancements in magnetic resonance imaging
techniques that are used to image the musculoskeletal system dynamically, while in motion or
under load. The methodologies, advantages and drawbacks of Stress MRI, Cine PC MRI and Real-
Time MRI are discussed as each has helped to advance the field by providing a scientific basis for
understanding normal and pathological musculoskeletal anatomy and function. Advancements in
dynamic MR imaging will certainly lead to improvements in the understanding, prevention,
diagnosis and treatment of musculoskeletal disorders. It is difficult to anticipate that dynamic MRI
will replace conventional MRI, however, dynamic MRI may provide additional valuable
information to findings of conventional MRI.
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INTRODUCTION
Accurate, in vivo measurements of joint loading and motion are necessary to the
understanding of joint mechanics and the effective diagnosis and treatment of
musculoskeletal pathology. Originally motivated by the fact that many pathologies arise
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from and affect joints during loading or movement, much work has been done to understand
the roles of abnormal joint mechanics in the progression of musculoskeletal disorders. For
example, the altered joint mechanics associated with both anterior cruciate ligament (ACL)
deficient and ACL reconstructed knees are associated with and may contribute to the
development and progression of osteoarthritis1-3. Additionally, abnormal patellofemoral
joint kinematics is often cited as a risk factor for the development and progression of
patellofemoral pain4-5. Techniques allowing the understanding of healthy joint mechanics as
well as abnormal joint mechanics will respectively enable practitioners to establish
normative values and diagnose, evaluate and treat musculoskeletal disorders.

Several methods for measuring joint mechanics exist and have been successful in enabling
practitioners to better understand joint alignments, loading and kinematics. In the past, data
of joint loading and motion have typically been collected from cadaveric studies and
external measurements of limb movements obtained with motion capture methods6-9.
Although helpful, these measurement techniques often fail to accurately replicate the
complexities of a joint since cadaveric studies do not imitate in vivo conditions and motion
capture techniques are based upon surface anatomy through the use of skin-based marker
systems9. More precise methods of obtaining in vivo joint mechanics have been developed.
One of these techniques involves attaching optical markers intracortically to obtain
measurements of bone motion during functional tasks. This method, although providing
much insight to in vivo bone kinetics and having accuracies of 0.5 mm, has its
disadvantages10. The process of attaching the markers to the bones of interest is both
invasive and difficult to perform; additionally, this technique provides little information with
regard to the mechanics of the surrounding soft tissue. Other methods that still permit
accurate measurements of bone mechanics include fluoroscopy and biplane radiography.
Both enable direct visualization of bone mechanics during dynamic tasks, however they are
limited since they are projective imaging modalities and three-dimensional (3D) registration
must be performed to provide a clinical perspective and accurate 3D measurements11. These
methods may utilize a marker-based registration technique12-14 or an intensity-based
registration technique12,15-18. The former, although having reported accuracies of 0.06
mm11, 13 - 1.0 mm11, 12 plane and 0.06 mm11, 13 - 2.1 mm11, 12 out of plane, requires the
implantation of fiducial bone markers, exposes the subject to ionizing radiation and provides
little information about the surrounding soft tissues. Intensity-based registration, which is
often derived from a 3D model obtained with images from a computed tomography (CT)
scanner, suffers in that it also exposes the subject to ionizing radiation and provides little
information about the surrounding soft tissue. This registration method has reported
accuracies of 0.42 mm11, 16 - 1.74 mm11, 12 in plane and 1.58 mm11, 12 - 5.6 mm11, 16 out of
plane.

Due to its high resolution, noninvasive nature and multiplanar imaging capabilities,
magnetic resonance imaging (MRI) has emerged as a promising method for imaging the
musculoskeletal system19. It is an especially useful tool with which to evaluate soft tissue
structures around joints in vivo as it permits one to manipulate contrast. Conventional MR
imaging is typically carried out under non-weight bearing, non-dynamic conditions,
however many recent advances in the field enable a more physiologic evaluation of the
joints.

