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The serotonin-2A receptor (5-HT2AR) has been implicated in the pathogenesis of schizophrenia and related inhibitory gating and

behavioral inhibition deficits of schizophrenia patients. The hallucinogen psilocybin disrupts automatic forms of sensorimotor gating and

response inhibition in humans, but it is unclear so far whether the 5-HT2AR or 5-HT1AR agonist properties of its bioactive metabolite

psilocin account for these effects. Thus, we investigated whether psilocybin-induced deficits in automatic and controlled inhibition in

healthy humans could be attenuated by the 5-HT2A/2CR antagonist ketanserin. A total of 16 healthy participants received placebo,

ketanserin (40 mg p.o.), psilocybin (260mg/kg p.o.), or psilocybin plus ketanserin in a double-blind, randomized, and counterbalanced

order. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response. The effects on psychopathological

core dimensions and behavioral inhibition were assessed by the altered states of consciousness questionnaire (5D-ASC), and the

Color-Word Stroop Test. Psilocybin decreased PPI at short lead intervals (30 ms), increased all 5D-ASC scores, and selectively increased

errors in the interference condition of the Stroop Test. Stroop interference and Stroop effect of the response latencies were increased

under psilocybin as well. Psilocybin-induced alterations were attenuated by ketanserin pretreatment, whereas ketanserin alone had no

significant effects. These findings suggest that the disrupting effects of psilocybin on automatic and controlled inhibition processes are

attributable to 5-HT2AR stimulation. Sensorimotor gating and attentional control deficits of schizophrenia patients might be due to

changes within the 5-HT2AR system.
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INTRODUCTION

Automatic and controlled information-processing deficits,
such as impairments in early and late inhibitory gating
processes, are considered to constitute core symptoms of
schizophrenia and appear to have a crucial role in the
pathophysiology of schizophrenia (Braff et al, 2001; Geyer
and Braff, 1987; McGhie and Chapman, 1961; Nuechterlein
and Dawson, 1984; Nuechterlein et al, 1994; Venables,
1960). Although attentional and behavioral control pro-
cesses have been linked to the serotonin system in general
(Cools et al, 2008; Soubrié, 1986), early automatic inhibition
of sensory stimuli (also called sensorimotor gating; Sipes
and Geyer, 1997; Vollenweider et al, 2007) as well as
controlled behavioral inhibition have been linked recently

to the function of serotonin-2A receptors (5-HT2ARs) in
particular (Robinson et al, 2008; Winstanley et al, 2004).
Given the long-standing hypothesis that 5-HT2ARs are
implicated in the pathogenesis of schizophrenia (Dean,
2003; Geyer and Vollenweider, 2008; Meltzer, 1999; Meltzer
et al, 2003; Quednow et al, 2010), 5-HT2AR changes might
also contribute to disturbed inhibitory processes seen in
schizophrenia patients. Therefore, we investigated the role
of 5-HT2ARs in automatic and controlled inhibition
processes in a model psychosis approach using the
serotonergic hallucinogen psilocybin in healthy humans
either pretreated with the 5-HT2A/2CR antagonist ketanserin
or placebo. Psilocybin (4-phosphoryloxy-N,N-dimethyltryp-
tamine) is a prodrug that is rapidly metabolized into the
bioactive main metabolite psilocin (4-hydroxy-N,N-di-
methyltryptamine; Hasler et al, 1997, 2002) that acts as an
agonist at 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7R
(Blair et al, 2000; Sard et al, 2005; Psychoactive Drug
Screening Program (PDSP): http://pdsp.med.unc.edu).
Ketanserin has about a 50-fold greater antagonistic potency
at 5-HT2AR than 5-HT2CR and also some weak affinity at
5-HT2B and 5-HT7R. Moreover, it is also strongly active atReceived 1 July 2011; revised 3 August 2011; accepted 26 August 2011
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adrenergic a1 and histamine H1 receptors, and weakly
active at some dopamine receptors (PDSP: http://pdsp.
med.unc.edu). Given these activity profiles, it is conceivable
that ketanserin blocks the activity of psilocin primarily at
5-HT2A/2CRs.

Prepulse inhibition (PPI)Fwhich has been established as
an operational measure of sensorimotor gatingFis defined
as a reduction of the startle reflex because of a weak sensory
prestimulation (Braff et al, 1992; Graham, 1975). As patients
with schizophrenia display impaired PPI (Braff et al, 1978,
1992; Kumari et al, 2000; Ludewig et al, 2003; Parwani et al,
2000; Quednow et al, 2006, 2008a; Swerdlow et al, 2006)
drug-induced PPI deficits has become an important
translational model of the gating impairment in schizo-
phrenia.

