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Abstract

Transcranial magnetic stimulation (TMS) has developed into a powerful tool for studying human
brain physiology and brain—behavior relations. When applied in sessions of repeated stimulation,
TMS can lead to changes in neuronal activity/excitability that outlast the stimulation itself. Such
aftereffects are at the heart of the offline TMS protocols in cognitive neuroscience and
neurotherapeutics. However, whether these aftereffects are of applied interest critically depends on
their magnitude and duration, which should fall within an experimentally or clinically useful range
without increasing risks and adverse effects. In this short review, we survey combined TMS-EEG
studies to characterize the TMS-aftereffects as revealed by EEG to contribute to the
characterization of the most effective and promising repetitive TMS-parameters. With one session
of conventional repetitive TMS (of fixed pulse frequency), aftereffects were consistently
comparable in magnitude to EEG-changes reported after learning or with fatigue, and were short-
lived (<70 min). The few studies using recently developed protocols (such as theta burst
stimulation) suggest comparable effect-size but longer effect-durations. Based on the reviewed
data, it is expected that TMS-efficacy can be further promoted by repeating TMS-sessions, by
using EEG-gated TMS to tailor TMS to current neuronal state, or by other, non-conventional
TMS-protocols. Newly emerging developments in offline TMS research for cognitive
neuroscience and neurotherapeutics are outlined.
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Introduction

Transcranial magnetic stimulation (TMS) is increasingly used for noninvasive stimulation of
the human brain in healthy participants and patients to study brain-behavior relations, the
pathophysiology of diseases, and the potential of neuromodulation for rehabilitation and
therapy (e.g. Walsh and Cowey 2000; Kobayashi and Pascual-Leone 2003; Rossi and
Rossini 2004; Ridding and Rothwell 2007; Fregni and Pascual-Leone 2007; Hallett 2007).
TMS can be applied as one stimulus at a time (single pulse), as trains of stimuli delivered at
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Methods

a fixed frequency (conventional repetitive TMS, usually in the range of 1-20 Hz), or in more
complex trains combining different frequencies, such as for example 50 Hz pulse-trains
repeated at a rate of 5 Hz, termed theta burst stimulation (TBS) (Huang et al. 2005). In
repeated paired associative stimulation (PAS) (Classen et al. 2004), repetitive median nerve
stimulation at very low frequencies (e.g. 0.1 Hz) is combined with concurrent contralateral
post-rolandic TMS. Provided safety guidelines are met (Wassermann 1998; Rossi et al.
2009), TMS is considered safe in humans as shown through comprehensive surveys of
potential adverse effects and complications (Chen et al. 1997; Wassermann 1998; Machii et
al. 2006; Bae et al. 2007; Rossi et al. 2009).

An important aspect of TMS is that the effects of each single pulse or single-train can
summate with repeated application, leading to effects outlasting a stimulation session
(Robertson et al. 2003; Rossi and Rossini 2004; Ridding and Rothwell 2007; Hallett 2007).
This has been termed the offline repetitive TMS (rTMS) approach, which is used to
transiently modulate brain function in healthy participants beyond TMS to probe for the
implication of the stimulated area (or network) in perception and cognition (e.g. Robertson
et al. 2003), or with the aim of modifying brain activity over longer time-scales in patients
with specific neurological disorders for therapeutic intent (e.g. Kobayashi and Pascual-
Leone 2003; Rossi and Rossini 2004; Fregni and Pascual-Leone 2007; Hallett 2007).
However, while many studies have used these protocols with the above-mentioned aims,
little is known on the magnitude and duration of the induced changes broken down
according to the parameter space of offline rTMS-protocols. Because TMS can transiently
induce as well as interfere with electrical brain activity (reviews in Komssi and Kahkdnen
2006; Miniussi and Thut 2009; Taylor et al. 2008), surveying combined TMS-EEG studies
for TMS-induced aftereffects can provide useful information here. In particular, EEG-
activity is likely to be a more sensitive measure for evaluating TMS-impact on brain
function than behavioral effects, given that on several instances robust TMS-aftereffects in
EEG-activity have been reported without a behavioral correlate, when both EEG and
behavior have been co-examined (e.g. Rossi et al. 2000; Hansenne et al. 2004; Holler et al.
2006; Ortu et al. 2009). In analogy, TMS-aftereffects in electromyographic (EMG) measures
of motor cortex excitability have been observed in the absence of apparent changes in
amplitude or velocity of voluntary movements (e.g. Muellbacher et al. 2000). While it is
sensible to base the design of TMS experiments on observable behavioral manifestations, it
is therefore also of interest to interrogate potentially more sensitive physiological changes to
assess the impact of TMS.

