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A relationship exists between defects in bone mor-
phogenetic protein (BMP) signaling and formation of
hamartoma and adenoma in the gastric epithelium;
however, the role of BMP signaling in the progression
of diffuse-type gastric carcinoma remains unknown.
We investigated whether BMP functions as a tumor
suppressor in human diffuse-type gastric carcinoma
using three different human diffuse-type gastric car-
cinoma cell lines (OCUM-12, HSC-39, and OCUM-
2MLN). Overexpression of the dominant-negative
form of BMP-2/4-specific type I receptor (ALK-3) in
OCUM-12 and HSC-39 cells accelerated their growth in
vivo. BMP-4 induced cell cycle arrest in these cells via
p21 induction through the SMAD pathway. Moreover,
overexpression of the constitutively active form of
ALK-3 in HSC-39 and OCUM-2MLN cells suppressed
the proliferation of these cells in vitro and in vivo.
Our findings suggest that BMP-2 and BMP-4 function
as potent tumor suppressors in diffuse-type gastric
carcinoma. (Am J Pathol 2011, 179:2920–2930; DOI:

10.1016/j.ajpath.2011.08.022)

Gastric cancer is the fourth most common cancer and the
second most common cause of death from cancer in the
world.1 According to the Lauren classification, gastric
cancer is divided mainly into intestinal and diffuse path-
ological types.2 A major decline has been reported in the
incidence and mortality of intestinal-type gastric carci-
noma. Eradication of Helicobacter pylori infection, which is

the most important environmental risk factor of intestinal-

2920
type gastric carcinoma, prevents the development of in-
testinal-type gastric carcinoma and so contributes to the
decrease in its incidence.3 On the other hand, the num-
ber of patients with diffuse-type gastric carcinoma has
been increasing, particularly in the West.4 In a majority of
cases, diffuse-type gastric carcinoma is diagnosed in
advanced stages, with rapid progression and poor prog-
nosis.

Transforming growth factor beta (TGF)-�, a multifunc-
tional cytokine, exerts growth-inhibitory effects on many
types of cells, and is well known as a tumor suppressor
during the early stages of carcinogenesis.5 Resistance to
the growth-inhibitory activity of TGF-� often results in
cancer development.6 In certain types of cancers, includ-
ing colon cancer, pancreatic cancer, and gastric cancer,
defects are observed in the TGF-� signal transduction
pathways.5,6

The role of bone morphogenetic proteins (BMPs) in
cancer development and progression remains controver-
sial. Although BMPs were originally identified as mole-
cules that induce ectopic bone formation, BMPs exhibit a
broad spectrum of biological activities in various tis-
sues.7,8 BMPs promote progression of breast and lung
cancers,9,10 and in this context specific inhibitors of BMP
signaling, such as dorsomorphin, may be useful.11 In
contrast, however, the findings of several studies indicate
that BMP acts as a tumor suppressor in some types of
cancers (eg, brain cancer, prostate cancer, and colorec-
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tal cancer).12–14 Recent studies have revealed that BMP
signaling contributes to the suppression of hamartoma
and adenoma formation in the gastric epithelium.15,16

However, the role of BMP signaling in the development
and progression of diffuse-type gastric carcinoma has
not been fully investigated.

BMPs can be classified into several subgroups: the
BMP-2/4 group, the osteogenic protein 1 (OP-1) group
(BMP-5/6/7/8), the growth and differentiation factor 5, 6,
and 7 group (GDF-5/6/7), and the BMP-9/10 group.8

BMPs bind to two different types of serine-threonine ki-
nase receptors, type I and type II receptors. Activin re-
ceptor-like kinases ALK-1, ALK-2, ALK-3, and ALK-6
function as BMP type I receptors; the activin receptors
ACTR-IIA and ACTR-IIB and the BMP receptor type 2
(BMPR-II) serve as BMP type II receptors. BMP-2 and
BMP-4 bind preferentially to ALK-3 and ALK-6, whereas
BMP-6 and BMP-7 bind strongly to ALK-2 and weakly to
ALK-6. BMP-9 and BMP-10 bind to ALK-1 and ALK-2. On
ligand binding, two type I receptors and two type II re-
ceptors form a heteromeric complex, which, in turn,
transduces intracellular signals by phosphorylating BMP-
specific receptor-regulated SMADs (R-SMADs), SMAD1/
5/8. Phosphorylated BMP-specific R-SMADs form a het-
eromeric SMAD complex with common-partner SMAD
(co-SMAD), SMAD4. This SMAD complex translocates
into the nucleus and regulates transcription of various
target genes. In addition to the SMAD pathway, non-
SMAD pathways, including mitogen-activated protein
kinase (MAPK) pathways, are activated by BMPs and
may play important roles in cell proliferation and differ-
entiation.17

