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Nucleotide-sequence-specific inhibition of gene expression can 
be induced by diverse processes that are mediated by RNA.1 
Gene silencing through transcriptional repression can be induced 
by dsRNA targeted to a gene promoter,2 a process known as 
RNA-mediated transcriptional gene silencing (TGS). This phe-
nomenon was first discovered in plants using a transgene that 
transcribes an inverted repeat of a promoter sequence and was 
later reported in cultured human cells and in Schizosaccharomyces 
pombe.3-7 Plant RNA viruses such as the Potato virus X (PVX), 
Tobacco rattle virus (TRV) and Cucumber mosaic virus (CMV) 
have also been used as a tool to induce TGS.8-11

There is a marked difference between transgenes and endog-
enous genes in plants in the feasibility of the induction of silenc-
ing by targeting RNA to a promoter.12 Transgenes can be easily 
silenced and the silenced state is heritable in the presence or 
absence of the silencing inducer.9 On the other hand, endog-
enous genes can be silenced only in the presence of the silenc-
ing inducer,13-15 and no plant has been produced that harbors a 
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silenced endogenous gene after the promoter-targeting dsRNA 
has been removed.

We previously developed a CMV-based vector, CMV-A1, 
which is suitable for inducing RNA silencing.10,16,17 We found 
that the CMV-A1 vector, which carries the endogenous gene 
promoter, efficiently induced heritable gene silencing that was 
accompanied by epigenetic changes and that the 2b protein of 
CMV was involved in this efficient RNA-mediated TGS.11 Here 
we describe the potency and other features of this silencing 
system.

The Effect of RNA-Mediated TGS Is as Strong as  
that of Co-suppression

We previously targeted the promoter of the CHS-A gene for chal-
cone synthase in petunia (Petunia hybrida) because silencing of 
this gene is manifested as an altered visible phenotype on flower 
organs. A prominent, visible change is a reduction in pigmented 
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Short Communication

In the progeny of CMV-A1:CHSpro-infected petunia plants, 
white sectors were often generated inside the pigmented portions 
of the petal (Fig. 1B). This phenomenon suggests that strong de 
novo CHS-A silencing occurred in the lineage of pigmented cells 
during development. This observation is consistent with the fact 
that CHS-A mRNA level was very low even though the petal 
tissues were pigmented; the mRNA level was presumably only 
slightly higher than the threshold mRNA level that allows pig-
mentation in the petal tissues. Our previous data indicate that 
the estimated threshold level of transcripts of a gene involved in 
flavonoid synthesis associated with pigmentation in a plant tissue 
is about 3% of the steady-state mRNA level of the gene.20

Plants having petals with a greater white area produced less 
pollen compared with the control plants.11 The outward pheno-
type of anthers in CMV-A1:CHSpro-infected plants and their 

area in the petal tissues of Red Star,11 a petunia variety that pro-
duces flowers with a red and white bicolor pattern as a result of 
naturally occurring sequence-specific degradation of CHS-A tran-
scripts in the white sector of the petal.18 To evaluate the effect 
of RNA-mediated TGS, we compared the mRNA level of the 
CHS-A gene between plants infected with the virus carrying the 
CHS-A promoter (referred to as CMV-A1:CHSpro) and a trans-
genic line C001 that exhibits CHS-A co-suppression (Fig. 1A). 
We previously demonstrated that CHS-A silencing in this line is 
induced by degradation of RNA transcribed from both an endog-
enous gene and its homologous transgene.19 This co-suppressed 
line produces entirely white petals. Quantitative RT-PCR analysis 
indicated that the mRNA level for the CHS-A gene in the CMV-
A1:CHSpro-infected plants was as low as that in the C001 line 
(Fig. 1A).

