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Infection by the human protozoan par-
asite Leishmania can lead, depending 

primarily on the parasite species, to either 
cutaneous or mucocutaneous lesions, or 
fatal generalized visceral infection. In 
the New World, Leishmania (Viannia) 
species can cause mucocutaneous leish-
maniasis (MCL). Clinical MCL involves 
a strong hyper-inflammatory response 
and parasitic dissemination (metastasis) 
from a primary lesion to distant sites, 
leading to destructive metastatic second-
ary lesions especially in the nasopha-
ryngal areas. Recently, we reported that 
metastasizing, but not non-metastatic 
strains of Leishmania (Viannia) guya-
nensis, have high burden of a non-seg-
mented dsRNA virus, Leishmania RNA 
Virus (LRV). Viral dsRNA is sensed by 
the host Toll-like Receptor 3 (TLR3) 
thereby inducing a pro-inflammatory 
response and exacerbating the disease. 
The presence of LRV in Leishmania 
opens new perspectives not only in basic 
understanding of the intimate relation 
between the parasite and LRV, but also 
in understanding the importance of the 
inflammatory response in MCL patients.

Leishmania are human protozoan para-
sites endemic in 88 countries, with a 
disease prevalence of 12 million cases 
accompanied by 80,000 annual fatalities. 
These infections induce a large spectrum 
of clinical pathologies, mainly cutane-
ous (CL), mucosal (MCL) and visceral 
leishmaniasis (VL). The differences 
arise primarily from infection by differ-
ent Leishmania species, such as L. major,  
L. braziliensis and L. infantum respectively. 
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Additionally, host factors are thought to 
play significant roles in determining the 
clinical course of the disease as well.

Leishmania parasites exist as free- 
living promastigotes in the sand fly vector. 
Following differentiation to the infective 
metacyclic form, parasites are deposited in 
the skin of vertebrate host by the sand fly 
bite. There promastigotes encounter sev-
eral host cell types including neutrophils, 
dendritic cells and skin macrophages, 
ultimately transiting and differentiating 
into amastigotes which go on to repli-
cate within the phagolysosome of macro-
phages. Leishmania parasites must change 
their metabolism and adapt themselves to 
this new environment, and resist the oxi-
dative and other attacks activated by the 
innate immune system of the host.

Leishmania species of the L. (Viannia) 
subgenus, including mainly L. brazilien-
sis, L. guyanensis and L. panamensis, give 
rise to CL but are also responsible for 
MCL in up to 5–10% of cases. MCL is 
clearly distinguishable from other cuta-
neous leishmaniases by its chronic, latent 
and metastatic behavior. It is character-
ized by the dissemination of parasites and 
secondary distant lesions development 
(metastasis), especially in the oral and 
nasopharyngeal areas of the face, and is 
accompanied by extensive tissue destruc-
tion concomitant with high immune cell 
infiltration, intense activation of inflam-
matory cells and parasite presence (albeit 
at low levels).1 MCL can appear con-
comitantly, several years after the initial 
infection, or even in patients without 
any CL history. MCL lesions are not self- 
healing and are more resistant to antimony 
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RNAi machinery was recently shown 
to be functional in L. braziliensis and in  
L. guyanensis.17 A second remarkable feature 
the presence of Leishmania RNA viruses 
in many isolates of the L. (Viannia) spe-
cies. These Leishmaniaviruses have been 
classified as Totiviridae, which includes 
RNA viruses detected in other protozoa 
such as Trichomonas vaginalis and Giardia 
lamblia and a variety of fungi including 
Saccharomyces cerevisiae. Totiviruses have 
a small unsegmented dsRNA genome 
between 5–7 kb in length, which encodes 
a capsid protein and a capsid-RNA depen-
dent RNA polymerase (RDRP) fusion 
protein essential for replication.