Kim et al18 reported that loss of expression of SMAD4
is frequently found in diffuse-type gastric carcinoma. Be-
cause SMAD4 is shared by TGF-� and BMP signaling
pathways, loss of SMAD4 expression leads to perturba-
tion of both pathways. The role of TGF-� signaling in
diffuse-type gastric carcinoma has been well character-
ized,19–21 and it is worth examining whether perturbation
of BMP signaling also contributes to the development of
diffuse-type gastric carcinoma. We investigated the role
of BMP signaling in the progression of diffuse-type gas-
tric carcinoma using human gastric cancer cells estab-
lished from signet-ring cell carcinoma and from poorly
differentiated adenocarcinoma. We present here, for the
first time, evidence that BMP-2 and BMP-4 suppress pro-
liferation of diffuse-type gastric carcinoma cells through
induction of p21 (p21WAF1/CIP1) and function as potent
tumor suppressors in this type of gastric carcinoma.

Materials and Methods

Cell Culture and Reagents

Human diffuse-type gastric carcinoma OCUM-12 and
OCUM-2MLN cells were established as described previ-
ously.22,23 OCUM-2MLN cells were cultured as de-
scribed previously,24 and OCUM-12 cells were cultured
under the same conditions. Human diffuse-type gastric

carcinoma HSC-39 cells were established as described
previously.25 HSC-39 cells were cultured in RPMI-1640
medium (Invitrogen, Carlsbad, CA) containing 10% fetal
bovine serum, penicillin (50 U/mL), and streptomycin (50
�g/mL). All cells were grown in a 5% CO2 atmosphere at
37°C. BMP-4, BMP-6, and BMP-9 (R&D Systems, Minne-
apolis, MN) were used at a concentration of 30 ng/mL.
TGF-�1 (R&D Systems) was used at a concentration of 1
ng/mL. Dorsomorphin (Sigma-Aldrich, St. Louis, MO) was
dissolved in dimethyl sulfoxide and used at a concentra-
tion of 3 �mol/L. Doxycycline was obtained from Clontech
(Mountain View, CA).

Lentiviral Production and Infection

We used a lentiviral vector system to establish diffuse-
type gastric carcinoma cells stably expressing green flu-
orescent protein (GFP), the dominant-negative form of
ALK-3 (dnALK3), and the constitutively active form of
ALK-3 (caALK3). A lentiviral vector encoding GFP (CS-
CDF-CG-PRE; a gift from Dr. Hiroyuki Miyoshi, RIKEN)
was used as the control. cDNAs encoding ALK-3 that
lacks the intracellular domain with a carboxyl-terminal HA
(influenza hemagglutinin) epitope tag or ALK3QD with a
carboxyl-terminal FLAG epitope tag were inserted into
the lentiviral vector CSII-EF-RfA. cDNAs encoding
caALK3 with a carboxyl-terminal HA epitope tag or Ae-
quorea coerulescens GFP (AcGFP) were inserted into a
Tet-ON lentivector (CSIV-TRE-RfA-CMV-KT; a gift from
Dr. Hiroyuki Miyoshi). Lentivirus was produced basically
as described previously26 and was concentrated using
Lenti-X concentrator (Clontech) to infect OCUM-12 and
HSC-39 cells. HSC-39-Tc-AcGFP or HSC-39-Tc-caALK3
cells were established by isolating Kusabira Orange-ex-
pressing cells with semi-limiting dilution.

RNA Isolation and RT-PCR

Total RNAs were extracted using Isogen reagent (Nippon
Gene, Tokyo, Japan) or an RNeasy mini kit (Qiagen,
Valencia, CA). First-strand cDNA synthesis, semi-
quantitative RT-PCR, and quantitative real-time RT-
PCR were performed as described previously,27 with
primer sequences as listed in Table 1. Semi-quantitative
RT-PCR conditions were as follows: 25 to 40 cycles of
94°C (15 s), 55 to 60°C (30 s), and 68°C (1 minute).
Values obtained in quantitative real-time RT-PCR were
normalized to ACTB (encoding �-actin).

Immunoblotting

Immunoblotting was performed as described previ-
ously.19 Cultured cells were lysed in a buffer containing
20 mmol/L Tris-HCl (pH 7.5), 150 mmol/L NaCl, 1% Non-
idet P-40 surfactant, and 1% aprotinin (Calbiochem). We
used antibodies to phospho-Smad1 (Ser463/465)/Smad5
(Ser463/465)/Smad8 (Ser426/428) (pSmad1/5/8; Cell
Signaling Technology, Danvers, MA), phospho-Smad2
(Ser465/467) (pSmad2; Zymed Laboratories, South San
Francisco, CA), Smad1 (Cell Signaling Technology),
Smad2/3 (Cell Signaling Technology), Smad4 (Santa

Cruz Biotechnology, Santa Cruz, CA), p21 (BD Biosci-
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ences, San Jose, CA), retinoblastoma protein (RB; BD
Biosciences), poly(ADP-ribose) polymerase (PARP; Cell
Signaling Technology), GFP (MBL International, Woburn,
MA), HA (3F10; Roche, Basel, Switzerland), FLAG (M2,
Sigma-Aldrich), and �-tubulin (Sigma-Aldrich).