This review focuses on TMS-aftereffects on EEG-activity in repeated TMS designs. In
surveying combined TMS-EEG research, we shall address the following questions: (1)
Which rTMS parameters evoke the most reliable aftereffects in terms of magnitude and
direction of changes in EEG/evoked potentials (EPs)? Is the effect-size in the order of
physiological changes, such as those observed after learning or fatigue, or does it markedly
exceed the normal range? (2) Which rTMS parameters do evoke the most long-lasting
effect? The results are discussed in terms of future developments for boosting the efficacy
and utility of rTMS protocols.

Literature Review

Using Pubmed and the references from relevant articles, we identified more than 100 TMS-
EEG studies in >1000 participants that have been published over the last 20 years (Jan
1989-May 2009). Inclusion criterion for review was quantification of aftereffects in EEG
activity/Evoked Potentials (EPs) after rTMS delivery.
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We reviewed all reports and noted (i) article references, (ii) total number of participants and
population (i.e. healthy or patients), (iii) TMS parameters (including number of trains, train-
duration, intertrain interval, stimulation site and intensity, number of applied pulses), (iv)
EEG-measures, (v) timing of EEG-recordings relative to TMS (before, during or after), (vi)
presence or absence of aftereffects (and their nature), (vii) aftereffect size (percent change
relative to pre-TMS or sham control) and (viii) duration of aftereffects on EEG (when
assessed). See Table 2.

Review-Sample

Results

The reviewed study sample (n = 51 experiments in ~650 participants with the majority being
healthy volunteers) represents approximately 40% of all TMS-EEG studies identified during
the reviewed period.

The reminder of the TMS-EEG studies (other 60%) consisted of single-pulse TMS
experiments studying the TMS-evoked electrical activity and its spreading immediately after
stimulation (<1 s) in the absence of pulse-effect summation, or of rTMS experiments that
inspected background EEG for TMS-induced epileptiform activity for safety evaluation (for
a detailed review of this aspect see Rossi et al. 2009).

All reviewed studies either used TMS protocols with repeated pulse administration at fixed
pulse repetition frequencies (conventional rTMS protocols) or the protocols of TBS (Huang
et al. 2005) or PAS (Classen et al. 2004). Within the conventional protocols, only a discrete
number of frequencies were tested (0.9-1 Hz:n=17,5Hz:n=6,10Hz: n=8,20 Hz: n =
4, 25 Hz: n = 1) often in association with varying number of trains, train-duration, intertrain
interval, and TMS-intensities across studies, leading to a large number of employed
parameter-combinations (see tables). Three studies used very low frequencies of 0.6 Hz
(\Van Der Werf and Paus 2006) and 0.2 Hz (Urushihara et al. 2006; Hosono et al. 2008) and
are discussed separately where of interest. To reduce this parameters space, we collapse for
our analysis across low-frequency (0.9-1 Hz) versus high-frequency (5 Hz and above)
protocols. This grouping seems reasonable also because previous studies on motor cortex
excitability have reported these two protocols to differ in terms of aftereffect-direction
(suppression vs. facilitation) (e.g. reviewed in Hallett 2007). Note that no TMS-EEG study
has looked at aftereffects of conventional TMS in the frequency-range between 1 and 5 Hz,
where the reversal of effect-direction is to be expected. In regards to TBS and PAS,
employed parameters were more uniform across studies.

Table 1 provides a summary of TMS parameters broken down by TMS-protocols (average
and range over studies/experiments). The figures and Table 2 depict the results per
individual study/experiment.