The existence of cytosolic dsRNA 
viruses within Leishmania was first shown 
in two L. guyanensis strains: MHOM/
SR/81/CUMC1A and MHOM/BR/75/
M4147.18,19 Currently Leishmania 
viruses are given arbitrary identifiers at 
the time of discovery, namely LRV1-1 
and LRV1–4 for the viruses of the  
L. guyanensis CUMC-1 and L. guyanen-
sis M4147 strain respectively. These two 
viruses share an overall 76% nucleotide 
sequence identity.20,21 LRV1s have since 
been identified in many isolates of New 
World Leishmania (L. braziliensis and  
L. guyanensis), but in just one isolate of Old 
World species L. major, which was showed 
sufficient nucleotide sequence divergence 
to be termed LRV2-1 (compare taxonomy 
browser at www.ncbi.nlm.nih.gov). LRV1 
are present not only in laboratory strains 
of L. guyanensis and L. braziliensis but 
importantly also in biopsies and parasite 
cultures isolated from clinical cases of 
leishmaniasis.18,19,22,23 LRV-positive strains 
of Leishmania originated from both active 
and healing lesions or scars of patients liv-
ing in Brazil, Peru, Guyana and Colombia. 
It was also shown that LRV1 can be occa-
sionally be lost, thus far in just one line 
of L. guyanensis.24 Such isogenic lines are 
invaluable tools in evaluating the impact 
of LRVs specifically on the parasite and on 
the immune response.

The study of M+ and M- line is one 
approach that may shed light on what 
parameters underlie the metastatic pheno-
type and the hyperinflammatory response 
observed in MCL patients. To investi-
gate whether the immune response of the 
host cell could serve as a readout assay we 

Th1/Th2 phenotype and elevated cyto-
toxic T cell activity. However, cells from 
MCL patients display impaired control of 
the immune response due to a defect in 
their ability to respond to IL-10.7-10 The 
production of the different inflammatory 
cytokines by the host is likely to increase 
cellular recruitment and contribute to the 
pathology of the disease. Thus by these 
and potentially other mechanisms, immu-
nological hyperactivity contributes to 
MCL pathology. In turn measures dimin-
ishing uncontrolled inflammation could 
be one promising alternative or comple-
ment to the conventional drug therapy. 
Interestingly, treatment with the anti-
inflammatory TNFα inhibitor pentoxy-
phylline in combination with antimony 
was effective in MCL patients unrespon-
sive to antimonial therapy alone.11

The susceptibility of the golden ham-
ster to infection with species of the  
L. (Viannia) subgenus has provided a 
useful experimental model of mucocuta-
neous leishmaniasis. Hamsters infected 
with L. (Viannia) guyanensis isolated 
from human MCL lesions reproduce the 
metastatic phenotype with primary and 
metastatic lesion development.12 Different 
species and individual strains often differ 
in their propensity to cause hyperinflam-
matory cutaneous secondary metastatic 
lesions.13 Diversity was even seen within a 
single strain, as infective clones from the 
isolate of L. (Viannia) guyanensis (L.g.) 
(WHI/BR/78/M5313) were either highly 
metastatic, moderately metastatic or non-
metastatic in the hamster model. Non-
metastatic (M-) clones formed lesions only 
at the site of inoculation and did not dis-
seminate, whereas metastatic (M+) clones 
gave rise to metastases in 60% to 80% of 
hamsters. The metastatic phenotype was 
stable over several passages and exacer-
bated by non-specific or immunologically 
induced inflammatory responses.14,15

Molecular approaches have provided 
some insights into factors potentially play-
ing a role in MCL. One of the most sur-
prising difference between the genomes 
of L. braziliensis, L. major and L. infan-
tum is the maintenance in L. braziliensis 
of genes encoding the RNA-mediated 
interference (RNAi) machinery, telomere-
associated transposable elements and 
splice leader-associated SLACS.16 The 

treatment than the primary lesions, with 
frequent relapses. The factors responsible 
for these relapses are not known; both 
the emergence of antimony resistance as 
well as differences among the infecting  
L. (Viannia) species and its virulence have 
been suggested.2,3

Reactivation of L. (Viannia) infection 
can occur following stress or immuno-
suppression at a site of local inflammation, 
raising the challenging question of how 
these factors interact with slow-growing 
or dormant parasites and the immune 
system to favor the reemergence of disease 
pathology. Thus far, little is known about 
the pathogenesis of MCL, especially fac-
tors involved in the immune response of 
the host, in the parasite dissemination, 
or in reactivation. It is likely that both  
L. (Viannia) oxidative stress and antimony 
resistance as well as genetic background of 
the host (e.g., particular alleles encoding 
TNFα, TNFβ, IL-6, CXCR1 and CCL2/
MCP1) and particular species and/or iso-
late specific virulence factors are impor-
tant parameters in the development of 
MCL. The definition of such factors and 
of the immune response of the host could 
be extremely useful, not only to predict 
the outcome of the disease and diagnosis 
tools, but also to understand the meta-
static process and the inter-relationships 
of the parasite with its host. Currently the 
immunological mechanisms of protection 
and factors controlling relapse and avoid-
ing reactivation of the infection are not 
well understood.