RNA Interference and Oligonucleotides

RNA interference was performed as described previ-
ously.21 Stealth small interfering RNA (siRNA) duplex oli-
goribonucleotides against human SMAD4 (siRNA/SMAD4)
or non-targeting control (siRNA/NTC) were synthesized by
Invitrogen. OCUM-12 cells were transfected with each
siRNA according to the manufacturer’s protocols. Short
hairpin RNA (shRNA) constructs against human p21 were
designed using BLOCK-it RNAi Designer (Invitrogen), with
the target sequence 5=-GCCTCTGGCATTAGAATTATT-3=.

Immunocytochemistry

Before seeding cells, we used a poly-L-lysine solution
(Sigma-Aldrich) to coat the chamber plates. Cells (2.5 �
104 cells) were seeded in eight-well chamber plates. On
the next day, cells were treated with BMP-4. Cells were
fixed in 3.7% formaldehyde and then permeabilized with
PBS containing 0.1% Triton X-100 surfactant. A mouse
monoclonal antibody against human Ki-67 (MIB-1; Dako-
Cytomation, Carpinteria, CA) and Alexa Fluor 488-conju-
gated mouse secondary antibody (Invitrogen) were used
to detect proliferating cells. The nuclei were counter-

Table 1. Primers Used in RT-PCR

Gene Forward p

Semi-quantitative RT-PCR
ACVRL1 5=-CTCTACGACTTTCT
ACVR1 5=-ATGTCTTTTAGCCT
BMPR1A 5=-TGATTTGGAACAGG
TGFBR1 5=-TCGCCCTTTTATTT
BMPR1B 5=-GCAGCACAGACGGA
ACVR2A 5=-GCAAAATGAATACG
ACVR2B 5=-ACACGGGAGTGCAT
BMPR2 5=-CTGCACAGTGTGCT
TGFBR2 5=-ATAAGGCCAAGCTG
SMAD1 5=-TGCCACTCAACGCC
SMAD2 5=-CCCATCGAAAAGGA
SMAD3 5=-GGACGACTACAGCC
SMAD4 5=-CTTTGAAATGGATG
SMAD5 5=-ACGTCAATGGCCAG
SMAD8 5=-ATCTTTGTGCAGAG
BMP2 5=-CCAGAAACGAGTGG
BMP4 5=-ACTGGTCCACCACA
ACTB 5=-TCACCCACACTGTG

Quantitative real-time RT-PCR
ID3 5=-GACTTCACCAAATC
CDKN1A 5=-AGTGGACAGCGAGC
CDKN1B 5=-CGGTGGACCACGAA
CDKN2A 5=-TGCCTTTTCACTGT
CDKN2B 5=-CCGCCCACAACGAC
CDC25A 5=-GCCTGTCACCAACC
MYC 5=-CCACACATCAGCAC
SMAD4 5=-GATACGTGGACCCT
ACTB 5=-TCACCCACACTGTG
stained with TOTO-3 fluorophore (Invitrogen). Fluores-
cence was examined using a Zeiss LSM 510 Meta con-
focal microscope and was measured with LSM Image
Browser software version 3.5.0.359 (Carl Zeiss MicroIm-
aging, Göttingen, Germany). Quantification was per-
formed by counting Alexa Fluor 488-positive cells against
TOTO3-positive cells in five fields.

Flow Cytometry

Cells were dissociated into single-cell populations and
labeled with propidium iodide using a Cycletest Plus
DNA Reagent Kit (BD Biosciences). Cell cycle distribu-
tion of cells was determined using an EPICS XL flow
cytometer with EXPO32 ADC software (Beckman Coulter,
Life Sciences, Indianapolis, IN). FlowJo software version
7.2.5 (Tree Star, Ashland, OR) was used to generate
histograms.

Cell Proliferation Assay

Cells (0.5 � 104 to 1.5 � 104 cells) were seeded in
triplicate in 12-well plates. On the next day, cells were
treated with BMP-4. Cells were counted with a hemocy-
tometer.