STRESS MRI
One of the recent advances in the field of MR imaging is a technique called stress MRI. A
stress MRI takes place in atypical positions or when a joint is under a load. This technique
emerged in recognition of the fact that pain typically arises and affects joints during loaded
positions or in positions dependent upon stress conditions. Several studies have confirmed
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that static, unloaded positions are not representative of physioloical or loaded positions and
that in a clinical setting, evaluating a patient in the non-weight-bearing position alone may
result in misdiagnoses20-24. It is important to recognize and appreciate the complex
interactions of the various forces at play on the joints whether they are active muscular
forces or dynamic physical forces, such as gravitational, contact or inertial25, 26.

Two primary means of obtaining a stress MRI are accomplished through the use of an
upright open-bore MRI scanner and a supine closed-bore scanner that may utilize a weight
bearing apparatus. Most commonly used for the knee, the upright open-bore scanner that
may utilize a custom back support, enables the MR image to be acquired under physiologic,
loaded and even flexed conditions27. The use of the back support system is limited, yet
expanding. Figures 1a and 1b are examples of the double doughnut configuration28. The
drawback of this imaging technique lies in the lower field strength of open-bore scanners
resulting in a lower resolution due to a decreased signal-to-noise ratio28. The closed-bore
option can be used to image weight-bearing, atypical positioning, functional positions or
some combination of variants. Although a harness and footplate may be used to simulate
weight-bearing in a closed-bore MR system, it may not allow for the appreciation of all
aspects of upright loading, as the close-bore system tends to limit the patient’s range of
flexion28 Figure 1c. There are, however, new wide-bore (70cm) 3.0T MR systems that
provide high field supine imaging that allow for more stress and motion possibilities. As
with any weight bearing system, a relevant limitation is that of muscle fatigue. Additionally,
consideration must be taken to select a high-quality RF coil that does not limit the motion
being studied. Of important note is the lack of these scanners in clinical use due primarily to
the considerations taken into account when purchasing a scanner. In a clinical setting, the
ability to conduct high resolution supine MR imaging, especially of the brain and spine, is
critically important. For this reason, the use of horizontal closed-bore scanners with
harnesses and footplates is a common supine alternative to upright open-bore MR imaging.
Table 1 and Table 2 highlight the advantages and drawbacks of using an open configuration
and a supine closed-bore MR imaging system, respectively.

The applications of stress MR imaging often outweigh the systems’ inherent limitations. As
previously mentioned, pain is often elicited in only certain positions or under loaded
conditions, making stress MR imaging often more beneficial than conventional MR imaging
under particular conditions. Studies have shown that compared to a routine MR image, an
axial loaded MR image of the spine can provide additional valuable information and can
influence physicians’ treatment decisions29, 30.

Stress MR imaging techniques, which have been demonstrated to have strong accuracy and
subject-repeatability measures, have also led to an increased amount of knowledge regarding
the physiology and biomechanics of important tissues within the joints31,32 Table 3. Some of
this research has focused on the patellofemoral joint, as patellofemoral pain syndrome
(PFPS) is a frequent cause of knee pain. Gold et al. demonstrated that with an open-bore
scanner and a custom back support, it is feasible to image patellar cartilage accurately during
physiologic loading28. The increase in the cartilage contact area in the patellofemoral joint
under a load that the group observed displays the potential of stress MR imaging in the
understanding, evaluation and treatment of PFPS and the patellofemoral joint as a whole28

Figure 2. Kinematic joint changes, thought to be an important factor in the onset and
progression of osteoarthritis (OA), have been evaluated in healthy, ACL-deficient and ACL-
reconstructed knees with the stress MRI technique33, 34. Imaging at various degrees of
flexion and extension has allowed clinicians to obtain more physiologic measurements of
contact area centroid locations in healthy, pathologic and reconstructed knees leading to a
better kinematic understanding of the joints35. As OA has grown to affect over 27 million
adults in the United States, the understanding of this disease and its risk factors becomes

Shapiro and Gold Page 3

Osteoarthritis Cartilage. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increasingly more important36. Menisci of the knee are congruent to the tibial and femoral
condyles and among many things, function to absorb shock and transmit the load of the
weight of the body. In order to appropriately accommodate the body’s position and facilitate
load distribution, the menisci are adaptable and shift with respect to the articular surfaces to
increase surface area37-39. Studies have demonstrated that in knee flexion, both the medial
and the lateral menisci posteriorly translate on the tibial plateau and that upon conditions of
loading, the menisci shift, most significantly in the anterior horn of the lateral meniscus, to
accommodate the stress40, 41. Understanding of these meniscal dynamics may have clinical
relevance to diagnosis, prevention and treatment of meniscal injury.