TMS-Induced Aftereffects in EEG: Affected EEG/EP-Measures

Aftereffects were observed on a variety of measures including somatosensory, visual,
cognitive and motor potentials as well as oscillatory activity (Table 2). In general, TMS
affected a specific component of the potentials depending on site of stimulation, e.g. C1
after occipital pole stimulation (Schutter and van Honk 2003), distinct SEP-components
after stimulation of sensory/motor cortices (e.g. Katayama and Rothwell 2007;Ishikawa et
al. 2007;Restuccia et al. 2007), P300 after prefrontal stimulation (e.g. Evers et al.
2001;Hansenne et al. 2004;Jing et al. 2001a), or the negative slope of the motor readiness
potential after M1-stimulation (Rossi et al. 2000;Ortu et al. 2009). With respect to
oscillatory activity, rolandic alpha- and beta-oscillations were frequently affected after
sensory or motor cortex stimulation, both regarding movement-related changes (e.g. Strens
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et al. 2002; Tamura et al. 2005) as well as background activity at rest (Fuggetta et al.
2008;Brignani et al. 2008) (see also Table 2). Overall, the topography of the aftereffects in
dependence of stimulation site is consistent with the expected generators and functional
roles of the affected EPs or oscillatory components.

Direction and Size of TMS-Induced Aftereffects

The results in regards to effect-direction (sign thereof) are illustrated in Fig. 1b for each
study that observed TMS effects. Figure 1c depicts the associated effect-size (percent
change relative to pre-TMS or sham) when reported or quantifiable post hoc (multiplied by
effect-direction). The figures point towards a systematic difference across protocols in
regards to effect-direction. Note for example in Fig. 1b, ¢ the predominantly negative effect-
direction (aftereffect of suppressive or inhibitory nature) after conventional low-frequency
TMS (0.9-1 Hz) and the more frequent positive effect-directions (facilitative effects) after
conventional high-frequency TMS (5-20 Hz). In contrast to effect-direction, there was a
high variability in effect-size across studies (ranging from ~10-400%, absolute values, Fig.
1c), with however some tendency towards stronger effect-size with increasing number of
pulses (indicated in brackets in Fig. 1c). This is further detailed next for conventional and
TBS/PAS protocols separately.

Conventional Repetitive Protocols—All but three studies reported significant
aftereffects in EEG, either on amplitude (spectral power, EP-components) or latencies (EP-
components, sleep stages). The three null-results were observed with low frequency
stimulation (0.9, 1 Hz and 1 Hz) and can be accounted for by short stimulation duration in
one case (1 Hz for 2 min, Evers et al. 2001). The other two studies with null results (Satow
et al. 2003; Hansenne et al. 2004) however do not differ in design (0.9-1 Hz for 10-16.6
min) from studies with significant EEG-changes. Overall, this may suggest that the
induction of aftereffects is slightly less likely with low (~1 Hz) than high TMS-frequencies
(>5 Hz) when using parameters within the safety-margins. Notable is the report of
aftereffects in the two studies using very low frequencies of 0.2 Hz (250 pulses, 20 min
stimulation) that can be explained by the use of repeated monophasic pulses (Urushihara et
al. 2006; Hosono et al. 2008), shown to be more effective than the biphasic pulse form in
repetitive designs (Hosono et al. 2008).

When aftereffects were present (both amplitude and latency effects considered), there were
systematic differences between low-frequency (0.9 or 1 Hz) and high-frequency protocols
(5-25 Hz) in terms of aftereffect direction. Facilitation prevailed over suppression after
high-frequency TMS (n = 12 vs. n = 4), and suppression prevailed over facilitation after
low-frequency TMS (n = 14 vs. n = 2, Fig. 1b and Table 2). This distribution is significantly
different from chance (according to a Chi-square test, P = 0.0004; all effects per experiment
counted; alpha-band increase/decrease taken as sign for suppression/facilitation). Again, the
studies by Urushihara et al. (2006) and Hosono et al. (2008) are noteworthy in that 0.2 Hz-
stimulation with monophasic pulses evoked facilitative aftereffects, i.e. an enhancement of
EP-amplitude rather than suppression.

