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Introduction

Although a sufficient supply of inorganic phosphate (Pi) is vital 
to plants, plants often experience fluctuations in Pi availability or 
even chronic Pi limitation.1,2 Pi is important for the production 
of nucleic acids, phospholipids, proteins and small molecules.3 
Because plants are sessile organisms, they have evolved an array 
of adaptive responses to adjust their growth, development and 
metabolic activities. These adjustments include the following: (1) 
enhanced top soil foraging by modulating root architecture com-
ponents, such as increasing the growth of lateral roots and num-
ber of root hairs to increase the absorption surface area, and by 
establishing a symbiotic association with mycorrhizal fungi; (2) 
improved Pi uptake by activating Pi transporters and increased Pi 
recycling and scavenging for phosphate from intra- and extracel-
lular organic sources by secreting organic acid, ribonuclease and 
acid phosphatases; and (3) optimization of Pi use by a wide range 
of metabolic alterations.4 It is presumed that the primary root tip 
senses low Pi availability and initiates a signaling cascade.

The application of phosphorus (P) fertilizer can compensate 
for low Pi availability, but the global resource of P from rock is 
not renewable and may be depleted in 50–100 years.5 Although 
P is exogenously fertilized, most P is integrated with Ca, Fe or Al 
salts and formed as organic molecules, whereas only orthophos-
phate, mainly H

2
PO

4
- and HPO

4
2-, is available for plants. For a 

typical plant, Pi are accumulated in concentration of about 1 μM 
in the soil, 10,000 μM in the cells and 400 μM in the xylem. To 
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Plants have evolved efficient strategies for utilizing nutrients 
in the soil in order to survive, grow and reproduce. Inorganic 
phosphate (Pi) is a major macroelement source for plant 
growth; however, the availability and distribution of Pi are 
varying widely across locations. Thus, plants in many areas 
experience Pi deficiency. To maintain cellular Pi homeostasis, 
plants have developed a series of adaptive responses to 
facilitate external Pi acquisition, limit Pi consumption and 
adjust Pi recycling internally under Pi starvation conditions. 
This review focuses on the molecular regulators that modulate 
Pi starvation-induced root architectural changes.
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understand the strategies used by plants to acquire and utilize Pi 
efficiently is essential for the rational breeding and engineering of 
crop plants with greater capacity to acquire, store and recycle soil 
Pi. This review is focused on recent advances in our understand-
ing of the mechanism of root architecture remodeling under Pi 
deficiency.

Regulators Involved in Pi Starvation-Induced  
Root System Architecture Modulation

When a primary or lateral root encounters low Pi levels, its 
growth is restrained. This inhibition results from reduced cell 
elongation6 and meristem activity.7-11 This response requires 
physical contact between the root tip and the low-Pi medium.9,12 
CycB1;1::GUS seedlings, which identifies dividing cells at the 
G

2
/M transition, demonstrates that cells in the root tips ceased 

dividing when the root tips encountered the low-Pi medium.9 
Thus, it is presumed that a local Pi sensing mechanism exists in 
the roots, whereas alterations in the development of lateral roots 
are regulated by systemic Pi status.13 Auxin is believed to play a 
central role in root architecture modulation during Pi starvation 
because a change in auxin distribution was observed during Pi 
starvation,11,14,15 auxin-accumulating YUCCA1-overexpressing 
plants16 exhibited hyperresponsivenesss to Pi starvation,11 and 
both TIR1 (transport inhibitor response 1)- and ARF19 (auxin 
response factor 19)-dependent auxin signaling are implicated in 
the regulation of lateral root development under Pi deficiency.17 
Exogenous auxin treatment in plants grown in low Pi conditions 
drastically prevents the growth of primary roots and induces the 
formation of lateral roots.11,18 Furthermore, mutations in BIG, 
which encodes a large calossin-like protein that is required for 
normal polar auxin transport,19 reduced lateral root formation 
in low Pi conditions.15 Auxin transport and BIG function have 
fundamental roles in pericycle cell activation, which stimu-
lates lateral root primordia formation and promotes root hair 
elongation.15

Several mutants have been isolated and studied to under-
stand Pi starvation-induced root architecture modulation. The 
EMS-induced Arabidopsis pdr2 (phosphate deficiency response 2) 
mutant, which has impaired ER-localized P