Hallucinogenic 5-HT2AR agonists such as LSD, 5-MeO-
DMT, DOB, and DOI decrease PPI in rats (Johansson et al,
1995; Krebs-Thomson et al, 2006; Ouagazzal et al, 2001;
Padich et al, 1996; Sipes and Geyer, 1995b, 1997). The PPI-
disrupting effects of DOI and LSD are blocked by the
selective 5-HT2AR antagonist MDL100, 907, which supports
the hypothesis that the PPI-disrupting effects of these
hallucinogens are mediated by 5-HT2ARs (Halberstadt and
Geyer, 2010; Ouagazzal et al, 2001; Padich et al, 1996; Sipes
and Geyer, 1995b). However, a more recent study shows
that the PPI-disrupting effects of 5-MeO-DMT could
possibly be mediated by its agonistic effects at the 5-HT1AR
because the PPI-disrupting effects were also abolished by
WAY-100635 (Krebs-Thomson et al, 2006). Moreover,
5-HT1AR agonists such as 8-OH-DPAT or buspirone also
diminish PPI in rats (Sipes and Geyer, 1995a; van den Buuse
and Gogos, 2007) and humans (Gogos et al, 2006) but this
effect seems to be limited to interstimulus intervals (ISIs)
longer as 100 ms. In humans, the hallucinogen psilocybin
decreases and increases PPI at short (o60 ms) and long ISIs
(4120 ms), respectively (Gouzoulis-Mayfrank et al, 1998;
Vollenweider et al, 2007). Consequently, the question arose
whether the PPI-disrupting effects of psilocybin in humans
could be attributed to its 5-HT2A or to its 5-HT1A agonist
properties. Additional evidence from human genetic studies
suggests that polymorphisms of the 5-HT2AR (Quednow
et al, 2008b, 2009), but not the 5-HT1AR (Brauer et al, 2009;
Quednow, unpublished data), modulates PPI in humans.

The Color Word Stroop Interference Test is an estab-
lished measure of response inhibition, attentional control,
and cognitive flexibility (Barch et al, 2009; MacLeod, 1991;
Spreen and Strauss, 1998), in which color words written in
different ink colors are presented. Participants are told to
name the ink color of the words but to ignore its denotation.
If ink color and denotation are conflicting, an over-learned
process of reading (semantic information) interferes with
an intentional process of color naming (contextual in-
formation), resulting in increased reaction time (RT) and
errors. Performance on this task is linked to the activation
of the anterior cingulate cortex (ACC) and dorsolateral
prefrontal cortex (DLPFC; Botvinick et al, 2004; Carter et al,
1998; Cohen et al, 2000; Mansouri et al, 2009; Pardo et al,
1990)Fregions that are rich in 5-HT2AR (Adams et al, 2004;
Forutan et al, 2002; Pazos et al, 1987). In the classical card
Stoop Test, schizophrenia patients consistently displayed
increased susceptibility to interference effects in RT. In
contrast, on trial-by-trial versions of the task, normal RT

interference but increased RT facilitation (RT enhancement
in congruent trials) and increased error rates and RT in the
conflicting trials have been demonstrated (for review see
Henik and Salo, 2004). Neuroimaging studies suggested a
conflict-related hypoactivation of the ACC during Stroop
interference in schizophrenia patients (Melcher et al, 2008).
Recently, it was shown that sensorimotor gating and
performance in the Stroop task are correlated indicating
that they may be mediated by common attentional or
inhibitory processes (Scholes and Martin-Iverson, 2009).

Acute tryptophan depletion, which transiently depletes
brain 5-HT, has been reported to decrease RT interference
in the Stroop Test in some (Evers et al, 2006; Schmitt et al,
2000; Scholes et al, 2007) but not all studies (Gallagher et al,
2003; Horacek et al, 2005; Sobczak et al, 2002). Moreover,
acute 5-HT release induced by dexfenfluramine or MDMA
also did not alter Stroop Test performance (Andrews and
Anderson, 1998; Vollenweider et al, 1998a). More specifi-
cally, early studies found that the preferential 5-HT2AR
agonist LSD impaired performance in the Stroop Test in
healthy controls as well as in schizophrenia patients (Krus
et al, 1963; Wapner and Krus, 1960). Recent evidence
suggests that the 5-HT2A/1AR agonist psilocybin and the
5-HT2A/2CR agonist DMT disrupted a similar inhibitory
mechanism of attention as measured with the inhibition-of-
return (IOR) task, in which performance has been shown
to be disturbed in schizophrenia (Daumann et al, 2008;
Gouzoulis-Mayfrank et al, 2002, 2004, 2006a, b, 2007).
Finally, cyproheptadineFan antagonist at 5-HT2A/2B/2C, 5-
HT1A, and 5-HT7R with high affinity also for histamine and
muscarinic receptors (PDSP: http://www.pdsp.med.unc.
edu)Fimproves RT in the conflict condition of the Stroop
Test in chronic schizophrenia patients (Chaudhry et al,
2002), whereas the partial 5-HT1AR agonist buspirone had
no effect on Stroop performance in schizophrenia patients
(Piskulic et al, 2009). Taken together, these results imply
that 5-HT2ARs are probably involved in controlled inhibi-
tory mechanisms that are needed to accomplish tasks such
as the Stroop Test.