In MCL, the immune response to 
infection differs from that observed in 
other types of leishmaniases. After a pri-
mary lesion, metastatic lesions can appear 
at other body sites, accompanied by tis-
sue inflammation. This pathology has 
been associated with hyperactivity of the 
specific T cell immune response, with an 
exuberant, usually progressive, inflamma-
tory response, that is not yet well under-
stood.4 High levels of pro-inflammatory 
cytokines such as IFNγ and TNFα, and 
decreased responses to IL-10 and TGFβ, 
have been described in references 5 and 
6. MCL development is associated with 
persistent immune responses having ele-
vated pro-inflammatory mediator expres-
sion (higher levels of TNFα, CXCL10 
and CCL4), with a mixed intra-lesional 
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inflammatory cytokines and chemokines 
are produced leading to the attraction of 
dendritic and T cells. Importantly, both 
the presence and levels of LRV are factors 
impacting the host immune response, as 
parasites bearing only low levels of LRV 
failed to activate TLR3. Finally, other 
nucleic acid derived motifs predicted to 
arise for parasite destruction may contrib-
ute to the host’s response, as shown by the 
somewhat diminished cytokine and che-
mokine production in TLR7-/- BMMϕ 
infected with L.g. (M+) parasites. As these 
effects were less than seen with TLR3-/- 
infections, and the TLR7-/- mice did not 
show any reduction in disease progres-
sion or pathology, the TLR3-dependent 
responses appear to dominate.

Our data show that L. guyanensis LRV 
induces a specific immune response via 
dsRNA binding to TLR3 and production 
of IFNβ early after infection, sufficient to 
modulate the initial immune response in 
a way that impairs rather than promotes 
killing. This is likely mediated through 
the production of pro-inflammatory che-
mokines and cytokines, thereby increas-
ing the host’s susceptibility to infection 
and likely parasite dissemination. Thus, 
Leishmania RNA virus, when present in 
New World Leishmania guyanensis, plays 
an important role in subverting the innate 
immune response. This newly recognized 
parasite factor could explain some of 
the differences observed in the different 
pathologies induced by Old World and 
New World species. Although the murine 
model is likely not fully representative 
of the pathology in humans, it is instru-
mental for evaluating the role of LRV in 
MCL. Of course, a role for LRVs in the 
pathology of MCL does not exclude the 
likelihood that other parasite or host fac-
tors play strong roles as well.

In the future, it will be necessary to 
investigate the mechanism whereby LRVs 
confer increased susceptibility to infection 
with L. (Viannia) parasites, and to analyze 
the critical role of cytokines and chemo-
kines played in the host immune response. 
Key questions are how LRV1, and the 
associated hyper-inflammatory immune 
response conspire together to yield the 
metastatic phenotype, and whether anti-
inflammatory drugs can prevent the 
development of chronic and secondary 

able to show definitively that LRV1 was 
responsible for the cytokine responses by 
comparing isogenic L. guyanensis bearing 
or lacking LRV1–4. As before, BMMϕ 
infected with L.g. M4147 LRV1high pro-
duce significantly higher cytokine and 
chemokine than the isogenic virus-
free L.g. M4147 (LRV1neg) in a TLR3-
dependent manner.17,27 To analyze whether 
TLR3 and LRV1 play a role in leish-
maniasis development in vivo, TLR3-/-,  
TLR7-/- and C57BL/6 wild-type (WT) 
mice were infected in the footpad. A sig-
nificant decrease in footpad swelling peak 
and diminished parasite load could be 
observed in mice lacking TLR3 infected 
with L.g. LRV1highM+ (M5313) or L.g. 
M4147 (LRV1high) parasites to compared 
WT mice. No distinguishable difference 
in disease phenotype was observed in 
mice infected with L.g. LRV1lowM- (Lg17) 
or L.g. LRV1neg (M4147) or between WT 
and TLR7-/- infected mice with any para-
site isolates.

