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Abstract
Emerging evidence indicates that a small population of cancer cells is highly tumorigenic,
endowed with self-renewal, and has the ability to differentiate into cells that constitute the bulk of
tumors. These cells are considered the “drivers” of the tumorigenic process in some tumor types,
and have been named cancer stem cells. Epithelial-mesenchymal transition (EMT) appears to be
involved in the process leading to the acquisition of stemness by epithelial tumor cells. Through
this process, cells acquire an invasive phenotype that may contribute to tumor recurrence and
metastasis. Cancer stem cells have been identified in human head and neck squamous cell
carcinomas (HNSCC) using markers such as CD133 and CD44 expression, and aldehyde
dehydrogenase (ALDH) activity. The head and neck cancer stem cells reside primarily in
perivascular niches in the invasive front where endothelial-cell initiated events contribute to their
survival and function. In this review, we discuss the state-of-the-knowledge on the pathobiology
of cancer stem cells, with a focus on the impact of these cells to head and neck tumor progression.

Keywords
Oral cancer; Tumorigenesis; Epithelial-mesenchymal transition; EMT; Self-renewal; Stemness;
Perivascular niche; Squamous cell carcinoma; Angiogenesis

Introduction
Head and neck cancer is a major health problem throughout the world. In 2008, 263 900
new cases of head and neck cancer were diagnosed, and 128 000 deaths related to this
malignancy have occurred worldwide.1 In the United States alone, there were 49 260 new
cases and 11 480 deaths that were attributed to head and neck cancer in 2010.2 The standard
of care for patients with head and neck squamous cell carcinomas (HNSCC) includes
platinum-based chemotherapeutic drugs, surgery, and radiotherapy.3 However, the 5-year
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survival rate for these patients has remained in the range 50–60% for the last 3 decades.4 It
is becoming increasingly evident that an improvement in the survival of head and neck
cancer patients will require deeper understanding of the mechanisms underlying the initial
steps of the tumorigenic process, as well as the strategies employed by cancer cells to
disseminate to local lymph nodes and distant sites. Recent studies on the pathobiology of
HNSCC have led to the discovery of a small population of cancer cells that is highly
tumorigenic, capable of self-renewal, and behave as tumor progenitor cells.5 Such behavior
is consistent with the features of cancer stem cells (CSC). Notably, cancer stem cells appear
to play a major role in tumor recurrence and metastatic spread, common causes of the high
morbidity and ultimately the death of the majority of patients with HNSCC. Therefore,
targeted elimination of these cancer stem cells has been considered a new conceptual
framework for head and neck cancer treatment. This review discusses the putative role of
stem cells in tumorigenesis, the biological process that leads to the acquisition of stem cell
properties, and the potential impact of the cancer stem cell hypothesis to the management of
patients with head and neck cancer.

Cancer stem cells
According to the developmental status, physiological stem cells can be classified as
embryonic or adult stem cells. Embryonic stem cells are derived from the inner mass of the
mammalian blastocyst, have the ability to differentiate into cells of all three germ layers, and
develop to all tissues and organs of the organism.6,7 In contrast, adult stem cells are
undifferentiated cells with more limited self renewal and a differentiation potential that is
more restricted to cell types of the tissue from where they are found. Adult stem cells play a
major role in tissue homeostasis and regeneration. Stem cells also play a major role in the
biology of several diseases, including cancer.8,9 Cancer stem cells are functionally defined
as a subset of tumor cells that exhibit the ability of self-renewal and multipotency, serving as
progenitor cancer cells.9,10 In low attachment culture conditions, cancer stem-like cells tend
to form spheroids, named orospheres (Figure 1). At least two different hypotheses have been
proposed to explain the heterogeneity of tumor-initiating capacity of tumor cells, the cancer
stem cell hypothesis9,11 and the clonal evolution hypothesis.12,13

Nowell proposed the clonal evolution hypothesis in 1976, stating that most neoplasms arise
from a single cell, and that tumor progression results from acquired genetic variability
within the original clone allowing sequential selection of more aggressive sub-lines.13