Subcutaneous Xenograft Models

BALB/c nu/nu male mice (4 to 5 weeks of age) were
obtained from the Oriental Yeast Company (Tokyo, Ja-
pan). A total of 5 � 106 cells in 100 �L of culture medium

Reverse primer

G-3= 5=-CCACTTGTAGGACTCAAAGC-3=
CTG-3= 5=-ATCAAGCTGATTGGTGCTCTGG-3=
GC-3= 5=-TGTAGCACATTTCAGGAAGTC-3=
GGTACT-3= 5=-ACAGCAAGTTCCATTCTTCTTTACC-3=
T-3= 5=-TTTCATGCCTCATCAACACT-3=
TA-3= 5=-GCACCCTCTAATACCTCTGGA-3=
ACAACG-3= 5=-TCATGAGCTGGGCCTTCCAGA-3=
AAG-3= 5=-TGAACTGCCCTGTTACTGCCA-3=
G-3= 5=-CTTCTGGAGCCATGTATCTTG-3=
T-3= 5=-TCATAAGCAACCGCCTGAACAT-3=
ACA-3= 5=-TGCATGGAAGGTTTCTCCAACC-3=
A-3= 5=-TTCCGATGTGTCTCCGTGTCA-3=
-3= 5=-CATCCTGATAAGGTTAAGGG-3=
T-3= 5=-TCCAACGGCTTTAGCTCATGA-3=
A-3= 5=-TCCTGGCGATGATACTCAGCA-3=
C-3= 5=-AAGTCCACGTACAAAGGGTG-3=
ACACG-3= 5=-GCTGAAGTCCACATAGAGCGAGTG-3=
CTACGA-3= 5=-CAGCGGAACCGCTCATTGCCAATGG-3=

C-3= 5=-CCACTCCTTCCACACCTC-3=
A-3= 5=-CGAAGTTCCATCGCTCACGG-3=
AA-3= 5=-GGCTCGCCTCTTCCATGTC-3=
AGTT-3= 5=-TCGCAAGAAATGCCCACAT-3=
T-3= 5=-CAGCCTTCATCGAATTAGGTG-3=
3= 5=-CCAGGAGAATCTAGACAGAAACC-3=
CGC-3= 5=-CGGTTGTTGCTGATCTGTCTCA-3=
A-3= 5=-ACCTTTGCCTATGTGCAACC-3=
CTACGA-3= 5=-CAGCGGAACCGCTCATTGCCAATGG-3=
rimer

GCAGA
GCCTG
ATGAA
CAGAG
TATTG
AAGTC
CTACT
GAGGA
AAGCA
ACTTT
TTGCC
ATTCC
TTCAG
CTTGT
CCGGA
GAAAA
ATGTG
CCCAT

CCTTC
AGCTG
GAGTT
GTTGG
TTTAT
TGAC-
AACTA
TCTGG
were injected into the right flank of each mouse, unless
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otherwise mentioned. Subcutaneous tumors were mea-
sured externally, and tumor volume was estimated as
described previously.19 All animal experiments were per-
formed in accordance with the policies of the Animal
Ethics Committee, University of Tokyo.

Immunohistochemistry

Formalin-fixed, paraffin-embedded gastric tissues were
obtained from patients with diffuse-type gastric carci-
noma at the Osaka City University Hospital, Osaka, Ja-
pan, with informed consent. H&E staining of tissues was
performed as described previously.19 Antigen retrieval
was performed with 10 mmol/L sodium citrate (pH 6.0) at
121°C for 10 minutes, and sections were immunostained
with primary antibodies (pSmad1/5/8, p21, and MIB-1)
and biotinylated secondary antibodies. Immunodetection
was performed with a Vectastain ABC Kit (Vector Labo-
ratories, Burlingame, CA) and 3,3=-diaminobenzidine
(DakoCytomation). Sections were weakly counterstained
with hematoxylin. All studies were conducted using pro-
tocols approved by the Osaka City University Ethics
Committee.

Statistical Analysis

The size of tumors was analyzed statistically by repeated-
measures analysis of variance. Tukey-Kramer post hoc
tests were used for examining differences between mul-
tiple groups. Two-tailed Student’s t-tests were used to
compare two groups. Results were considered to be
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statistically significant at P � 0.05.
Results

BMP Signals Are Transduced in Diffuse-Type
Gastric Carcinoma Cells

We first evaluated the expressions of BMP signal com-
ponents in OCUM-12, HSC-39, and OCUM-2MLN cells
using semi-quantitative RT-PCR (Figure 1A). In these
cells, BMP type I receptor genes ACVR1 (encoding ALK-
2), BMPR1A (encoding ALK-3), and BMPR1B (encoding
ALK-6) were expressed; ACVRL1 (encoding ALK-1),
which is mainly expressed in endothelial cells and trans-
duces BMP-9 signaling, was not expressed. BMP type II
receptor genes ACVR2A (encoding ACTR-IIA), ACVR2B
(encoding ACTR-IIB), and BMPR2 were also expressed
in these cells. We detected expression of SMAD4 tran-
scripts in these cells. Among the three types of BMP-
specific R-SMADs, SMAD1 and SMAD5 were ex-
pressed in all these cells, whereas SMAD8 was
expressed only in HSC-39 cells. We also detected
expression of BMP2 and/or BMP4 in all these cells.
Expression levels of BMPR1B, SMAD1, and SMAD5 in
OCUM-2MLN cells were lower than those in the other
diffuse-type gastric carcinoma cells. Of the TGF-� sig-
nal components, TGFBR1 (TGF-� type I receptor, en-
coding ALK-5) and TGFBR2 (TGF-� type II receptor,
encoding TGF-� receptor type 2, T�R-II) were ex-
pressed in these cells, as well as two TGF-�-specific
R-SMADs, SMAD2 and SMAD3.