Figure 1. Characterization of the changes induced by CMV-A1:CHSpro infection in petunia plants. (A) The mRNA level of the CHS-A gene (mean ± SE; 
n = 3) in the petal tissues of V26 plants infected with the empty vector (negative control) or CMV-A1:CHSpro, the progeny of virus-infected plants, and 
plants that had CHS-A co-suppression. The CHS-A mRNA level relative to the α-tubulin mRNA level in empty vector-inoculated plants was assigned a 
value of 1. (B) Nonpigmented sectors generated in the pigmented portions of the petals in the self-pollinated progeny of the CMV-A1:CHSpro-infected 
plant. Left and center, var. Red Star; right, V26 line. (C) Changes in anther phenotype maintained in the progeny of CMV-A1:CHSpro-infected plant. 
Upper row, var. Red Star; lower row, V26 line. The phenotype of male-sterile transgenic line C001 that exhibits CHS-A co-suppression is also shown. (D) 
In vitro germination of pollen. Bars indicate 50 μm. (E) Changes in pigmentation of seed coat tissues in V26: upper, seeds produced by empty-vector 
infected plants; center, seeds produced by CMV-A1:CHSpro-infected plants; lower, seeds produced by male-sterile transgenic line C001.
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account for the efficient induction of RNA-mediated, heritable epi-
genetic changes in the CMV vector system.

Final Remarks

Recent reports indicate that induction of epigenetic changes is 
potentially useful for plant breeding.26-29 However, just as muta-
genesis causes mutations randomly in a genome, treatment of 
plants with an agent that induces epigenetic changes (e.g., a 
demethylating agent) also causes random changes. In contrast, 
our method allows induction of epigenetic changes on a target 
gene. Another advantage of the RNA-mediated TGS using the 
CMV vector is that the progeny plants do not have any trans-
gene because the virus is eliminated during meiosis. Plants that 
are produced by this system have altered traits but do not carry 
a transgene, thus constituting a novel class of modified plants. 
The scheme of our silencing system is shown in Figure 3. The 
changes in the expression of host genes involved in RdDM or 
demethylation as a consequence of CMV infection suggest that 
CMV may have sophisticated epigenetic control of host genes 
and that it uses this control to infect the host. Thus, aside from 
using CMV for practical applications, we can also use CMV to 
provide new insights into the interactions between the virus and 
its host plant.
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progeny was very similar to that of a plant line that exhibits 
CHS-A co-suppression; pollen grains remained clumped within 
the anther case, and anthers degenerated without exposing a large 
amount of pollen grains on the surface of the anther at anthesis 
(Fig. 1C). This male-sterile phenotype is ascribed to a reduction 
in flavonol content brought about by CHS-A silencing.21 In vitro 
pollen germination assay according to the method of Jahnen et al. 
showed that the frequency of pollen germination was lower in the 
progeny of CMV-A1:CHSpro-infected plants than in the control 
plants (Fig. 1D).

In addition to the changes in the anther and petal tissues, the 
seed coat of CMV-A1:CHSpro-infected plants did not have typi-
cal brown pigmentation, and the color was very similar to that of 
the CHS-A co-suppressed line (Fig. 1E). Taken together, these 
observations suggest that the effect of promoter-targeted silenc-
ing was equivalent to that of co-suppression in terms of both the 
extent of mRNA decrease and phenotypic changes.

Promotive Function of Viral Infection in the Induction 
of Epigenetic Changes

Previously, we found that the phenotypic changes were accom-
panied by epigenetic changes including cytosine methylation 
and histone modification.11 CMV encodes the 2b protein, which 
binds to siRNA and is localized in the nucleus.23 We found that 
these features are associated with efficient siRNA transport to the 
nucleus and that they facilitate RNA-directed DNA methylation 
(RdDM) and histone modifications, which eventually lead to 
RNA-mediated TGS.11

To identify additional feature(s) that may contribute to the effi-
cient induction of epigenetic changes, here we analyzed changes in 
gene expression of the host plant after viral infection. Arabidopsis 
plants that were infected with CMV were examined for changes in 
the levels of genes known to be involved in RNA-mediated TGS. 
The mRNA levels of NRPD1, NRPE1, NRPD2 and AGO4 all 
increased after CMV infection. On the other hand, the mRNA 
level of ROS1, which is known to be involved in cytosine demethyl-
ation, decreased (Fig. 2). These results suggest that CMV infection 
upregulates the genes that drive RNA-mediated TGS and down-
regulates the gene that antagonizes the pathway. We thus believe 
that these changes presumably facilitate RNA-mediated TGS.