Hence, we further investigated the role of the 5-HT2AR in
the modulation of automatic (sensorimotor gating) and
controlled (Stroop interference) inhibition processes in
healthy human volunteers with a placebo-controlled,
crossed, counterbalanced, and double-blind design. We
examined whether a pretreatment with the 5-HT2A/2CR
antagonist ketanserin could prevent the inhibition-disrupt-
ing effects of psilocybin. Owing to previous studies, we
expected that ketanserin pretreatment would reduce
psilocybin-induced disruptions of PPI and Stroop inter-
ference, while preventing formation of an altered state of
consciousness (ASC).

MATERIALS AND METHODS

Participants

A total of 16 healthy subjects (13 males, 3 females; mean
age: 29.7 years, age range: 24–39, all were students or
academics) were recruited through advertisement from the
local universities. Subjects were healthy according to
medical history, clinical examination, electrocardiography,
and blood analysis. Subjects were screened by the DIA-X
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diagnostic expert system (Wittchen and Pfister, 1997), a
semi-structured psychiatric interview to exclude those with
personal or family (first-degree relatives) histories of major
psychiatric disorders, and standard psychometric instru-
ments including the Freiburg Personality Inventory (FPI;
Fahrenberg et al, 1984), the State Trait Anxiety Inventory
STAI (Spielberger et al, 1970), and the Symptom Checklist
SCL-90R (Derogatis, 1994). As the personality trait factors
rigidity and emotional lability predict negative experiences
under hallucinogens (Dittrich, 1994), scores two SD above
the mean value of normative data in the respective subscales
of the FPI (ie, openness and neuroticism) were exclusion
criteria. No subject had to be excluded using these
criteria. Five of the subjects were occasional smokers, seven
subjects reported a sporadic or rare cannabis use in the
past (o5 joints/month), one subject had prior experiences
with MDMA (two pills lifetime), and two subjects
reported experiences with psilocybin (one and two occa-
sions lifetime).

This study was approved by the Ethics Committee of the
University Hospital of Psychiatry, Zurich; the use of
psilocybin was authorized by the Swiss Federal Office for
Public Health, Department of Pharmacology and Narcotics,
Bern. All volunteers gave their written consent after being
informed by written and oral descriptions of the study and
their risks.

Psilocybin

Psilocybin was obtained through the Swiss Federal Office of
Public Health, Department of Pharmacology and Narcotics,
Berne and prepared as capsules of 1 mg and 5 mg at the
Pharmacy of the Cantonal Hospital of Aarau, Switzerland.
Psilocybin, ketanserin, and lactose placebo were adminis-
tered in gelatin capsules of identical appearance.

Study Design

The study was double-blind and placebo-controlled, and
included four experimental days. All subjects received
placebo, a variable dose of psilocybin (260 mg/kg), a fixed
dose of ketanserin (40 mg, Suffrexal), and a combination of
both drugs p.o. each on single test days separated by 4-week
intervals and in a randomized and counterbalanced order.
Because of variations of PPI with menstrual cycle, women
were tested in the first 5 days of their follicular phase when
PPI is most robust (Swerdlow et al, 1997). The five
occasional smokers were told to maintain their usual
smoking habits to ensure that PPI was not influenced by
smoking withdrawal (Kumari and Gray, 1999).

Sessions were conducted in a calm and comfortable
laboratory environment. Participants were told to abstain
from alcohol the day before each session and not to drink
caffeine-containing beverages or to eat 2 h before each
session. One hour after arrival, subjects received placebo/
ketanserin in capsules (0900 hours) and after another
40 min placebo/psilocybin. Startle measures were obtained
60 min after placebo/psilocybin intake. The Stroop task
was conducted 85 min after treatment, while the 5D-ASC
rating was conducted about 125 min after treatment. Both
measures were assessed during the known plateau of about
50 min of psilocybin response. The peak of the subjective

hallucinogenic effects occurs after 70–90 min, while the
psilocin plasma peak is reached after 105 min (tmax) with a
half-life (t1/2) of 163 min (Hasler et al, 1997, 2002; Passie
et al, 2002). An oral dose of 40 mg ketanserin shows a
tmax¼ 65 min and a half-life of t1/2¼ 29.2 h (Persson et al,
1987). After the acute effects of psilocybin had subsided
completely (about 360 min after treatment), subjects re-
mained in the hospital for another 2 h and were monitored
clinically.

Startle Response Measurement

PPI was recorded and analyzed as described in detail
previously (Vollenweider et al, 1999; Vollenweider et al,
2007). In brief, each session began with a 5-min acclimation
period of 70-dB background white noise that continued
throughout the session consisting of a total of 52 trials
presented in a pseudorandom order and separated by inter-
trial intervals varying between 4 and 22 s (mean 13 s). The
session started and ended each with five 115-dB pulse-alone
(PA) trials (white noise) of 40 ms duration that were not
used for the calculation of PPI. The trials in between these
two blocks consisted of three conditions: 12 PA trials; 24
prepulse-pulse (PP) trials consisting of a 20-ms duration
prepulse of either 78 dB or 86 dB white noise presented with
an ISI of 30 or 120 ms before the PA, yielding four types
of PP trials (30 ms_78 dB, 30 ms_86 dB, 120 ms_78 dB,
120 ms_86 dB, six of each type); and 6 no-stimulus trials.
The intensity conditions (78 dB or 86 dB) were pooled for
further analysis. The entire test session took about 15 min.