We next examined phosphorylation of SMAD1/5/8 in
OCUM-12, HSC-39, and OCUM-2MLN cells by immu-
noblotting (Figure 1B). In these cells, SMAD1/5/8 were
phosphorylated by BMP-4 (in the BMP-2/4 group),
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Figure 1. BMP-4 signals are transduced in diffuse-
type gastric carcinoma cells. A: Expression of BMP and
TGF-� signal components in OCUM-12 cells, HSC-39
cells, and OCUM-2MLN cells was analyzed by semi-
quantitative RT-PCR. Human umbilical vein endothelial
cells (HUVECs) were used as positive control for
ACVRL1. Two alternatively spliced forms of BMPR2
were detected: the wild-type form (WT) and a short
form (SH). B: Diffuse-type gastric carcinoma cells were
treated with BMP-4, BMP-6, BMP-9, TGF-�1, or dorso-
morphin for 1 hour. Cell lysates were subjected to
immunoblotting with antibodies, as indicated under
Materials and Methods. C: Diffuse-type gastric carci-
noma cells were treated with BMP-4 or dorsomorphin
for 2 hours. Expression of ID3 mRNA was determined
by quantitative real-time RT-PCR. Data are presented as
means � SD.
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inhibitor dorsomorphin.11 In addition, phosphorylation
of SMAD1/5/8 was induced by BMP-6 and BMP-9,
whereas phosphorylation of SMAD2 was induced only
by TGF-�1. Phosphorylation of SMAD1/5/8 was also
induced by TGF-�1 in HSC-39 cells, as shown in cer-
tain other cells.28 We also evaluated the expression of
ID3 mRNA, one of the downstream targets of BMP-4, in
these cells using quantitative real-time RT-PCR (Figure
1C). As expected, BMP-4 induced the expression of
ID3 in these cells and dorsomorphin suppressed it,
although the degrees of increased expression of ID3 by
BMP-4 varied.

In Vivo Tumor Growth of Diffuse-Type Gastric
Carcinoma Cells Is Accelerated by Disruption of
BMP Signaling

To determine whether BMP signaling is responsible for
the regulation of tumor growth of diffuse-type gastric
carcinoma cells in vivo, we used diffuse-type gastric
carcinoma cells stably expressing dnALK3 (OCUM-12-
dnALK3 and HSC-39-dnALK3) (Figure 2A). BMP-4-in-
duced expression of pSMAD1/5/8 in dnALK3-expressing
cells was lower than that in the control GFP-expressing
cells (OCUM-12-GFP and HSC-39-GFP). We also con-
firmed that the expression of dnALK3 had little effect on
TGF-� signaling in diffuse-type gastric carcinoma cells
(Figure 2B). Induction of ID3 mRNA by BMP-4 was sup-
pressed in dnALK3-expressing cells (Figure 2C), indicat-
ing that BMP-2/4 signaling in these cells was successfully
inhibited.

We next xenografted GFP- and dnALK3-expressing
cancer cells into BALB/c nude mice. We found that in vivo
tumor growth of OCUM-12-dnALK3 or HSC-39-dnALK3
cells was significantly more accelerated than that of the
corresponding control cells (OCUM-12-GFP or HSC-39-
GFP; Figure 2D). TGF-� signaling was reported to regu-
late the vascular density and fibrosis in diffuse-type gas-
tric carcinoma cells.19,20 We therefore also examined the
histology of the resultant tumor tissues by H&E staining.
The appearance of the microenvironment in tumor tis-
sues, including angiogenesis and fibrosis, was not obvi-
ously affected by the expression of dnALK3 (data not
shown).

BMP-4 Arrests the Cell Cycle of Diffuse-Type
Gastric Carcinoma Cells

We next evaluated the effects of BMP-4 on proliferation
and apoptosis of diffuse-type gastric carcinoma cells in
vitro. The in vitro proliferation of OCUM-12-GFP and HSC-
39-GFP cells was inhibited by treatment with BMP-4, and
growth inhibition by BMP-4 was abrogated in OCUM-12-
dnALK3 and HSC-39-dnALK3 cells (Figure 3A). Because
BMPs have been reported to induce apoptosis of certain
types of cancer cells,29,30 induction of apoptosis by
BMP-4 in OCUM-12 and HSC-39 cells was examined.
However, cleavage of PARP in these cells was not en-

hanced by BMP-4 (Figure 3B). Moreover, TUNEL staining
revealed that BMP-4 did not induce DNA fragmentation in
OCUM-12 cells (see Supplemental Figure S1 at http://
ajp.amjpathol.org).