In those studies in which percentage change from pre-TMS values or a sham control was
reported or could be calculated a posteriori based on the reported data, average size of the
absolute TMS-aftereffect on EEG-activity/EPs was in the order of 30% change (only
amplitude—but no latency—data considered, see Table 1 and Fig. 1c). Yet, while
differences in effect-directions were observed across protocols (see above), there was no
such difference in terms of effect-size between low (mean = 31%, range: 10-82%; n =11
studies) and high-frequency TMS (mean = 30%, range: 10-60%; n = 11 studies), when the
only outlier (400% change; Griskova et al. 2007) was discarded.
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Theta Burst (TBS) and Repeated Paired Associative Stimulation (PAS)—Only a
few studies to date have explored EEG aftereffects with these protocols (TBS: Katayama
and Rothwell 2007; Ishikawa et al. 2007; Saglam et al. 2008; Schindler et al. 2008; Poreisz
et al. 2008; Ortu et al. 2009; Grossheinrich et al. 2009; PAS: Tsuji and Rothwell 2002;
Wolters et al. 2005; Huber et al. 2008). In these studies, both TBS and PAS were associated
with significant aftereffects of effect-sizes comparable to those found following
conventional rTMS (cTBS: mean = 35%, range: 15-50%, n = 6 studies; iTBS: mean =
17.5%, range: 15-20%, n = 3 studies; PAS: mean = 22.5%, range: 10-50%, n = 3 studies;
see also Table 1) and provoked either facilitation or suppression (see also Fig. 1b, c).

Duration of TMS-Induced Aftereffects

Duration of EEG aftereffects on EEG-activity/EPs has been explored in a total of 38
experiments, 17 of which recorded EEG/EPs until recovery (Fig. 1d, uniformly colored
bars), and with the reminder of the studies (n = 21) providing timing information but
terminating the recording prior to full EEG normalization (Fig. 1d, fading color bars). The
figure is suggestive of no consistent differences in aftereffect-duration across conventional
protocols (Fig. 1d, blue bars), but somewhat longer aftereffect duration for TBS and PAS
(Fig. 1d, red and green bars), as detailed below.

Conventional Repetitive Protocols—Absolute durations until recovery ranged from 15
to 70 min post-TMS. These aftereffect-durations did not differ between low frequency and
high-frequency protocols (i.e. 0.9-1 Hz vs. 5-25 Hz rTMS: mean = 31 min vs. 28 min,
range: 15-70 min vs. 25-30 min) (see Table 1 for range of employed parameters). No study
so far suggests effect duration >70 min (see Fig. 1d).

Theta Burst (TBS) and Repeated Paired Associative Stimulation (PAS)—Of the
16 experiments using these protocols, 5 have estimated time of aftereffects until recovery
(TBS: mean = 70 min, range: 60-90 min: n = 3; PAS: mean = 40 min, range: 20-60 min: n =
2). The duration of aftereffects seems overall higher than with conventional rTMS. Some of
the studies that did not record until recovery have found aftereffects to persist at 90 min (see
Fig. 1d, fading color bars), but this is based on a small number of studies and has to be
investigated in more detail in the future.

Note that as compared to conventional protocols, TBS studies used similar number of pulses
but considerably shorter duration and lower intensity of stimulation (Table 1) to equate risk
(Katayama and Rothwell 2007;Ishikawa et al. 2007).

Prediction of Aftereffect-Size by TMS-Parameters

While there was no evidence for aftereffect-size to differ across protocols (see above),
aftereffect-size correlated with several TMS-parameters.