Tumor cell populations are apparently more genetically unstable than normal cells. Fearon
and Vogelstein proposed a clonal evolution model for colon cancer, in which the
progression from early adenoma to invasive carcinoma reflects the stepwise acquisition of
mutations in specific cancer genes.14

Dick and collaborators provided early evidence for cancer stem cells using leukemia
models. 10,11 They induced leukemia by transplanting human acute myeloid leukemia
(AML) cells into non-obese diabetic severe combined immunodeficient (NOD/SCID) mice,
and showed that primarily CD34+CD38- cells, but not CD34+CD38+ or CD34- cells,
initiated leukemia. In addition, they showed that these progenitor cells could be serially
transplanted into second recipients. Of note, serial transplantation in vivo has become
accepted as an important criterion for the definition of cancer stem cells, and has been used
experimentally as a means to propagate cells in an undifferentiated state. The Clarke
laboratory unveiled the presence of cancer stem cells in solid tumors, i.e. breast cancer.8 In
xenograft experiments, breast cancer cells sorted for CD44 and CD24 were transplanted into
the mammary pads of NOD/SCID mice. These investigators observed that only the
CD44+CD24- fraction initiated tumors, whereas 100-fold more CD44+CD24+ or CD44-
cells did not. They did not find obvious morphologic and immunophenotypic distinctions

Zhang et al. Page 2

Oral Oncol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between the tumorigenic and non-tumorigenic breast cancer cells. Notably, the
CD44+DC24- cells showed evidence of self-renewal in serial transplantation studies. Since
then, cancer stem cells were found in several other cancers, including head and
neck,5 brain,15,16 lung,17,18 prostate,19 colorectal, 20,21 pancreas,22 liver,23 and melanoma.24

It is important to point out that the cancer stem cell hypothesis has been challenged by
findings in some tumor types, as for example melanoma. The Morrison research group
demonstrated that 25% of unselected melanoma cells are able to create tumors in
immunodeficient mice, which is consistent with the stochastic tumorigenesis model.25

However, evidence to the contrary has also been seen. CXCR6 discriminated high
tumorigenic from low-tumorigenic cells in melanoma models.26 In an independent study,
CD271+ melanoma cells generated more tumors than CD271- cells.27 In head and neck
cancer, several lines of evidence point to the function of a small group of cells with distinct
tumorigenic potential. Seminal work by the Prince and colleagues revealed that CD44
expression discriminates a sub-population of progenitor cells.5 In a follow-up study, the
Prince laboratory showed that aldehyde dehydrogenase (ALDH) activity also distinguishes a
small group of highly tumorigenic cells.28 The ability to identify cancer stem cells was
further enhanced by the combined use of both markers (ALDH and CD44) that revealed that
1–3% of the cells from primary human HNSCC are uniquely capable of generating
tumors.29 Collectively, these studies suggest that the role of progenitor (stem-like) cells in
the tumorigenic process is tumor-type and context dependent.

Development and cancer stem cells
In development, a highly orchestrated and hierarchical process is observed in which a stem
cell progressively looses multipotency giving rise to restricted progenitor cells, which in turn
differentiate into the cells that constitute the bulk of tissue or organ. In cancer, the cell of
origin is the cell that receives the first oncogenic hit(s). A candidate cell of origin is the stem
cell, which has the inherent potential of self-renewal and longevity, and therefore is more
susceptible to acquired genetic or epigenetic changes that result in transformation. On the
other hand, it is not clear if cancer stem cells originate solely from the transformation of
normal stem cells. Cancer stem cells may also arise from restricted progenitors or
differentiated cells that have acquired self-renewal properties as a consequence of genetic or
epigenetic alterations.30 The plasticity of this system is exemplified by the observation that
stem cells can derive from reprogramming of differentiated or somatic cells.31–33 In 2006,
Takahashi and Yamanaka showed that Oct3/4, Sox2, c-Myc and Kif4 induce pluripotency in
fibroblasts, generating “induced pluripotent stem (iPS)” cells.34 Transplantation of iPS cells
into nude mice generates tumors that contain cells from all of the three germ layers. The
same group also generated iPS cells from adult human fibroblasts.35 The Thomson research
group showed that Oct4, Sox2, Nanog and Lin28 are sufficient to reprogram human somatic
cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem
cells.36 Of note, one of the hallmarks of cancer is the marked phenotypic, functional,
proliferative and genetic heterogeneity of the cells.30,37 This suggests that the cell of origin
is capable of generating a highly heterogeneous progeny.