5
-type ATPase func-

tion,20 exhibited reduced primary root growth and root cell divi-
sion and elongation under Pi deficiency.21,22 The pdr2 mutant was 
not affected by the P concentration within the root tip or by Pi 
uptake rates, excluding a defect in high-affinity Pi acquisition, 
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the regulation of auxin patterning in response to Pi 
limitation.11 Application of 1-N-naphthylphthalamic 
acid, an inhibitor of auxin efflux activity, reduced the 
Pi starvation-induced lateral root elongation effects of 
siz1. Treatment with brefeldin A, an inhibitor of vesi-
cle trafficking, also reduced the lateral root formation 
induced by siz1 in response to Pi limitation (Fig. 1). 
Brefeldin A disrupts the polarization of the auxin 
transporter PIN1, resulting in PIN1 being equally 
distributed along the entire cell surface and reduced 
auxin efflux activity.35 SIZ1 negatively regulates root 
architecture modulation under low Pi by controlling 
auxin patterning.

Microarray analyses demonstrated that genes 
encoding EXP17 (expansin 17), GH1 (glycosyl 
hydrolase 1), embryo-abundant, dehydrin xero 2, 
UGT73B4 (UDP-glycosyltransferase73B4) and 
PGIP (polygalacturonase inhibiting protein) as well 
as GST (glutathione transferase) were induced by 
phosphate deficiency, auxin treatment and the siz1 
mutation.11 UGT73B4, PGIP and GST are known 
to be involved in disease resistance. Cell wall remod-
eling enzymes, such as pectate lyase, polygalacturo-
nase, xyloglucan:xyloglucosyl transferases, expansins 
and GHs, are expressed in root cells adjacent to new 
lateral root primordia, presumably to promote the 
emergence of LR elongation.17,36 For cell growth, 
the cell wall must be loosened. Expansins are plant 
cell wall-loosening proteins involved in cell enlarge-
ment and cell modification.37 GHs have large families 

and diverse functions.38 GH family 1 includes β-mannosidase, 
β-glucosidase, thioglucosidase and glycosyltransferases. 
β-Glucosidase hydrolyses the exo-cellulase product into individ-
ual monosaccharides. The precise biological function of these 
proteins is unknown, but it is possible that some of these prod-
ucts are involved in cell wall loosening, resulting in elongation 
of the lateral root.

Three transcription factors, WRKY75, Cys2/His2 zinc-fin-
ger transcription factor ZAT6 and MYB62, have been identi-
fied39-41 on the basis of microarray data.42 WRKY75 RNAi-lines 
exhibit increased growth of lateral roots and the number of root 
hairs. WRKY75 expression was induced by Pi limitation. Because 
WRKY75 is also involved in disease resistance,43 a relationship 
may exist between nutrient deficiency and defense mechanisms. 
ZAT6 was induced during Pi starvation and became localized to 
the nucleus.40 Because the RNAi suppression of ZAT6 was lethal, 
the gene is vital for plants. Overexpression of ZAT6 resulted in a 
constitutive exaggerated Pi starvation-induced root architecture 
modulation with a significant decrease of primary root length 
and the number of lateral roots, but with a strong increased 
lateral root length.40 The target genes for ZAT6 are not yet 
known, but ZAT6 may function as a transcriptional repressor to 
repress primary root growth during Pi deficiency. Pi starvation 
also induced MYB62 in the leaves.41,42 MYB62-overexpressing 
plants exhibited shorter lateral roots, diminished shoot growth 
rate, decreased Pi accumulation in the shoot and attenuated 

suggesting that the pdr2 mutant phenotype is caused by a defect 
in sensing the local external Pi concentration.22 PDR2 regulates 
stem cell differentiation and meristem activity through SCR and 
SHR,20 which are GRAS family members and key regulators of 
radial root patterning.23,24