Conventional High-Frequency TMS (5-20 Hz)—Aftereffect-size depended on number
of pulses applied. The effect-size significantly increased with increasing number of pulses
(Pearson correlation coefficient: r = 6.7, P = 0.017, n = 12), a correlation that remained
significant even when the two extremes in terms of number of pulses (n = 24 pulses:
Klimesch et al. 2003, n = 2000 pulses: Griskova et al. 2007) were excluded (r = 6.3, P =
0.049, n = 10, see Fig. 2a). For high-frequency TMS, effect-size did also significantly
increase with number of trains (r = 9.3, P < 0.0001 for n = 12/r =5.87, P = 0.075 for n = 10
without Klimesch et al. 2003 and Griskova et al. 2007, results not illustrated), but did not
show a significant relationship with any of the other TMS-parameters assessed (including
TMS-intensity).
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Conventional Low-Frequency TMS (0.9-1 Hz)—There was a significant negative
relationship between aftereffect-size and TMS-intensity (r = —0.72, P =0.013, n = 11)
indicating stronger suppressive effects with higher intensities (see Fig. 2b), but with no other
TMS-parameter. Note that the dissociation of effect-size to correlate with number of pulses
in high-frequency and with TMS-intensity in low-frequency applications might partially be
explained by unequal variability of these two parameters across protocols. Number of pulses
employed across studies was more variable for high- than low-frequency applications
(standard deviation: 709 vs. 327; n = 12 vs. n = 11). Conversely, intensities employed were
more variable for low- than high-frequency TMS (standard deviation: 11 vs. 8; n =12 vs. n
=11).

No correlations between effect-size and TMS-parameters were computed for TBS and PAS
due to lack of variance (see Table 1) and we did not find a correlation between effect-
duration (time until recovery) and any of the TMS parameters.

Discussion

We find the electroencephalographic aftereffects of rTMS to be robust with a mean effect-
size of 30-35% change from baseline or sham and a mean duration of 35 min, in addition of
being absent in only a very small number of studies. Furthermore, we find the aftereffect
direction (suppression vs. facilitation) to depend on the protocol employed. Conventional
low-frequency (1 Hz) and high-frequency TMS (5 Hz or above) differed in terms of their
suppressive versus facilitative impact on brain activity, in line with studies on rTMS-
induced changes in human corticospinal motor excitability (e.g. Pascual-Leone et al. 1994;
Maeda et al. 2000; Hallett 2007) as well as findings in animal models (Valero-Cabre et al.
2007). Finally, we did not find any evidence for aftereffect-size or aftereffect-duration to
differ between the currently used TMS protocols (conventional rTMS, TBS, PAS).
However, aftereffect-size did depend on the number of pulses, trains and intensities applied.

Aftereffect of a Single TMS-Session on EEG/EPs: Comparison with Other Measures

The observed aftereffect-size in the EEG/EPs after rolandic TMS for instance is in the range
of physiological changes observed with motor learning, sustained movements, or muscle
fatigue. The TMS-induced, 10-60% changes in SEP-amplitude (Enomoto et al. 2001; Tsuji
and Rothwell 2002; Wolters et al. 2005; Katayama and Rothwell 2007; Ishikawa et al. 2007;
Restuccia et al. 2007; Table 2) are equivalent to a 35-46% change in SEP-amplitude
reported with motor skill acquisition (Nelson et al. 2001). Likewise, the TMS-induced, 10—
82% changes in alpha/beta-activity (power/coherence) (Strens et al. 2002; Oliviero et al.
2003; Tamura et al. 2005; Fuggetta et al. 2008; Brignani et al. 2008; Table 2) compare in
order of magnitude to changes in alpha/beta-oscillations as a consequence of sustained
finger movements (10-40%: Erbil and Ungan 2007) and muscle fatigue (30-35%: Liu et al.
2005). Similarly, the TMS-induced, 30% change in the readiness-potential (RP) (Rossi et al.
2000; Table 2) is comparable to the 100% RP-change due to fatigue (Johnston et al. 2001;
Schillings et al. 2006).