It is becoming increasingly evident that the same pathways that are critical for physiological
development also play a role in the early stages of tumorigenesis. For example, Wnt
signaling is critical for embryonic development and controls homeostatic self-renewal.38 On
the other hand, somatic mutations of the Wnt pathway are associated with the etiology of
several tumors, including intestinal cancer.38,39 Mutations in adenomatous polyposis coli
(APC) in crypt stem cells have been clearly associated with neoplastic transformation.40

Barker and colleagues identified that Lgr5-cells located at crypt bottom as stem cells that
function as cells-of-origin of intestinal cancer.40,41 Another example is the transcription
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factor Sox2, which is essential to maintain the pluripotent phenotype in embryonic stem
cells.42 However, Sox2 efficiently generates iPS cells 34,36 and is amplified in lung and
esophageal squamous cancers.43,44 And finally, it is clear that the Notch1 signaling pathway
plays a major role in embryogenesis, as demonstrated by the observation that homozygous
mutant embryos died before 11.5 days of gestation.45 Conversely, Notch signaling is
required for the generation and self-renewal of cancer stem cells in several tumor types,
including colon cancer.46 Interestingly, it has been recently demonstrated that Notch1
mutations are frequently found in HNSCC,47,48 suggesting a potential role for this pathway
in the biology of cancer stem cells and in the etiology of head and neck cancer. Collectively,
these studies suggest that there are important lessons to be learned from developmental
studies that could help identifying processes that result in the malignant transformation of
epithelial cells and head and neck cancer initiation.

EMT and cancer stem cells
Epithelial-mesenchymal transition (EMT) is the process that allows a polarized epithelial
cell to assume a mesenchymal cell phenotype, which is characterized by enhanced motility
and invasiveness.49 EMT plays a critical role in embryogenesis, and is involved in several
pathologies, including fibrosis49 and cancer.50–53 An example of this process in
physiological settings is the ovarian epithelium that undergoes an EMT-like process during
postovulatory wound healing. In this case, EMT is induced by epidermal growth factor
(EGF) and involves the activation of metalloproteases and ERK.54 Key features of EMT are
summarized in Table 1.

A critical step in EMT is the loss of cell polarity. Three protein complexes (Par, Crumbs,
Scribble) participate in establishing and maintaining apico-basal polarity in epithelial
cells.55 Snail alters epithelial cell polarity by repressing the transcription of Crumbs3 and
abolishing the localization of both Par and Crumbs complexes at the junctions.56 Another
hallmark of EMT is the loss of E-cadherin, which appears to be correlated with tumor
progression. The loss of E-cadherin is considered a crucial step in the progression of
papilloma to invasive carcinoma,57 and is regulated by a number of transcription factors
such as Snail,58,59 Twist,60 and ZEB1.61 The transcription factor Snail controls EMT by
repressing E-cadherin expression.62 Increased Twist expression is found in metastatic breast
cancer and is required for EMT and breast cancer metastasis.60 Importantly, tumors
undergoing EMT acquire resistance to chemotherapy.63–65 Colorectal cancer-derived
epithelial cell lines expressing EMT markers exhibit mesenchymal morphology and
resistance to oxaliplatin.63 Twist mediates EMT in breast cancer cells and enhances
resistance to paclitaxel.64 Notably, the deletion of Twist can partially reverse multidrug
resistance in breast cancer cells.65 These data show that the acquisition of a mesenchymal
phenotype correlates with increased invasiveness of tumor cells, leading to recurrence/
metastasis and poor clinical prognosis.