Error trials were defined as trials in which no startle
response was recorded because of a baseline shift (eg, due to
spontaneous or voluntary blinks). Subjects with error trials
and/or response rejections 450% were excluded from data
analysis. None the 16 subjects participating in the study had
to be excluded from data analysis based on this criterion.
As detailed elsewhere (Ludewig et al, 2003), the startle
measures examined were: (1) startle reactivity¼mean
amplitude of all PA trials; (2) %habituation¼ (1�(startle
amplitude of 1. PA block/startle amplitude of last PA
block)� 100; and (3) %PPI¼ according to the formula
(1�(mean startle amplitude of PP trials/mean startle
amplitude of PA trials in the middle block)� 100).

The Altered State of Consciousness Rating Scale

The 5D-ASC rating scale (Dittrich et al, 1985; Dittrich, 1998)
was used to assess the subjective effects of drug conditions
and has been described in detail elsewhere (Vollenweider
et al, 2007). The 5D-ASC questionnaire is a visual-analogue
scale consisting of 94 items assessing three key dimensions
of ASC: (1) oceanic boundlessness (OB), (2) anxious ego
dissolution (AED), and (3) visionary restructuralization
(VR). The subscales of the key dimensions have been
described previously (Vollenweider et al, 2007).

Stroop Task

A computerized version of the trial-by-trial Color Word
Stroop Test was used, as described in detail previously
(Vollenweider et al, 1998a). Stimuli were presented using
MEL Professional 2.0 software (PST Pittsburgh, PA, USA)
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and an IBM-compatible PC with a VGA color monitor. The
latencies of subjects’ spoken responses were collected with
millisecond accuracy through a microphone (Labtec AM-
22). The stimulus set consisted of the German words OBEN
(above), UND (and), WENN (if), KAUM (hardly), BLAU
(blue), GRÜN (green), ROT (red), GELB (yellow), and the
non-word XXXX presented in the colors blue, red, green, or
yellow. Four conditions, corresponding to four types of
trials, were included: On congruent trials, words matched
colors (eg, the word BLAU written in blue); on conflict
trials, words mismatched colors (eg, BLAU written in red);
on neutral X trials, the non-word sequence XXXX was
presented in one of the four colors; and on neutral W trials,
one of the neutral words (OBEN, UND, WENN, KAUM) was
presented in one of the four colors (Carter et al, 1995).
Forty-eight trials of each condition were presented in
random order to minimize strategy effects yielding a total of
192 trials. The task was to name the colors of the stimuli as
quickly and accurately as possible. Before each stimulus, a
fixation cross appeared in the center of the screen for
400 ms followed by the stimulus itself, which remained on
the screen until the subject made a verbal response.
Completion of the entire task took 10 min.

Facilitation was defined as absolute reduction in RT in the
congruent condition compared with the pooled X and W
condition (mean congruent RTFmean (X + W/2) RT).
Interference was defined as the absolute increase in RT in
the conflict condition compared with the pooled X and W
condition (mean conflict RTFmean (X + W/2) RT). The
total Stroop effect was defined as absolute increase of RT in
the conflict condition compared with congruent condition
(mean conflict RTFmean congruent RT).

Statistical Analysis

All data were analyzed using STATISTICA 7.1. for Windows
(StatSoft). Startle and PPI data were analyzed using repeated
measures analyses of variance (ANOVA) with drug
(placebo, psilocybin, ketanserin, psilocybin + ketanserin),
PP intensity (78 dB, 86 dB), and ISI (30 ms, 120 ms) as
within-subject factors. An ANOVA with the repeated
measurement factors drug and Stroop condition (word,
XXXX, incongruent, congruent) was used to test for
significant effects of psilocybin on the Stroop task, while a
repeated measurement ANOVA with 5D-ASC dimensions
and drug as within-subject factors were used to examine the
effect on the 5D-ASC scale. Based on significant main effects
or interactions, Tukey’s post-hoc comparisons were per-
formed. With exception of the 5D-ASC scores under
placebo, all dependent variables were normally distributed.
Pearson’s product moment correlations were conducted to
explore the relationship between %PPI and Stroop task. The
criterion for significance was set at po0.05.

RESULTS

Psychological Effects of Psilocybin

As previously reported (Hasler et al, 2009; Kometer et al,
2011; Vollenweider et al, 2007), psilocybin produced an
altered state that was characterized by derealization and
depersonalization phenomena, affective changes, thought

disorder, and perceptual alterations. Psilocybin was well
tolerated physically and mentally by all subjects, with none
of our subjects reporting persisting residual psychotropic
effects in systematic follow-up investigations (Studerus
et al, 2011).