The observed aftereffect-duration in the EEG/EPs is furthermore comparable with the TMS-
induced aftereffects on corticospinal motor excitability measured via EMG (e.g. Gerschlager
et al. 2001; Miinchau et al. 2002; Peinemann et al. 2004). It also matches in order of
magnitude the time-course of apparent TMS-induced behavioral changes that have been
assessed in studies on cognition (mostly using 1 Hz protocols), and shown to last
approximately as long as the duration of the stimulation itself (Robertson et al. 2003). Based
on this rule-of-thumb, we can estimate the behavioral aftereffects in the 1 Hz-TMS papers
we reviewed (and for which time until recovery was assessed, n = 7) to have lasted about
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15.5 min (= mean duration of stimulation, see Table 2). This compares to a measured 31 min
of EEG-changes.

Overall, the outcome of currently employed repetitive TMS protocols seems thus to lie
within the range of physiologic changes (learning, fatigue) and not to outlast the duration of
an experiment (~1 h). Within certain limitations (see paragraph below), this contributes to
further characterize the safety of repetitive TMS (Rossi et al. 2009), in particular for
experiments with healthy volunteers in whom short-lived effects are desirable. However, the
effect-duration in the order of a couple of minutes also limits a more versatile use of rTMS
in neurotherapeutics. In the following, we will discuss the most promising ways to further
prolong effect-duration when desirable, such as in clinical applications. We will also discuss
very recent developments that focus on potential short-lived frequency entrainment by a
single train, which is of interest for research on brain oscillations.

Estimation of rTMS-Aftereffects by EEG/EPs: Possible Limitations

As a cautionary note, we would like to mention that the estimation of effect-direction and
effect-size via EEG can be confounded by several factors. Instances of enhanced EEG/EP-
amplitude might not necessarily be the reflection of primarily facilitative aftereffects of the
TMS-train, but could reflect a (secondary) mechanism compensating for initial inhibition.
Conversely, a reduction of EEG/EP-amplitude could reflect secondary, potentially protective
mechanisms against initial facilitation. Indeed, there are some reports of mixed facilitative
and suppressive effects within the same experiment (but on different EEG/EP-measures) that
have been explained by mechanisms of compensation (e.g. see Thut et al. 2003; Restuccia et
al. 2007). Such physiological reactions of the brain to rTMS, possibly masking behavioral
effects, might partially explain why EEG can detect changes when behavioral measures fail,
as evidenced previously (Rossi et al. 2000; Hansenne et al. 2004; Holler et al. 2006; Ortu et
al. 2009). However, it is conceivable that not only behavioral but also EEG changes might
be masked by compensatory mechanisms, so that the range of changes detectable by EPs or
EEG might be somewhat self-limiting, with EPs and oscillatory activity only disappearing in
case of a discrete lesion. Such mechanisms of compensation might then lead to an effect-
underestimation also by EEG. The likelihood of this to happen seems however smaller with
EEG than with behavioral measures. In addition, the converse argument is also tenable. That
is, it is conceivable that the EEG-measured aftereffects following TMS not only reflect the
consequence of the direct TMS impact but also capture the rapid adaptation and
compensatory responses by non-stimulated brain regions, which would lead to a
multiplication rather than self-limitation of effects.

TMS-Efficacy: The Effect of Repeating rTMS Sessions

It is important to point out that there are no studies that have measured the duration of TMS-
induced EEG-aftereffects following multiple repetitive TMS sessions over consecutive days.
It is likely that the magnitude and duration of the EEG aftereffects will change in systematic
ways over repeated sessions. Because the impact of rTMS can outlast the TMS-session
(consisting of one long train in 1 Hz applications, or of consecutive short trains in high-
frequency protocols, see Table 1), it is conceivable that a single TMS sessions, which may
initially modify brain physiology without inducing clinically apparent signs, can be
expanded into a therapeutically effective protocol through session-repetition at another day.
In the same way as single-pulses or single-trains mutually interact when repeated within a
session, lasting neurophysiologic effects may condition effects across TMS sessions. Indeed,
Maeda et al. (2000) found that the effects of a repetitive TMS session on corticospinal
excitability were greater when applied 24 h after an initial session, despite the initial effect
having washed-out by then. Thus, despite the absence of any behavioral or clinical signs,
there appeared to be a neurophysiologic trace of the first rTMS session that conditioned the
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impact of the second session as long as a day later. Such lasting effects and the resulting
differential impact of consecutive sessions could have profound relevance for therapeutic
applications, where daily sessions of rTMS are applied for 5 and up to 20 consecutive days
(Fregni and Pascual-Leone 2007).