Recent reports also suggest that BMPs negatively
regulate cell cycle progression of cancer cells, includ-
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ing intestinal-type gastric carcinoma cells and prostate
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cells at 48 hours after BMP-4 treatment using flow cytometry. PI, propidium
iodide.
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cancer cells.13,31 We therefore further examined the
effect of BMP-4 on cell cycle progression of OCUM-12
and HSC-39 cells. Treatment of these cells with BMP-4
decreased the hyperphosphorylated form of RB
(ppRB), which promotes the transition from G1 to S
phase of the cell cycle (Figure 3B). In addition, human
Ki-67 (MIB-1) immunostaining revealed that the num-
ber of MIB-1-positive OCUM-12 cells was decreased in
the presence of BMP-4 (Figure 3C). Flow cytometry
also revealed that treatment of OCUM-12 cells with
BMP-4 resulted in a lower number of cells in S and
G2/M phases and a higher number of cells in G0/G1
phase (Figure 3D).

BMP-4 Induces p21 Expression in Diffuse-Type
Gastric Carcinoma Cells through the SMAD
Pathway

To further investigate the mechanism by which BMP-4
negatively regulates the cell cycle of diffuse-type gastric
carcinoma cells, we examined the expression levels of
cyclin-dependent kinase (CDK) inhibitors by quantitative
real-time RT-PCR (see Supplemental Figure S2 at http://
ajp.amjpathol.org). Among the CDK inhibitors examined,
the expression of CDKN1B (encoding p27) was not af-
fected by BMP-4, and no expression of CDKN2A (encod-
ing p16) and CDKN2B (encoding p15) was detected in
OCUM-12 and HSC-39 cells. The proto-oncogene MYC
was transiently up-regulated by BMP-4 in HSC-39 cells,
but no effect was seen in OCUM-12 cells. Down-regula-
tion of CDC25A (cell division cycle 25A) by BMP-4 was
observed only in OCUM-12 cells. Thus, up-regulation of
CDKN1A (encoding p21) mRNA by BMP-4 was com-
monly observed in these cells in a time-dependent man-
ner (Figure 4A). Moreover, neither increase in p21 protein
nor decrease in ppRB by BMP-4 was noted in dnALK3-
expressing cells, but both were present in control GFP-
expressing cells (Figure 4B).

Next, we attempted to identify the signaling pathways
mediating the regulation of p21 in the presence of BMP-4
in diffuse-type gastric carcinoma cells. To evaluate
whether the SMAD pathway is involved in the BMP-4-
mediated induction of p21, we knocked down the endog-
enous expression of SMAD4 in OCUM-12 cells by trans-
fection with siRNA targeting SMAD4. BMP-4-mediated
induction of CDKN1A mRNA and p21 protein was dra-
matically abolished in SMAD4-silenced cells (Figure 4, C
and D).

The Inhibitory Effect of BMP-4 on the Growth of
Diffuse-Type Gastric Carcinoma Cells Is
Mediated in Part by Induction of p21

To determine whether the BMP-4-mediated induction
of p21 is responsible for the growth arrest of diffuse-
type gastric carcinoma cells, we established OCUM-12
and HSC-39 cells stably expressing a shRNA construct
against p21 (OCUM-12-shRNA/p21 and HSC-39-
shRNA/p21) with a lentiviral vector system. The expres-
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fully knocked down in OCUM-12-shRNA/p21 and HSC-
39-shRNA/p21 cells in the absence or presence of
BMP-4, but not in control cells expressing the non-
targeting control shRNA construct (OCUM-12-shRNA/
NTC and HSC-39-shRNA/NTC) (Figure 5, A and B). The
in vitro cell proliferation assay revealed attenuated
growth inhibition of OCUM-12-shRNA/p21 and HSC-
39-shRNA/p21 cells by BMP-4, compared with that of
OCUM-12-shRNA/NTC and HSC-39-shRNA/NTC cells,
respectively (Figure 5C). In accord with this finding,
the decrease in ppRB in the presence of BMP-4
was almost absent in OCUM-12-shRNA/p21 cells
(Figure 5B).
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The Expression of caALK3 Inhibits the Growth
of Diffuse-Type Gastric Carcinoma Cells

Next, we attempted to prove that the tumor growth of
diffuse-type gastric carcinoma cells is diminished by ac-
tivating ALK-3 signaling with Tet-On system. HSC-39
cells stably expressing tetracycline-inducible (Tc)
caALK3 (HSC-39-Tc-caALK3) or control AcGFP (HSC-
39-Tc-AcGFP) were established. Phosphorylation of
SMAD1/5/8 and induction of ID3 mRNA, CDKN1A mRNA,
and p21 protein were observed in HSC-39-Tc-caALK3
cells by treatment with doxycycline (see Supplemental