A previous study indicated that the mRNA levels of numerous 
genes of the host plant are either upregulated or downregulated 
after CMV infection,24 whereas the regulatory mechanisms of 
many of these genes are still unknown. Similarly, why the expres-
sion of genes involved in RdDM changed after viral infection 
remains unsolved. In these circumstances, it is conceivable that 
CMV has acquired a mechanism to fine-tune the expression of 
host genes to levels suitable for infection via RdDM during the 
arms race between plants and virus.

Another feature that may promote heritable epigenetic changes 
is the distribution of CMV within meristematic tissues, where 
heritable changes can be made on the genome; the accumula-
tion of CMV-derived siRNAs has actually been detected in shoot 
meristems of tobacco.25 A combinatory effect of these features may 

Figure 2. Changes in the mRNA level of the NRPD1, NRPE1, NRPD2, AGO4 
and ROS1 genes in the Arabidopsis thaliana (Columbia ecotype) plants 
infected with CMV. Total RNA was isolated from mock-inoculated plants 
or plants infected with CMV-Y at 14 d postinoculation. The expression 
levels of these genes were analyzed with an eXpress profiling multiplex 
RT-PCR assay (Beckman, USA). The mRNA level of the β-tubulin gene 
was used as a control. The data are means and standard errors obtained 
from three replicates. Gene-specific sequences of the primers were as 
follows: for the NRPD1 gene, 5'-TAC GCT GCT TAT GAT GGC AC-3' and 5'-
GCT GCC TCA GAT AAT GCA CA-3'; for the NRPE1 gene, 5'-ACA GGA ACA 
ACC AAG ATG CC-3' and 5'-CCT GAG CCT GAG ATG GAG AC-3'; for the 
NRPD2 gene, 5'-TCA AGA TGG GGA AAC GAA AG-3' and 5'-TGT GGA CAA 
GTC GCT GGT AG-3'; for the AGO4 gene, 5'-TGA GGC ATT ACC ACC TCC 
TC-3' and 5'-CCC CTT GTT CCA AAT CCT TT-3'; for the ROS1 gene, 5'-CTA 
ATT GCA ATG CAT GTC CG-3' and 5'-CCT TGC TCT CTC TGG AAT GG-3'; for 
the β-tubulin gene, 5'-GTC AAT ACG TCG GCG ATT CT-3' and 5'-CAT GGT 
ACC AGG CTC CAG AT-3'.
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Figure 3. Scheme of induction of promoter-targeted silencing and epigenetic changes by the 
CMV vector. The CMV vector containing an endogenous gene promoter sequence produces 
siRNAs in the infected plants via the RNA silencing machinery. The 2b protein (2b) of CMV func-
tions as an RNA silencing suppressor that inhibits posttranscriptional gene silencing (PTGS), but 
meanwhile it enhances nuclear transport of siRNAs. The siRNAs homologous to the endogenous 
gene promoter are conveyed by 2b and possibly by other mechanisms such as diffusion. The 
siRNAs are targeted to the promoter sequence of the endogenous gene in the nucleus, result-
ing in RNA-directed DNA methylation and histone modification. These epigenetic modifications 
eventually induce TGS of the endogenous gene and consequent phenotypic changes. In addition, 
the epigenetic modifications are maintained in the self-pollinated progeny, and thus the progeny 
plants have an altered phenotype but do not carry promoter-targeting dsRNAs. Ac and Me indi-
cate acetylation and methylation of histone tails, respectively. ORF, open reading frame.