State-Dependency of TMS-Efficacy

A growing number of studies indicate that the effects of TMS depend on the state of
neuronal activation in the targeted brain region at time of stimulation (for review see
Silvanto and Pascual-Leone 2008). In human participants, single-pulse TMS has variable
impact in evoking phosphenes or peripheral muscle responses depending on the pre-TMS
level of electrical activity over specific recording sites (Romei et al. 2008a, b; Sauseng et al.
2008; Lepage et al. 2008) or in evoking phosphene attributes depending on the nature of pre-
TMS visual adaptation (Silvanto et al. 2007a). Likewise, the effect-size or effect-direction
(facilitation versus suppression of excitability) of repetitive TMS can be shaped by prior
passive viewing (adaptation) protocol (Silvanto et al. 2007b), or by pre-conditioning the
cortex via an rTMS-prime (lyer et al. 2003), direct current stimulation (Siebner et al. 2004;
Lang et al. 2004) or antiepileptic medication (Fregni et al. 2006), i.e. both effect-size and -
direction have been shown to depend on the pre-TMS neuronal activation state. In analogy,
the response of visual neurons evoked by TMS in cats can be predicted by pre-TMS
neuronal activity patterns (Pasley et al. 2009). A better understanding of the
neurophysiologic basis of the state-dependency of rTMS-effects is thus likely to provide
new ideas how to tailor rTMS-aftereffects in desired directions.

On the one hand, the state of activity in the targeted brain region might be altered by an
initial rTMS session, conditioning the outcome of a subsequent session at another day as
reviewed above. On the other hand, it is conceivable that individual EEG is carrying useful
information for tailoring TMS-effects to fine-tune treatment benefits in patients, given that
EEG can be used to infer momentary brain state across time and participants (e.g. Thut et al.
2006; Romei et al. 2008a, b; Sauseng et al. 2008). Future TMS-EEG studies are needed to
address this point. The notion of EEG-gated TMS to maximize therapeutic efficacy is
appealing. Indeed, it has been shown that the impact of TMS could be maximized when
TMS application would be gated by the individually measured alpha or beta rhythm (e.g.
Romei et al. 2008a, b; Sauseng et al. 2008; Lepage et al. 2008). Timing the TMS to the
underlying background EEG activity is likely to be critical also for the antiepileptic effects
of TMS (see article by Rotenberg et al. in this issue). Therapeutic effects of TMS on
depression, hallucinations, pain or stroke recovery might behave similarly.

Note on TMS-Efficacy Across Protocols

To date, only a small number of TMS-EEG studies using TBS and PAS are available.
Although our review suggests there to be no major differences between conventional TMS
and TBS/PAS, the latter two protocols hold more promise than conventional approaches for
inducing longer lasting effects with clinical relevance. In fact, based on previous findings
that behavioral changes to TBS can last up to 10 h (Nyffeler et al. 2006), longer lasting
EEG-aftereffects are to be expected in future theta burst-EEG studies.

Interaction of rTMS-Frequency with Ongoing Background Activity

While the TMS-designs of the abovementioned studies with regular pulse and train
repetitions do induce aftereffects >10 min on most measures of electrical brain activity (e.g.
EP, sleep stages, oscillations), several recent studies have explored the potential of
immediate (and likely shorter lasting) frequency entrainment at the rTMS-frequency (for a
recent review, see Thut and Miniussi 2009). The question that is raised is whether a
conventional, short TMS train (by virtue of its rhythmicity) will entrain background
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oscillations at the frequency of stimulation, if the train coincides with the neuronal
frequency of the targeted brain area. This would contrast with the longer lasting (>10 min)
aftereffects on brain oscillations by conventional rTMS reviewed above, which do not seem
to be directly related to the stimulation frequency (and thus to be due to entrainment),
because spreading to other frequency-bands (see e.g. changes in 10 Hz brain oscillations
after 1 Hz-TMS; Brignani et al. 2008; Table 2). In other words, the longer lasting
aftereffects seem to reflect changes in oscillatory properties of the stimulated neurons which
are secondary to other, rTMS-induced neurophysiologic effects (as opposed to reflect
entrainment of brain oscillations to the rhythmic TMS train).