Figure 4. BMP-4 regulates the expression of
CDKN1A in OCUM-12 cells through the
SMAD pathway. A: Diffuse-type gastric carci-
noma cells were treated with BMP-4 for 1 to
24 hours. Expression of CDKN1A mRNA was
determined by quantitative real-time RT-PCR;
data are presented as fold change under
BMP-4 stimulation (means � SD). B: Diffuse-
type gastric carcinoma cells expressing GFP
or dnALK3 were treated with BMP-4 for 24
hours (OCUM-12) or 72 hours (HSC-39). Cell
lysates were subjected to immunoblotting
with antibodies, as indicated under Materials
and Methods. Note ppRB and pRB (arrows).
C: OCUM-12 cells were transfected with ei-
ther siRNA/NTC or siRNA/SMAD4 and then
were treated with BMP-4 for 24 hours. Expres-
sion levels of SMAD4 mRNA and CDKN1A
mRNA were determined by quantitative real-
time RT-PCR. Data are presented as means �
SD. D: The cell lysates in C were subjected to
immunoblotting with antibodies, as indicated
under Materials and Methods.
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Figure S3, A and B, at http://ajp.amjpathol.org), suggest-
ing that ALK-3 signaling was successfully activated in
HSC-39-Tc-caALK3 cells by doxycycline. We found that
proliferation of HSC-39-Tc-caALK3 cells was strongly in-
hibited by doxycycline (see Supplemental Figure S3C at
http://ajp.amjpathol.org). The effect of caALK3 on in vivo
tumor growth was also examined in a mouse xenograft
model. In vivo tumor growth of HSC-39-Tc-caALK3 cells
was also severely reduced compared with that of HSC-
39-Tc-AcGFP cells (see Supplemental Figure S3D at
http://ajp.amjpathol.org). Contrary to our expectation,
however, tumor growth of HSC-39-Tc-caALK3 cells was
suppressed even in the absence of doxycycline, sug-
gesting that the expression of caALK3 might be induced
without doxycycline treatment in vivo.

We also tried to introduce caALK3 into another diffuse-
type gastric carcinoma cell line, OCUM-2MLN, without
using the Tet-On system. OCUM-2MLN cells expressed
lower levels of certain BMP signal components than did
HSC-39 cells (Figure 1A), and OCUM-2MLN cells were
less sensitive to exogenous BMP-4 (Figure 1C). Phos-
phorylation of SMAD1/5/8 and expression of target genes
of BMP-4 were enhanced in OCUM-2MLN-caALK3 cells,
even in the absence of BMP-4 (Figure 6, A–C). Results
from the mouse xenograft model indicated that activated
ALK-3 signaling diminished the size of tumors of OCUM-
2MLN cells (Figure 6D). Thus, activation of ALK-3 signal-
ing inhibits in vitro proliferation of HSC-39 cells and in vivo
tumor growth of HSC-39 and OCUM-2MLN cells.

Phosphorylation of SMAD1/5/8 Is Associated
with Expression of p21 and Ki-67 in Gastric
Epithelial Tissues

Finally, we evaluated the correlation between BMP sig-
naling and proliferation of gastric epithelial cells using
human gastric tissues. Samples of normal gastric epithe-
lium and intestinal metaplasia, a possible precursor le-
sion in the development of gastric carcinoma, were
stained with anti-pSmad1/5/8 antibody, anti-p21 anti-
body, and MIB-1 (see Supplemental Figure S4 at http://
ajp.amjpathol.org). In these tissues, strong staining for pS-
MAD1/5/8 was detected mainly in the nuclei of surface
epithelial cells located in the gastric pit. The majority of cells
positive for pSMAD1/5/8 coexpressed p21 in their nuclei,
suggesting that phosphorylation of SMAD1/5/8 may posi-
tively correlate with the expression of p21. Conversely, MIB-
1-positive Ki-67-expressing cells were not frequently ob-
served in cells positive for pSMAD1/5/8 and for p21 in these
tissues. MIB-1-positive cells were distributed mainly in the
lower parts of the gastric pit, where weak or negative stain-
ing for pSMAD1/5/8 was frequently observed.