Our results confirm that metastasizing 
L.g. (M+) parasites derived from second-
ary lesions of hamsters or humans activate 
host BMMϕs to secrete TNFα, IL-6, 
CCL5 and CXCL10, elevated levels of 
which have been associated with human 
MCL. These TLR3-dependent responses 
to infecting L.g. LRV1high/M+ parasites 
resulted in increased disease severity in 
mice. Our work provides evidence that 
LRV1 within metastasizing L.g. para-
sites is recognized by the host to promote 
inflammation, and is involved in suscepti-
bility to infection.

One question is how the dsRNA found 
normally within the viral particle is able to 
interact with TLR3. We know from pre-
vious studies that 5–10% of the infecting 
promastigotes are killed during the first 
hours of infection.28 This killing process 
takes place in the phagolysosome where 
endosomal TLRs are present (Fig. 1). As 
recognition of LRV1 within the metas-
tasizing L.g. parasites arises early after 
infection, we hypothesize that the viral 
capsid is destroyed in the acidic milieu 
prevalent in the phagolysosome, leading to 
the release of LRV1 dsRNA, recognition 
by TLR3, and activation of the signaling 
cascade via TRIF, leading to the secretion 
of IFNβ (which could act in an autocrine 
loop on its receptor). In the next hours, 

performed preliminary experiments on 
the response of host macrophage infected 
by M+ and M- lines, keeping in mind that  
L. (Viannia) guyanensis could be infected 
by a dsRNA virus. Using a 15k cDNA 
microarray, we concluded that infection 
of bone marrow derived macrophages 
(BMMϕ) with M+ parasites induced 294 
annotated differentially expressed genes 
when compared with BMMϕ infected 
with non metastatic (M-) parasites that had 
at least a 1.5-fold change (p ≤ 0.05). Given 
the importance of the immune response 
in MCL pathology, we selected for fur-
ther study genes involved in the immune 
response and potentially relevant for MCL 
in the human host. These included ones 
showing increased expression of surface 
activation markers, together with the 
chemokines (CXCL10 and CCL5) and 
cytokines (IL-6 and TNFα) secretion in 
BMMϕ infected with metastatic (M+) 
parasites. Furthermore, the increased che-
mokines and cytokine response to BMM 
infections by M+ parasites required the 
TRIF dependent TLR3 signaling path-
way. Double stranded RNA is known to 
bind to TLR3, and induce via TRIF an 
inflammatory response with production 
of CCL5, CXCL10, IL-6, TNFα and NO 
by activating iNOS via NFκB.25,26 This 
led us to consider the possible involvement 
parasite dsRNA and specifically the LRV1 
found in L. guyanensis. We confirmed that 
the metastasizing promastigotes (L.g.M+ 
or h-MCL) contained LRV1 dsRNA, and 
detected significantly high levels of LRV1 
within metastasizing L.g.M+ or h-MCL 
parasites (LRV1high). In contrast, non-
metastasizing L.g.M- or h-CL parasites 
showed only trace levels of LRV1 RNA 
(10,000-fold lower; termed LRV1low). 
Treatment of BMMϕ with purified LRV1 
dsRNA induced a pro-inflammatory 
phenotype similar to BMMϕ infected 
with LRV1high metastasizing parasites. In 
addition, we detected an early upregula-
tion of IFNβ, which is typically a sign of 
an anti-viral immune response. As with  
M-/LRV1low parasites, the absence of 
TLR3 significantly decreased the expres-
sion of chemokines and cytokines pro-
duced in response to LRV RNA.

While naturally M+ and M- parasites 
potentially harbor genetic differences 
other than the presence of LRV, we were 
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Figure 1. Model of the signaling cascade in response to the release of dsRNA from LRV particles, production of IFNβ and secretion of proinflamma-
tory cytokines and chemokines. The main pathway involved in this process is highlighted in bold. (1) Phagocytosis of LRV infected promastigotes by 
phagocytes (macrophages); (2) promastigotes differentiate into amatigotes, which reside in phagolysosomes; (3) death of some parasites (promas-
tigotes and amastigotes), release of LRV and of dsRNA, which binds to TLR3; (4) activation of TLR3 via TRIF and signal transmission via the transcrip-
tion factors IRF3 and NFκB; (5) activation and secretion of IFNβ; (6) binding of IFNβ to its receptor and activation of pro-inflammatory cytokines and 
chemokines genes (autocrine loop); (7) synthesis and secretion of pro-inflammatory cytokines and chemokines such as TNFα, IL-6, CCL and CXCL10 
leading to increased parasitemia and pathology.
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