Genetic data suggest an interaction between PDR2 and 
LPR1/LPR2 (low phosphate root1/2), which encode multi-
copper oxidase,9 in an ER-resident pathway;20 however, LPR1 
and PDR2 could have opposing functions in regulating the 
root growth response to Pi starvation.25 Quantitative trait loci 
analyses revealed that LPR loci were detected in a recombi-
nant inbred line population derived from a cross between the 
Pi starvation-insensitive accession Bay-0 (Bayreuth) and the Pi 
starvation-sensitive accession Sha (Shahdara) in Arabidopsis.9 
LPR1 is expressed in the root tip, including the meristem and 
root cap. Mutations in LPR1 and LPR2 strongly reduced the 
Pi-induced inhibition of primary root growth,9,25 suggesting that 
LPRs modify or activate a compound in the root tip that inhibits 
meristematic growth. The function of LPR1 is genetically inde-
pendent on SIZ1 (SAP and Miz1) in response to Pi starvation.25

SIZ1 is a SUMO (small ubiquitin-related modifier) E3 ligase 
that is involved in Pi starvation responses26 as well as several stress 
responses27-33 and flowering.34 The siz1 mutation exaggerates pro-
totypical Pi starvation responses; including cessation of primary 
root growth, extensive lateral root development and root hair 
development.26 Root architecture modulation is likely caused by 

Figure 1. The siz1 mutants exhibited exaggerated prototypical Pi starvation re-
sponses, including cessation of primary root elongation and extensive lateral root 
development (B), although no obvious difference between wild-type and siz1 seed-
lings under Pi sufficient condition (A). Treatment with brefeldin A (BFA) suppressed 
lateral root formation in low Pi (D) of wild-type and siz1 seedlings, compared to that 
in high Pi condition (C). Bars indicate 1 cm length.
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overexpression, which targets PHO2 encoding the ubiquitin E2 
conjugate enzyme UBC24 and results in increased accumulation 
of Pi,51,52 did not result in a hyperresponsive root architecture 
phenotype in plants.51 miRNA399-PHO2 signaling is regulated 
by the MYB-type transcription factor PHR1.53 The phr1 mutant 
accumulated less Pi but exhibited a similar phenotype of root 
architecture as wild-type plants.7,54 Thus, it is plausible that the 
PHR1-miRNA399-PHO2 pathway controls Pi accumulation in 
shoots but is not involved in the regulation of root architecture 
modulation.

Phytohormones and Modulation of Root 
Architecture in Pi Deficiency

Auxin and the associated polar auxin transport mechanism are 
known to be essential for lateral root formation55,56 and play an 
important role in modulation of root architecture in response to 
Pi starvation as described above.

Additional phytohormones are also involved in the regu-
lation of root architecture modulation. In addition to the 
decrease in cytokinin levels upon Pi starvation,57 the exogenous 
application of cytokinin reduced the expression of several Pi 
starvation-responsive genes,58 as well as inhibited lateral root 
formation,59 suggesting a role for cytokinins in the negative 
regulation of Pi starvation responses. Cytokinin modulated the 
level of meristem cell cycle, which influences the expression of 
Pi starvation-responsive genes.10

Ethylene is also involved in primary root elongation and root 
hair formation in seedlings grown in Pi-limited medium.60,61 
However, analysis of the root architecture of ethylene-signaling 
mutants and plants treated with the ethylene precursor 1-ami-
nocyclopropane-1-carboxylic acid demonstrated that ethylene 
did not promote the formation of lateral roots under Pi starva-
tion.18 Ethylene, in combination with jasmonic acid, may be 
involved in the meristem exhaustion process triggered by Pi 
starvation.48

Gibberellin plays an important role in regulating plant 
growth and development.62 The binding of bioactive gibberellin 
to the receptors GID1 (gibberellin-insensitive dwarf 1) proteins 
promotes interaction between these gibberellin receptors and 
DELLAs.63 The DELLAs are subsequently polyubiquitylated 
by the SCFSLY1/SLY2 E3 ubiquitin ligase and thus degraded by 
26S proteasome.64,65 The gibberellin-DELLA growth regula-
tory system contributes to plant growth responses to Pi star-
vation.66 Exogenous gibberellin application overcomes several 
characteristic growth responses to Pi starvation, including the 
recovery of primary root inhibition and decrease in lateral root 
density. DELLA-deficient mutants did not exhibit Pi starvation 
growth responses, whereas the mutations that enhance DELLA 
function promote Pi starvation responses.66 Pi starvation pro-
moted the accumulation of DELLA in root cell nuclei.66 These 
results suggest that gibberellin-DELLA-dependent signaling 
contributes to root architecture modulation in response to Pi 
starvation but not to Pi uptake and the regulation of Pi star-
vation-responsive gene expression. Bioactive gibberellin levels 
were also reduced in low Pi conditions.66