A 2-way ANOVA (drug*5D-ASC dimension) revealed that
psilocybin produced significant psychotomimetic effects on
all scales (main effect of drug: F(3, 45)¼ 48.3, po0.0001;
post-hoc tests psilocybin vs placebo, all po0.0002; Figure 1).
There was a significant interaction of drug*5D-ASC
dimension because the psilocybin effect was most pro-
nounced on the OB scale (F(6, 90)¼ 17.2, po0.0001).
Ketanserin alone did not induce any symptoms, but
significantly reduced the psychotomimetic effects of psilo-
cybin on OB and VR scales (psilocybin vs ketanserin plus
psilocybin: both po0.0002), while the reduction in AED was
visible but not significant. However, further inspection of
the AED subscale scores revealed that ketanserin signifi-
cantly reduced the psilocybin-induced elevation specifically
in the subscales thought disorder (po0.00005) and fear of
losing control over thinking (po0.02).

Effect of Psilocybin and Ketanserin on Startle
Amplitude and Habituation

As shown in Figure 2, a 2-way ANOVA (block*drug)
revealed significant effects of the factors block
(F(2, 30)¼ 79.2, po0.0001) and drug (F(3, 45)¼ 8.13,
p¼ 0.0002). Post-hoc testing showed that psilocybin alone
(NS) did not affect startle response, whereas ketanserin
(po0.0015) and ketanserin plus psilocybin (po0.015)
significantly reduced startle reactivity. The lack of a
significant drug*block interaction (F(6, 90)o1, NS) indi-
cates no differences in habituation between drug conditions.

Figure 1 Effects of placebo, ketanserin (40 mg), psilocybin (260 mg/kg),
and psilocybin in combination with a pretreatment of ketanserin on
the 5D-ASC (altered states of consciousness) in healthy human
volunteers. Significant changes compared with placebo are indicted by
***pTukey post hoc¼ 0.001. Mean scores±SEM (n¼ 16). AED, anxious ego
dissolution; ASC, altered state of consciousness; OB, oceanic boundless-
ness; VR, visionary restructuralization.
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Effect of Psilocybin and Ketanserin on Percent PPI

An initial 4-way ANOVA (pretreatment*treatment*intensi-
ty*ISI) revealed an interaction of pretreatment*treatment
and ISI (F(1, 15)¼ 4.21, po0.05) reflecting differential
effects of the drugs on ISI conditions (Figure 3). Post-hoc
tests showed that psilocybin decreased %PPI in the 30 ms
condition (po0.008) and that this effect was reversed by
ketanserin (NS). At the long ISI of 120 ms, psilocybin
slightly increased %PPI, whereas ketanserin slightly de-
creased %PPI, but these effects were not significant. As
expected the factors intensity (F(1, 15)¼ 43.4, po0.0001)
and ISI (F(1, 15)¼ 36.7, po0.0001) were significant. Intro-
duction of smoking status as a covariate did not affect these
results.

Effect of Psilocybin on Stroop Test

A 2-way ANOVA (drug*Stroop condition) of the errors
showed significant effects of drug (F(3, 45)¼ 6.26,
po0.001), condition (F(3, 45)¼ 17.9, po0.0001), and their
interaction (F(9, 135)¼ 2.39, po0.015). In post-hoc tests,
psilocybin increased error rates in the conflict condition
(po0.0001), which was reversed by ketanserin (po0.0001).
Ketanserin alone did not alter Stroop error rates (NS;
Figure 4).

A similar analysis of the RT showed significant effects
of drug (F(3, 45)¼ 9.51, po0.0001), condition (F(3, 45)¼
61.6, po0.00001), and their interaction (F(9, 135)¼ 3.62,
po0.0005). In contrast to the errors, psilocybin incre-
ased RT in all conditions (all po0.00003), which was
substantially reduced by ketanserin (all po0.00003). Again,
ketanserin alone did not alter RT (Figure 5).

As shown in Table 1, psilocybin significantly increased
Stroop interference and Stroop effect compared with
placebo and ketanserin. This effect was neutralized by the
combination of psilocybin and ketanserin. Psilocybin alone
did not change facilitation but in combination with
ketanserin facilitation was enhanced. Ketanserin alone did
not alter interference, Stroop effect, or facilitation.

Relationships between PPI, Stroop Test, and Altered
States of Consciousness

To explore the relationship between PPI and clinical
symptoms in psilocybin states, data obtained during the
peak effects of psilocybin and psilocybin plus ketanserin
were pooled (n¼ 32), and correlation analyses between PPI
change scores (psilocybinFplacebo and of psilocybin/
ketanserinFplacebo) and the 5D-ASC scale change scores
or Stroop measures were performed. The change in PPI
obtained at the 30 ms lead interval correlated significantly
with OB (R¼ 0.47, po0.01) and VR scores (R¼ 0.40,
po0.05), but not with any change scores of the Stroop task
performance. In other words, the higher the reduction in

Figure 2 Effects of placebo, ketanserin (40 mg), psilocybin (260 mg/kg),
and psilocybin in combination with a pretreatment of ketanserin on startle
amplitude and habituation across three blocks of pulse-alone trials in
healthy human volunteers. Mean scores±SEM (n¼ 16).