Recent reports have suggested that EMT is involved in the acquisition of cancer stem cell
properties.59,66–69 In a seminal publication, the Weinberg research group showed that
human mammary epithelial cells undergoing EMT acquire stem cell properties, as
demonstrated by the ability of CD4highCD24low cells to form mammospheres in vitro and
tumors in vivo. CD44+CD24−/low cells possessing cancer stem-like properties can be
generated from CD44lowCD24+ non-tumorigenic mammary epithelial cells through
activation of the Ras/MAPK signaling pathway and induction of EMT.69 Furthermore, in
nasopharyngeal carcinomas, miR200a regulates EMT and induction of stem-like
characteristics by targeting E-cadherin repressor ZEB2 via β-catenin signaling.70 It induces
stem-like traits, including CD133+ side population, sphere formation capacity, increased
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Oct4 and ALDH expression in tumor spheres and tumor tissues, and tumorigenicity in
vivo.70

In head and neck cancer, Twist1 induces Bmi-1 (B-cell specific Moloney murine leukemia
virus insertion site 1), which in turn downregulates E-cadherin. Bmi-1 has an essential role
in the regulation of self-renewal of stem cells.71–74 Patients with high Twist1 and Bmi-1
tend have worst prognosis.75 Upregulation of Bmi-1 induced EMT and enhanced the
motility and invasiveness of human nasopharyngeal cancer cells, whereas silencing
endogenous Bmi-1 reversed EMT and reduced motility.76 Bmi-1 transcriptionally
downregulated expression of tumor suppressor PTEN via direct association with PTEN
locus, ablation of PTEN expression partially rescued the migratory/invasive phenotype of
Bmi-1 silenced cells.76

It has been reported that hypoxia or overexpression of HIF-1a induces EMT and metastasis
in head and neck cancer cells.77 HIF-1α regulates the expression of Twist by binding to the
hypoxia-response element (HRE). Notably, siRNA-mediated repression of Twist in hypoxia
or HIF1-α overexpression reversed EMT and metastasis.77 Co-expression of HIF-1α, Twist
and Snail in human head and neck tumors correlates with metastasis and poor prognosis.77

Overexpression of TrkB, a 145-KDa receptor tyrosine kinase, results in EMT and enhances
invasion of human HNSCC.78 Downregulation of TrkB suppressed tumor growth.78 ALDH
+ cells from HNSCC cell lines showed enhanced invasion, a phenotype consistent with
EMT, and spheroid formation.79 Cells in spheroids reveal high level of the stemness-related
transcription factors Oct3/4, Sox2 and Nanog, upregulation of Snail, Twist, alpha-SMA and
Vimentin, and downregulation of E-cadherin.79 Collectively, these studies suggest that EMT
may play a role in the acquisition of stem-like properties in HNSCC, which may ultimately
contribute to local invasion and metastatic spread frequently observed in patients with head
and neck cancer (Figure 2).

Stem cell niches
Niches are specialized local microenvironments where stem cells reside. They appear to
contribute to the survival and stemness of stem cells.80 It has also been postulated that a
niche should shown the capacity to take up and maintain newly introduced stem cells upon
depletion.80 For example, the crypt bottom is considered the niche for stem cells in normal
small intestine and colon.41 It is also the niche for stem cells in intestinal cancer.40 The
perivascular niche is the microenvironment of preference of brain cancer stem cells.81 It
prevents the apoptosis of brain cancer stem cells and maintains an adequate balance between
self-renewal and differentiation.81 When brain cancer stem cells were implanted together
with endothelial cells in immunodeficient mice, tumor growth was accelerated.81,82 This
suggests that factors secreted by normal cells surrounding and infiltrating tumors may
promote the growth and progression of tumors.83