Since the shoulder has the widest range of motion of any joint in the body, the space and
flexibility provided by open MR units suit imaging of the shoulder joint well42. The open
configuration of the system allows a technologist or radiologist to perform clinical stress
testing and interventional procedures to carry out an all-in-one MR arthrography and
evaluate the joint for the presence and direction of glenohumeral instability43-46. These
evaluations stand to decrease the number of extra personnel and transportation needed to
move a patient between rooms and can provide valuable information to the surgeon
designing a treatment or surgical plan43, 47.

CINE PC MRI
Cine phase contrast (cine-PC) MR imaging, originally developed to study flow and motion
in the cardiovascular system, is a noninvasive, in vivo kinematic technique capable of
measuring 3D velocities of tissue within an imaging plane during tasks involving
movement48, 49. Cine-PC MR imaging was developed through the combination of two
separate MR imaging techniques. The first of which, cine MRI, produces a series of quasi-
static anatomic images at various stages of the motion cycle during a single acquisition. The
object and motion being imaged must be repeatable and gated to the MR data acquisition.
Cine MR imaging collects data continuously over several cycles and retrospectively sorts
data with a synchronization trigger in order to compensate for periodic motion48. The
second technique, phase contrast MR imaging, quantifies local velocity and creates a
velocity map by using velocity-dependent pulse sequences to extract the velocity from the
phase of signal48. By combining these two techniques, cine-PC MR imaging provides an
anatomic image and three orthogonal velocity images (vx, vy, vz) for each frame48. Cine-PC
MR imaging has been shown to be a promising method with which to study knee joint
kinematics48, 50, 51. In recent studies conducted by Behnam et al., cine-PC MRI has been
demonstrated to have strong accuracy and subject-repeatability in the assessment of in vivo
musculoskeletal motion tracking at 3.0T31 Table 3.

The primary drawback of cine-PC MR imaging is that it requires multiple repetitions of the
same motion cycle, which subsequently presents more challenges. If the motion cycles are
not repeated accurately, the image quality can degrade significantly. Only small loads upon
the body can be tested as multiple motion cycles may lead to subject fatigue. Additionally,
subjects with conditions that do not allow them to perform the repeated action being studied
may 1) require the investigator to passively move the subject’s limb or 2) may not be able to
be studied with cine-PC MR imaging. Finally, as these techniques were developed to image
the flow and motion in the cardiovascular system, imaging musculoskeletal velocities, which
are significantly slower, presents a challenge. To use cine-PC MR imaging to measure
slower velocities, a larger encoding gradient is necessary49, 52.

Despite these drawbacks, cine-PC MR imaging has been used to gain vast amounts of
understanding in reference to musculoskeletal structure and function. Cine-PC MR imaging
has been used by Asakawa et al. to further understand muscle mechanics following tendon
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transfer surgery53, by Pappas et al. to challenge the conventional thinking that muscle
fascicles shorten uniformly54 and by Finni et al.55, 56 to investigate the complex
deformations of the isometrically contracting soleus muscle. Recently, cine-PC imaging has
been used by Bradford et al. with PC-VIPR to measure tibio-femoral kinematics and to
visualize cartilage contact during movement in the hopes of teasing out the eitiology of early
onset OA following ACL reconstruction57 Figure 3. Cine-PC imaging has also been used by
Hodgson et al. to track and study the strain along the aponerosis-tendon length58. In this
manner, a trajectory is calculated for every pixel and strain distribution can be seen at all
times throughout the contraction cycle. In studying particular muscles with the cine-PC MR
imaging technique, a better understanding of how specific muscles produce force and
displacement can be acquired58.