Figure 3 Effects of placebo, ketanserin (40 mg), psilocybin (260 mg/kg),
and psilocybin in combination with a pretreatment of ketanserin on
prepulse inhibition (PPI) of the acoustic startle response in healthy human
volunteers. Significant differences compared with placebo are indicated by
**pTukey post hoc¼ 0.01. Mean scores±SEM (pooled prepulse intensities,
n¼ 16). ISI, interstimulus-interval; ket, ketanserin; ket + psi, ketanserin +
psilocybin; pla, placebo; psi, psilocybin.

Figure 4 Effects of placebo, ketanserin (40 mg), psilocybin (260 mg/kg),
and psilocybin in combination with a pretreatment of ketanserin on errors
in the Stroop Test in healthy human volunteers. Mean scores±SEM
(n¼ 16). Significant changes compared with placebo are indicted by
***pTukey post hoc¼ 0.001. XXXX represents a non-word sequence.
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%PPI in psilocybin or psilocybin plus ketanserin condition,
the more OB or VR symptoms occurred. Subsequent
analyses of the OB and VR subscale scores revealed that
these correlations were driven by derealization phenomena,
mania-like symptoms and changed meaning in percepts
(data not shown). However, a similar analysis of the pooled
5D-ASC change scores and the Stroop RT revealed that the
change in AED score correlated significantly with the Stoop
interference obtained in the neutral X (R¼ 0.40, po0.05)
and W condition (R¼ 0.35, po0.05). Analyses of the AED
subscale scores showed that this correlation was driven by
thought disorder and loss of control over thinking and body
(data not shown).

DISCUSSION

The present study demonstrated that the 5-HT2A/2CR
antagonist ketanserin abolished the disrupting effects of

the 5-HT2A/2B/2C/1AR agonist psilocybin on automatic
(sensorimotor gating) and controlled (Stroop interference)
inhibition processes. Moreover, we again replicated our
previous findings that most of the subjective hallucinogenic
effects of psilocybin are substantially neutralized by
ketanserin (Carter et al, 2005, 2007; Vollenweider et al,
1998b).

In a previous study, we found that psilocybin reduced PPI
at short (30 ms), had no effect at medium (60 ms), and
increased PPI at long (120 and 240 ms) ISIs (Vollenweider
et al, 2007). We found a similar pattern in the present study,
although the increase of PPI in the 120 ms ISI condition was
not significant. The lacking significance regarding the
increase at 120 ms might be due to the fact that a somewhat
higher dose of psilocybin was used in the present study
(260 mg/kg) compared with the dose with which we found
the significant effect in our previous study (215 mg/kg), and
that the response in the 120 ISI condition appears to follow
an inverse-U relationship (no significant increase at 315 mg/
kg, Vollenweider et al, 2007). Moreover, indirect stimula-
tion of all 5-HT receptors by SSRI has also shown no effect
on PPI at 60 and 120 ms ISIs in previous studies (Jensen
et al, 2007; Oranje et al, 2011; Quednow et al, 2004), which
is in line with our present results. We previously
hypothesized that the reduction of PPI at short ISIs is
caused by the 5-HT2AR agonist action of psilocybin,
whereas the increase at long ISIs might be due to its 5-
HT1AR agonist action (Vollenweider et al, 2007). The
present results strongly suggest that the psilocybin-induced
PPI disruption at short ISIs is generated by the action of
psilocybin at 5-HT2ARs. This finding further supports the
assumption that PPI deficits in schizophrenia might be
induced by 5-HT2AR changes (Quednow et al, 2008b, 2009).
Moreover, as demonstrated in two previous studies,
psilocybin again showed no significant effect on startle
reactivity or habituation (Gouzoulis-Mayfrank et al, 1998;
Vollenweider et al, 2007).

Furthermore, we found a slight and non-significant
reduction of startle reactivity by ketanserin, which is partly
in line with a previous study reporting that the same dose of
ketanserin (40 mg) significantly reduced startle amplitude
(Graham et al, 2002). In contrast, Graham et al (2002) also
described that ketanserin disrupts PPIFa finding that we

Table 1 Performance in the Stroop Test under Placebo, Ketanserin, Psilocybin, and Psilocybin + Ketanserin (n¼ 16, Mean and Standard
Error of Means of Change in Response Time (RT) in millisecond are Shown)

Condition Placebo Ketanserin Psilocybin Psilocybin+Ketanserin F df p

Interference

(Conflict RT – pooled XXXX and word RT) 110.1 (19.3) 118.01 (24.3) 188.7* (52.8) 127.3 (23.6) 4.04 3, 45 0.01

Facilitation

(Congruent RT – pooled XXXX and word RT) �35.5 (16.2) �63.4 (26.5) �43.8 (9.7) �96.7** (25.9) 5.50 3, 45 0.003

Stroop

(Conflict RT – congruent RT) 148.7 (14.6) 158.6111 (22.6) 245.4*** (35.6) 205.7 (23.5) 8.29 3, 45 0.0002

Tukey’s HSD post-hoc test vs placebo: *po.05, **po.01, ***po.001.
Tukey’s HSD post-hoc test vs psilocybin: 1po.05, 111po.001.