Discussion

Diffuse-type gastric carcinoma is characterized by thick
fibrosis, which may be induced by TGF-� secreted by
cancer-associated fibroblasts and/or cancer cells. TGF-�
is reported to be involved in the pathogenesis of diffuse-

type gastric carcinoma.32 We previously showed that
disruption of TGF-� signaling in diffuse-type gastric car-
cinoma cells results in acceleration of their growth with
alteration of the tumor microenvironment via down-regu-
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metalloproteinase 2 (TIMP2).19,20 Recently, we also dem-
onstrated that TGF-� diminishes cancer-initiating cells
within diffuse-type gastric carcinoma.21 These findings
suggest that TGF-� negatively regulates the progression
of diffuse-type gastric carcinoma in vivo. Although TGF-�
is well known for its tumor-suppressive role in the early
phase of cancer progression, the role of BMPs in cancer
progression is not fully understood. In the present study,
we examined the role of BMP signaling in the progression
of diffuse-type gastric carcinoma, using three different
human diffuse-type gastric carcinoma cell lines. We dem-
onstrated that in vivo growth of OCUM-12 and HSC-39 cells
is promoted by disruption of BMP-2/4 signaling (Figure 2D);
however, disruption of BMP-2/4 signaling in these cancer
cells did not obviously alter the histological appearances of
xenograft tumors (data not shown). In addition, the regula-
tion of THBS1 (encoding TSP-1) and TIMP2 mRNA by
BMP-4 was not commonly observed in OCUM-12 and
HSC-39 cells (data not shown), suggesting that BMP-4 sup-
presses the progression of diffuse-type gastric carcinoma
in a mechanism different from that of TGF-�.

In juvenile polyposis, a cancer predisposition syn-
drome in the gastrointestinal tract, germline mutations of
SMAD4 and BMPR1A were found.33,34 Mutations of
SMAD4 and BMPR2 were also found in the majority
of sporadic colorectal cancers.35 On the basis of these
observations, BMP is considered to be a tumor suppres-
sor in colorectal cancer.14 Recently, the relationship be-
tween BMP signaling and gastric carcinogenesis has
also been highlighted, and somatic frameshift mutations
of BMPR2 were found in 6.5% of gastric cancers with
microsatellite instability.36 Bmpr1a conditional knockout
mice and Nog (encoding noggin, an extracellular antag-
onist of BMPs) transgenic mice with activated prostaglan-
din E2 pathway were reported to develop hamartoma in
the gastric epithelium.15,16 In addition, BMP signals were
reported to regulate the proliferation of gastric epithelial
cells in mice.37 In the present study, an inverse correla-
tion between phosphorylation of SMAD1/5/8 and expres-
sion of Ki-67 was observed in the majority of normal or
metaplastic gastric epithelium (see Supplemental Figure
S4 at http://ajp.amjpathol.org). These findings suggest
that BMP functions as a tumor suppressor in the devel-
opment and progression of gastric cancer.

BMPs consist of many ligands, including the BMP-2/4,
OP-1, GDF-5/6/7, and BMP-9/10 groups.8 BMP-2 is re-
quired for formation of the gastric gland during develop-
ment in the chicken embryo and is expressed in the
human adult stomach.38,39 Lower expression levels of
SMAD4 and epigenetic silencing of the BMP2 gene
were more frequently found in diffuse-type than in in-
testinal-type gastric carcinoma.18,40 In the present
study, we demonstrated that overexpression of dnALK3
in OCUM-12 and HSC-39 cells accelerated their tumor
growth (Figure 2D). Moreover, constitutive activation of
BMP-4-ALK-3 signaling in HSC-39 and OCUM-2MLN
cells increased expression of p21 and suppressed pro-
liferation of these cells in vitro and in vivo (Figure 6; see
also Supplemental Figure S3 at http://ajp.amjpathol.org).

The CDK inhibitor p21 is a potent tumor suppressor.

Many reports indicate that the expression of p21 nega-
tively correlates with the malignant potential or prognosis
of gastric cancer.41,42 One study, however, showed op-
posite findings.43 Moreover, Ogawa et al41 reported that
loss of p21 expression was more frequently observed in
diffuse-type than in intestinal-type gastric carcinoma.
BMP has been shown to induce expression of p21 in
several cell types, including cancer cells, aortic smooth
muscle cells, and osteoblast-like cells.13,31,44–47 Here,
we have presented the first evidence that BMP-4-ALK-3
signaling increases the expression of p21. Furthermore,
induction of p21 by BMP-4 is crucial for growth inhibition of
diffuse-type gastric carcinoma cells in all three diffuse-type
gastric carcinoma cell lines examined. These findings sug-
gest that BMP-4-ALK-3 signaling may exert an antiprolifera-
tive function in diffuse-type gastric carcinoma via induction
of p21 through the SMAD pathway (Figure 6E).

The level of BMP-2 in blood has been associated with
disease progression in gastric cancer patients.48,49

BMP-2 is also reported to accelerate motility and inva-
siveness of gastric cancer cells via activation of the phos-
phoinositide 3-kinase pathway.50 These reports suggest
that BMP might enhance invasion and metastasis in cer-
tain types of gastric cancer. Collectively, BMP-2/4 may
function as tumor suppressors in a cell context-depen-
dent manner. In conclusion, we present the evidence that
BMP-2/4 suppress the progression of diffuse-type gastric
carcinoma. These findings suggest that BMP-2/4 function
as potent tumor suppressors in diffuse-type gastric car-
cinoma via induction of p21.
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