While not much EEG information is available on the potential of rTMS to entrain rhythms,
there is new evidence from behavioral studies that entrainment might indeed take place.
Transcranial rhythmic stimulation has been shown to alter brain function in a frequency
specific manner. For instance, performance in a task requiring visual imagery has been
shown to be affected by prior parietal TMS at alpha frequency (10 Hz) (Klimesch et al.
2003). In addition, the restorative effect of sleep (Massimini et al. 2007) as well as memory
consolidation (Marshall et al. 2006) have been shown to be enhanced by nocturnal
transcranial rhythmic stimulation at slow wave frequency (<4 Hz). Both effects are in line
with these oscillations’ suggested respective roles in visual and memory functions (e.g.
Klimesch et al. 2003; Massimini et al. 2007, see also Thut and Miniussi 2009). Furthermore,
because these effects of rhythmic transcranial stimulation were frequency specific, i.e. not
observed with stimulation at other frequencies (Klimesch et al. 2003; Marshall et al. 2006),
they are likely to be due to direct rather than secondary effects of the ryhthmic trains. This is
partially supported by recent findings of a trend for behavioral effects of parietal 10 Hz/
alpha rTMS to depend on individual alpha frequency (IAF) (Hamidi et al. in press).

Future studies will have to show that the frequency-specific effects on behavior are also
accompanied by an enhancement of oscillatory power in the EEG at the rTMS-frequency. If
so, conventional short-train rTMS is likely to develop into a powerful tool for research on
the functional role and anatomical origin of brain oscillations.

Concluding Remarks

Reviewing the literature on TMS-aftereffects in EEG, we found robust effects of 1 h
duration or shorter with an effect-size in the range of a physiologic change (learning or
fatigue), when current protocols and single sessions are used. The observed time-range and
effect-size is suitable for studies in the healthy population, but limits the therapeutic utility
of these protocols. Several factors are likely to help prolong these aftereffects when desired,
such as repeating sessions over days, taking into consideration pre-TMS neuronal state, and
the development of new, non-conventional protocols. Recent developments also suggest that
single rTMS trains might entrain neuronal rhythms at stimulation frequency, which is of
interest for the study of brain oscillations. Future combined TMS-EEG work is needed to
explore and extend the utility of rTMS in both research and therapy.
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Quantification of TMS-aftereffects in EEG/EPs. a Distribution of protocols. b Aftereffect-
direction per study with TMS-effects. Each bar represents one experiment/study. A negative
sign (—1) indexes the presence of a suppressive effect on post-TMS relative to pre-TMS or
sham EEG/EPs, while a positive sign (+1) indexes facilitative effects. ¢ Aftereffect-size
(percent change in amplitude relative to pre-TMS or sham) per study reporting effect-size or
from which effect-size could be calculated a posteriori (n = 37). Data are grouped according
to TMS protocols (conventional TMS, TBS, PAS) and ordered according to increasing
number of applied pulses (see brackets) within 5 subgroups of rTMS (0.2-0.6 Hz, 0.9-1 Hz,
5-20 Hz, TBS, PAS). d Duration of aftereffects across studies having recorded effects until
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recovery (n = 17, uniformly colored bars) or having reported timing information but
terminated EEG recordings before its normalization (n = 21, fading color bars)
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Fig. 2.

Linear correlations between aftereffect-size [%] and rTMS-parameters. a Aftereffect-size as
a function of total number of TMS pulses applied in high-frequency protocols (5-20 Hz
rTMS). Regression lines and 95% confidence intervals are shown for analyses including all
data points (black lines) and excluding outliers (grey lines, outliers marked by crosses, see
also text). b Aftereffect-size as a function of TMS intensity applied in low-frequency
protocols (0.9-1 Hz)
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