Figure 5 Effects of placebo, ketanserin (40 mg), psilocybin (260 mg/kg),
and psilocybin in combination with a pretreatment of ketanserin on
response time (RT) in the Stroop Test in healthy human volunteers. Mean
scores±SEM (n¼ 16). Significant changes compared with placebo are
indicted by ***pTukey post hoc¼ 0.001. XXXX represents a non-word
sequence.
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could not replicate. However, the PPI-disrupting effects
reported by Graham et al (2002) might be the result of the
strong reduction in startle amplitude found in their
experiment (Csomor et al, 2008). Although, Graham’s and
our experimental setups were similar, the different results
may have been because of some specific parametric
differences in prepulse durations, trial sequences, and the
lack of startle-alone trials before assessing PPI. Further-
more, it appears unlikely that an effect of ketanserin on
startle amplitude influenced our main findings because the
inclusion of startle amplitude as a covariate did not change
our results.

Our results are partly in line with the finding that
selective 5-HT1AR agonists decrease PPI only at ISIs
4100 ms (Gogos et al, 2006; van den Buuse and Gogos,
2007). However, the psilocybin-induced increase of PPI at
120 ms seen in the present and our previous experiment
(Vollenweider et al, 2007) seems not to be caused by the
5-HT1AR agonistic properties of the compound. This
effect might be induced by an interaction between the
5-HT1A, 5-HT2A, or 5-HT2CR because ketanserin did not
block the small PPI enhancing effect of psilocybin at 120 ms.
To investigate the contribution of 5-HT1A, 5-HT2A, and
HT2CRs on the PPI-changing effects of psilocybin, further
studies should incorporate a blockade of these receptor
types in combination with a variety of short and long ISI
ranging from 30–240 ms.

Psilocybin significantly increased RT and error rates
particularly in the conflict condition of a computerized
trial-by-trial Stroop Test, a pattern of results that is similar
to that reported for schizophrenia patients (Henik and
Salo, 2004). Ketanserin prevented these deficits in the
conflict condition, suggesting that the 5-HT2AR agonist
action of psilocybin disturbed processes that influence
performance in the conflict condition of the Stroop Test.
Performance in the Stroop Test is based upon mechanisms
that involve the active selection and maintenance of an
appropriate task rule, including working memory, atten-
tional control, conflict monitoring, and inhibition processes
(Barch et al, 2009). We have previously demonstrated that
psilocybin impairs attentional processes (Carter et al, 2005;
Vollenweider et al, 2007), while working memory is less
affected (Carter et al, 2005; Wittmann et al, 2007).
Furthermore, the psilocybin-induced disturbance of atten-
tional tracking ability could not be blocked by ketanserin,
suggesting a primary involvement of 5-HT1AR in this
effect (Carter et al, 2005). In addition, it was shown that
psilocybin also impairs performance in the IOR Task, which
is supposed to reflect an automatic inhibitory mechanism of
attention (Gouzoulis-Mayfrank et al, 2002). Taken together,
these findings suggest that the effect of psilocybin on the
performance in the conflict condition of the Stroop Test
might rather be explained by a dysfunction of conflict
monitoring and/or inhibition processes than by an effect on
working memory or attention per se.

The different interactions of psilocybin and ketanserin on
various cognitive functions might be explained by the fact
that immunohistochemical studies have demonstrated that
5-HT1ARs are colocalized with 5-HT2ARs receptors in
cortical pyramidal cells (Martin-Ruiz et al, 2001), where
both receptor subtypes displayed opposing effects when
they were stimulated (Araneda and Andrade, 1991).

Specifically, studies in rats have shown that 5-HT1A and 5-
HT2ARs in the medial prefrontal cortex (mPFC) exert
opposite action on attentional functioning and aspects of
executive functioning (Carli et al, 2006). Thus, the results of
Carter et al (2005) are not necessarily in conflict with the
present findings.