Since muscle deformations are often highly complex and 3D, they can be better understood
with MR tagging and MR imaging with displacement encoding with simulated echoes
(DENSE) techniques, which are better approaches to extracting fine resolution
displacements and strain fields than cine-PC MR imaging9. Spin tagging is accomplished by
inverting spatially separated thin bands of protons and allowing motion visualizing as
distorted tagged lines in subsequent temporal phases9, 59-61. Unfortunately, spin tagging
lacks information between tags and experiences tag line fading9. It has, however, been used
to understand myocardial wall and skeletal muscle motion as it enables a deeper
appreciation of three-dimensional tissue motion56, 62. DENSE MR imaging encodes tissue
displacement into the phase of the stimulated echo by encoding motion over long time
intervals31, 63. To date, several researchers have successfully utilized DENSE to evaluate
strain within myocardial tissue31, 63, 64. By using DENSE MR imaging, Zhong et al.
demonstrated in vivo skeletal muscle mechanics to a level of precision that was not
previously possible. By illustrating that two-dimensional strains during low-load elbow
flexion were nonuniform throughout the biceps brachii muscle, they exemplified the
complex multi-dimensional deformation of skeletal muscle that occurs during contraction65

Figure 4.

REAL TIME MRI
Real-time MRI, in addition to also originating as a technique with which to image
cardiovascular motion and flow, holds great promise in the evaluation of joints during
volitional tasks11, 66,. Real-time MR imaging, although primarily conducted in 2D in the
musculoskeletal system, is advantageous as it acquires a time series of single image slices in
only one motion cycle and the velocities that are measured are not averaged over multiple
cycles of motion. In contrast to cine-PC MR imaging, by only requiring one motion cycle,
real-time MR imaging makes subject fatigue less of a concern and permits subjects with
conditions preventing them from repeating certain movements to be evaluated. Fatigue is
also minimized as image plane data can be acquired quickly with real-time MRI and can be
reconstructed with image display rates of 24 frames/sec11, 67. Additionally, the imaging
plane can be continuously defined and updated in real-time to continue tracking an object if
motion out of the imaging plane occurs67.

It should be noted that the accuracy associated with real-time MRI is highly dependent upon
the type of scanner used. The signal-to-noise ratio, the acquisition frame rate and the image
resolution all affect accuracy and are, themselves, dependent upon the slew rate and
magnitude of the gradients, the homogeneity of the main magnetic field and the field
strength of the scanner11. Although cine-PC MR imaging has slightly better accuracy and
repeatability measurements, real-time MRI may be more desirable for those subjects who
fatigue easily or those who are unable to repetitively perform the movement being
imaged11, 21, 68 Table 3.
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To accompany and enhance the development of kinematic imaging with real-time MRI
many hardware and software advancements have been made. Flexible knee coils have been
developed, tested and shown, in a very few number of subjects, to have similar results to
static data while reporting high SNR values and homogenous coverage69, 70. A high-
resolution steady-state free precession (SSFP) pulse sequence was applied to track bone
motion with real-time MR imaging. Upon testing and with the use of shape-matching
algorithms, 3D in vivo joint kinematics were accurately established with millimeter
resolution71.

Draper et al., recently used real-time MR imaging to demonstrate the differences in weight-
bearing response and measured patellofemoral kinematics between subjects with
patellofemoral maltracking and those without21 Figure 5. The measurement of moment arms
is another valuable application to which real-time MR imaging has proved useful. A
moment arm, the perpendicular distance from the joint center to a particular muscle’s line of
action, defines the function of a muscle around a particular joint and can verify the accuracy
of representations of muscle paths72. Like many of the previously discussed applications, the
measurement of moment arms has traditionally been estimated with cadaveric73,
ultrasound74, CT75 and static MRI76-78 studies. Blemker and McVeigh have demonstrated
the feasibility of the measurement of moment arms in the knee throughout its full range of
motion with the real-time MR imaging technique in a wide-bore scanner9, 79 Figure 6. The
ability to characterize moment arms under more physiologic conditions with kinematic
imaging techniques is a powerful technology made even more valuable when performed in
combination with other MR-based applications as comparisons can be made between the
image data and the model9.