regulation of Pi starvation-induced genes.41 Interestingly, the 
growth retardation induced by MYB62 overexpression was 
reversed by the application of gibberellic acid, suggesting that 
MYB62 also regulates GA biosynthesis. Other microarray data 
demonstrated that the expression of bHLH32 (basic helix-loop-
helix) transcription factor was induced after 48 h of Pi starva-
tion.44 The bhlh32 mutant exhibited increased Pi accumulation, 
higher anthocyanin levels and increased numbers of root hairs 
in Pi-sufficient conditions and also higher activity of PPCK, a 
protein kinase that activates PEP carboxylase,45 suggesting that 
bHLH32 is a repressor of the Pi deficiency response. Because 
WRKY75, bHLH32 and MYB62, which appear to be negative 
regulators of the Pi starvation response, were induced by Pi defi-
ciency, these factors may be involved in feedback mechanisms 
that attenuate the response in certain tissues.

The mutation in RPD (phosphate root development), which 
encodes an AINTEGUMENTA-like protein, repressed the 
development of primary and lateral roots under Pi starvation.46 
Because Pi influx and Pi starvation-inducible gene expression 
were similar in wild-type and the prd plants in response to Pi 
starvation, it is suggested that PRD is not a checkpoint gene for 
Pi starvation responses but acts as a regulator of root architec-
tural responses to Pi starvation.46

The nuclear actin-related protein ARP6 is required for the 
SWR1 chromatin-remodeling complex, which regulates tran-
scription via deposition of the H2A.Z histone variant into chro-
matin. Mutation of ARP6 decreased H2A.Z abundance in a 
number of Pi starvation-responsive genes, resulting in increases 
in gene transcription and correlating with Pi starvation-related 
phenotypes, such as shortened primary roots and increases in 
the number and length of root hairs.47 These results suggest that 
SWR1-dependent H2A.Z deposition is required for the modu-
lation of root system architecture as well as the regulation of Pi 
starvation-induced gene expression.

Several mutant genes remain unidentified. The lpi (low phos-
phorus-insensitive) mutants, representing four different genetic 
loci, were isolated from an EMS-mutagenized population due 
to their ability to maintain primary root growth, leading to a 
long primary root, during Pi deficiency.7 These mutants exhib-
ited reduced induction in the expression of several Pi starvation-
induced genes. Gene expression profiling with the lpi4 mutant 
demonstrated that the large number of genes related to oxida-
tive stress were downregulated in the root tip of lpi4 plants.48 
Dramatic decrease in H

2
O

2
 levels occur during the meristem 

exhaustion process in the primary root tip of the wild-type 
plants grown in low Pi conditions, whereas in lpi4 plants, H

2
O

2
 

accumulation was observed even under Pi deficiency, suggesting 
that Pi starvation triggers alterations in redox status, leading to 
the loss of root elongation and meristem maintenance.48 Thus, 
an appropriate redox status may be required for primary root 
meristem maintenance.

Several lines of evidence suggest that signaling mechanisms 
for Pi accumulation in the shoot and root architecture modu-
lation may not be linked because the pho1 and pho2 mutants, 
which accumulate less and more Pi, respectively,49,50 exhibited 
a similar root phenotype as wild-type seedlings. miRNA399 
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acquisition. Lateral root branching is stimulated by arbuscu-
lar mycorrhizal fungi symbiosis.67 Precise mechanisms of root 
branching and fungi symbiosis may lead to a better understand-
ing and may help to improve crop growth under Pi starvation.
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Conclusion and Perspectives

Much progress has been made in research on Pi deficiency-
induced root architecture remodeling and several reports sug-
gest that the root tip is a site for locally sensing the status of Pi 
deficiency. The functional analyses of the different root tissues 
of the root tip are required to identify the early steps of Pi star-
vation responses. Several phytohormones, particularly auxin, 
are involved in the modulation of root architecture adaptation.

The roots of more than 80% of the vascular flowering plants, 
excluding Arabidopsis, can be colonized by arbuscular mycor-
rhizal fungi. Symbiosis improves plant mineral, essentially Pi, 
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