Our data are consistent with two early studies showing
that performance on the classical card version of the Stroop
Test is disrupted by the 5-HT2A/2B/2C, 5-HT1A/1B/1D, and 5-
HT6/7R agonist LSD. However, LSD also affected the
performance in the congruent conditions (cards A and B),
even though the effect was most pronounced in the conflict
condition (card C; Krus et al, 1963; Wapner and Krus,
1960). That the 5-HT system is crucially involved in
processes involved in the performance of the Stroop Test
has been shown by several studies: (1) acute tryptophan
depletion reduces RT interference in the Stroop Test (Evers
et al, 2006; Schmitt et al, 2000; Scholes et al, 2007); (2)
performance in the conflict condition of the Eriksen Flanker
Task (Reuter et al, 2007) as well as in congruent conditions
of the Stroop Test (Osinsky et al, 2009) depends on a
promoter polymorphism of the tryptophan-hydroxylase 2
gene (TPH2 –703 G/T), which has an impact on 5-HT
synthesis (Invernizzi, 2007); and (3) Stroop interference was
correlated with the 5-HT transporter density within the
DLPFC measured with [11C]DASB positron emission
tomography (PET; Madsen et al, 2011). Based on the
present findings, we speculate that deficits in conflict
monitoring and response inhibition in schizophrenia might
be caused by changes in 5-HT2ARFan assumption that
might be supported by the finding that the 5-HT2A/2B/2C,
5-HT1A, and 5-HT7R antagonist cyproheptadine improved
RT in the conflict condition of the Stroop Test in chronic
schizophrenia patients (Chaudhry et al, 2002), whereas the
partial 5-HT1AR agonist buspirone had no effect on Stroop
performance in a comparable patient population (Piskulic
et al, 2009).

Given that ketanserin blocks not only the 5-HT2A but also
to a lesser extend the 5-HT2CR, one might speculate that the
5-HT2CR might also be involved the psilocybin-induced
impairments of PPI and Stroop performance seen in this
study. An involvement of 5-HT2CR in the effects of
hallucinogens has recently proposed based on the observa-
tion that 5-HT2CR knock-out mice display a 50% reduction
of DOI-induced head-twitch responseFa proposed animal
model of human hallucinosis (Canal et al, 2010). However,
the psilocin-induced impairments of automatic and con-
trolled inhibition reported here is unlikely to be caused by
5-HT2CR agonism for several reasons: (1) the selective 5-
HT2CR agonist WAY-163909 reverses MK-801- and DOI-
induced PPI deficits and does not change or rather increase
PPI when given alone (Grauer et al, 2009; Marquis et al,
2007), (2) the selective 5-HT2CR antagonist SDZ SER-082
does not block DOI-induced PPI deficits (Sipes and Geyer,
1995b), and (3) 5-HT2CR agonists enhance while 5-HT2CR
antagonists impair behavioral inhibition in rodents (Fletch-
er et al, 2007; Navarra et al, 2008; Robinson et al, 2008;
Winstanley et al, 2004).

In contrast to a previous study, we did not find a
significant correlation between Stroop Test performance
and PPI (Scholes and Martin-Iverson, 2009). However,
Scholes and Martin-Iverson used an attentional modulation
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gating paradigm and calculated PPI by an uncommon
technique (non-linear regression fit of mean peak re-
sponse), which might be not comparable with our approach.
Earlier studies employing similar PPI techniques as in the
present study also did not find associations between PPI
and Stroop Test performance (Swerdlow et al, 1995a, b).
Thus, although PPI and Stroop interference are obviously
modulated by similar 5-HT2AR mechanisms, the inhibitory
processes engaged in each of the tasks might tap into
different regional 5-HT2AR populations. Animal research
has shown that a DOI application in the ventral pallidum
disrupts PPI and that this effect was blocked by highly
selective 5-HT2AR antagonists (Sipes and Geyer, 1997).
Thus, psilocybin-induced PPI deficits at short ISIs may
depend primarily on 5-HT2AR stimulation located in more
basic modulatory structures of the startle circuit such as the
striatum or the thalamus (Vollenweider et al, 2007). In
contrast, Stroop interference depends on activation of the
ACC and DLPFC (Carter et al, 1998; Cohen et al, 2000;
Pardo et al, 1990). These regions display a high density of
5-HT2AR (Adams et al, 2004; Forutan et al, 2002; Pazos et al,
1987), and [18F]fluorodeoxyglucose PET studies revealed
that psilocybin strongly increases regional glucose metabo-
lism in these areas during resting state, especially in the
ACC (Gouzoulis-Mayfrank et al, 1999; Vollenweider et al,
1997). Finally, preliminary data from our lab have
shown that 5-HT2AR occupation in the ACC and mPFC
measured with [18F]altanserin PET was correlated with the
intensity of the hallucinogenic action of psilocybin (Hasler
et al, 2009; Quednow et al, 2010). Thus, although PPI-
disrupting effects of psilocybin might be mediated rather by
striatal 5-HT2AR, the effect on Stroop interference might be
explained by overstimulation of 5-HT2AR in the prefrontal
cortex and the ACC. 5-HT2AR changes in different
brain areas might therefore contribute to diverse alterations
in several stages of information processing found in
schizophrenia.

To our knowledge, this is the first study investigating
the automatic and controlled inhibition processes as well as
the psychopathological symptoms via challenge with a
hallucinogenic drug in healthy human volunteers. The
present study suggests that a stimulation of 5-HT2AR
disrupts sensorimotor gating and Stroop interference, and
that these processes likely depend on different regional
5-HT2AR populations. We therefore propose that 5-HT2AR
changes in cortical and subcortical brain regions might
contribute to varied inhibitory deficits of schizophrenia
patients.
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