A slight variation of real-time MR imaging is real-time PC MR imaging which can be
applied to measure in vivo skeletal muscle velocity during dynamic motion52. As this
method was, again, initially developed to image cardiac flow, modifications were made in
order to image slower musculoskeletal motion. Asakawa et al. demonstrated the ability to
acquire accurate measurements of encoded velocities in both the biceps brachii and triceps
brachii using real-time PC MR imaging52. Similar to the previous applications of real-time
MR imaging, this technique is valuable, as it requires only one motion cycle while providing
a means of understanding musculoskeletal structure and function.

CONCLUSION
In the above review, several MR imaging methods that enable a better understanding of
functional aspects of the musculoskeletal system are described. The data acquired from these
techniques has helped to advance the field by developing more realistic models of the
musculoskeletal framework and helping to answer important biomechanical questions.
While the novelty of these functional imaging techniques holds potential in advancing the
field, the primary application of these imaging techniques is still within the research realm
where the focus is currently centered around the optimization of such techniques. The
developments presented by the described methods can be combined with other image-based
musculoskeletal modeling techniques and have already begun to provide clinically useful
insights and revolutionize the study of musculoskeletal anatomy, pathology and function.
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Figure 1.
Subject and custom-built MR-compatible back support within the double doughnut
configuration allowing for upright MR examination (a). Schematic of subject within the
back support illustrating adjustable toggle to accommodate unloaded and loaded conditions
(b). A seat rest can be made available upon pushing the toggle forward to allow the subject
to sit down and support his or her own body weight. The back support slides up and down
on rollers facilitating positions of knee flexion. A pulley and cleat mechanism is used to lock
the back support into the desired position. A custom-made, weight-bearing apparatus that is
compatible with closed MR scanners (c). The subject lays supine, with his or her knee of
interest between the two plates of a knee holder (middle arrow) and his or her foot pushed
on a footplate (left arrow). Weights, which hang behind the patient, (right arrow) are
connected to the footplate by a loading strap. (Reproduced from Besier TF, Draper CE, Gold
GE, Beaupre GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and
weight-bearing, J Orthop Res 2005;23:345-50, with permission of Wiley-Liss, Inc, a
subsidiary of John Wiley & Sons, Inc. and Lee KY, Slavinsky JP, Ries MD, Blumenkrantz
G, Majumdar S. Magnetic resonance imaging of in vivo kinematics after total knee
arthoplasty, J Magn Reson Imaging 2005;21:172-8, with permission of Wiley-Liss, Inc, a
subsidiary of John Wiley & Sons, Inc.)
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Figure 2.
MR images (TR/TE: 33/9 msec, NEX: 1) of an unloaded (a) and loaded (b) knee of a
healthy volunteer at 30° of flexion in 2:13 minutes with an approximate load of 0.45 times
the subject’s body weight supported by each leg. Contact regions (white lines) between the
patella and femoral cartilage are displayed in the close up images. A slight increase in the
contact region is apparent in the loaded image. Both images appear artifact free allowing for
visualization of patellar cartilage. (Reproduced from Gold GE, Besier TF, Draper CE,
Asakawa DS, Delp SL, Beaupre GS. Weight-bearing MRI of patellofemoral joint cartilage
contact area, J Magn Reson Imaging 2004;20:526-30, with permission of Wiley-Liss, Inc, a
subsidiary of John Wiley & Sons, Inc.)
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Figure 3.
3D joint kinematic data (a) and models (a,b,c) derived from Cine-PC MR images (TR/TE:
6.8/3.3 msec) of a healthy knee acquired in 5:36 minutes under a load similar to that of
walking. External tibial rotation and anterior tibial translation can be visualized from
extension to 37° of flexion (a) and when coupled with segmented bone and cartilage models,
can be used to demonstrate contact and motion of the tibio-femoral joint throughout a cycle
of flexion (b) and extension (c). (Reproduced from Bradford R, Johnson K, Wieben O and
Thelen D. Dynamic imaging of 3d knee kinematics using PC-VIPR. In: Proceedings of the
19th Anuual Meeting of ISMRM, Montréal, Québec, Canada, 2011 (Abstract 3178), with
permission.)
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Figure 4.
Displacement maps of motion phases that correspond to elbow extension (a, d), approaching
elbow flexion (b, e) and elbow flexion (c, f). Sagittal 2D displacement maps in which the
head of the displacement trajectory indicates the 2D position of that element of muscle at
this point in time and the tail indicates the position at the initial point in time (a-c). The 2D
axis signifies the head and anterior directions. For visualization purposes, the displacement
map is spatially under-sampled. Axial 3D displacement maps in which the dots indicate the
3D positions of that element of muscle at this point in time (d-f). The 3D axis signifies the
head, left and anterior directions. Lastly, the displacement maps illustrate that the biceps and
triceps muscle move antagonistically during elbow flexion. (Reproduced from Zhong X,
Epstein FH, Spottiswoode BS, Helm PA, Blemker. Imaging two-dimensional displacements
and strains in skeletal muscle during joint motion by cine DENSE MR, J Biomech
2008;41:532-40, with permission of Elsevier.)
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Figure 5.
Real-time MR images in the oblique axial plane through the widest portion of the patella
during upright, weight-bearing knee extension at 0.5T and 90% of body weight (a) and
supine, non-weight bearing knee extension at 1.5T (b) in a patellofemoral joint maltracker
from knee flexion (30) to full extension. Differences between upright, weight bearing and
supine, non-weight bearing MR imaging can be seen using real-time MRI. (Reproduced
from Draper CE, Besier TF, Fredericson M, Santos JM, Beaupre GS, Delp SL, et al.
Differences in patellofemoral kinematics between weight-bearing and non-weight-bearing
conditions in patients with patellofemoral pain. J Orthop Res 2010;29:312-7, with
permission of Wiley-Liss, Inc, a subsidiary of John Wiley & Sons, Inc.)
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Figure 6.
Real-time MR images at frame 1 (a), frame 10 (b) and frame 20 (c) acquired during
dynamic knee extension-flexion and used to calculate knee extension moment arms of the
rectus femoris (d). Rectus femoris muscle-tension length measurements (green dashed
lines) are shown in figures a-c. The knee joint angles for each frame were also measured and
moment arms were calculated through the range of motion. The moment arms were
compared with Buford WL Jr, et al. (72) (dotted lines correspond to the average values from
15 cadaveric specimens; added regions correspond to ±1 SD). (Reproduced from Blemker
SS and McVeigh ER, Real-time measurements of knee muscle moment arms during
dynamic knee flexion-extension motion. In: Proceedings of the 14th Annual Meeting of
ISMRM, Seattle, WA, USA, 2006 (Abstract 3619), with permission.)
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Table 3

“Application, Accuracy and Subject-repeatability by Dynamic MR Technique

Technique Application Accuracy* (in mm of in-
plane translation)

Subject-repeatability** (in mm of
superior inferior translation / ° of
patellar tilt)

Stress MRI Imaging of joints in atypical positions or under
a load

0.30 (0.11) 31, 32 0.81 (0.37) / 1.04 (0.35) 32

Cine PC MRI Imaging of anatomy and velocity during
dynamic tasks

0.28 (0.22) 31 0.73 (0.31) / 1.10 (0.35) 31

Real Time MRI Imaging of anatomy and velocity during
dynamic tasks in a single motion cycle

2.011, 31 -- / 2.011, 21

*
Validated accuracy reported for patellofemoral joint as absolute average error or RMS error. The mean standard deviation is listed in parentheses.

Sagittal plane was assumed for in-plane motion, worst error for all three motion direction planes listed if all were acquired.

**
Validated subject-repeatability reported for the patellofemoral joint as mean across subjects of the standard deviation across trials.
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