In head and neck tumors, the vast majority of the stem cells are found within a 100 µm-
radius of a blood vessel, suggesting the existence of a perivascular niche.29 Using the SCID
mouse model of human tumor angiogenesis,84 it was observed that specific ablation of
tumor-associated endothelial cells with an inducible Caspase-9 results in the decrease in the
fraction of head and neck cancer stem cells.29 It is becoming increasingly evident that the
molecular crosstalk between HNSCC and endothelial cells is mutually relevant.85,86 Tumor
cell-secreted factors activate Stat3, AKT and ERK signaling and enhance the survival and
angiogenic potential of endothelial cells.85 Whereas endothelial cell-secreted factors (e.g.
IL-6, CXCL8) enhance the migration of tumor cells and protect them against anoikis.86

Notably, endothelial cell-secreted factors promote the survival and self-renewal of cancer
stem cells in HNSCC via upregulation of Bmi-1 expression.29 These studies demonstrate the
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existence of a functionally relevant perivascular niche in head and neck cancer, and suggest
that targeted disruption of the crosstalk between endothelial cells and cancer stem cells
might be beneficial for the treatment of head and neck cancer patients.

Stem cell markers
It has been recognized that cancer stem cells share many features with physiological stem
cells. This constitutes a major difficulty for experimental cancer stem cell research, as well
as for the development of targeted therapies. A strategy commonly employed by
investigators is the use of molecular markers for the identification of cancer stem cells. In
general, these markers are not unique to cancer stem cells. Therefore, the current trend is to
combine markers to achieve higher specificity. Also, it is becoming increasingly evident that
the most appropriate combination of markers is tumor type-dependent. The following is a
brief discussion of some (but not all) markers of that have been used to identify cancer stem
cells), with an emphasis on markers that are relevant to HNSCC.

A) Oct3/4, Sox2, Nanog
The transcription factors Oct3/4,87,88 Sox289 and Nanog90,91 play essential roles in the
maintenance of pluripotency and self-renewal of embryonic stem cells.92,93 They promote
self-renewal by interacting with other transcription factors (Stat3, Hesx1, Zic3) and critical
cell signaling molecules (TCF3, FGF2, LEFTY2).92,93 It has been recently reported that the
lamina propria of human oral mucosa contains stem cells, as determined by Oct4, Sox2 and
Nanog expression.94 After treatment with dexamethasone and implantation in
immunodeficient mice, these stem cells form tumors composed of ectodermal and
mesodermal tissues, such as cartilage, bone, fat, striated muscle and neural tissues.94 These
are interesting findings, since tumors were generated by stem cells retrieved from normal
tissues.

The expression level of Oct4, Sox2, and Nanog is higher in poorly differentiated tumors
than in well differentiated breast cancers, glioblastomas, and bladder carcinoma.95 These
transcriptional factors are also upregulated in spheroid forming cells (i.e. stem-like cells)
sorted from human HNSCC,96 and correlate with the grade of oral squamous cell
carcimonas.97 Collectively, these data indicate that cells that exhibit stem-like features in
cancer express the transcriptional factors Oct4, Sox2, and Nanog. However, the usefulness
of these factors for the sorting of cancer stem cells by flow cytometry and posterior culture
or implantation in animals is hindered by the fact that they are not expressed in the cell
membrane, and therefore would require cell permeabilization.

B) CD133
Human CD133 (prominin-1) is a glycosylated protein with five transmembrane domains and
two large extracellular loops.98,99 It was initially characterized as a marker for
hematopoietic stem cells.97,98 After that, CD133 was also found in epithelial cells100,101 and
in somatic stem cells from neural tissues,102,103 prostate,104 and kidney.105 Interestingly,
human CD133+ cells from granulocyte colony stimulating factor-mobilized peripheral blood
were able to differentiate into endothelial cells, when cultured in pro-endothelial lineage
condition.106 In brain tumors, CD133+ cells revealed properties of cancer stem cells,107,108

and in the intestine, this marker identified stem cells that were susceptible to neoplastic
transformation.109

In human oral squamous cell carcinoma, CD133+ stem-like cells possess higher
clonogenicity, invasiveness, and tumorigenesis as compared with CD133- cells.110 CD133+
cells are resistant to standard chemotherapy with paclitaxel.110 CD133 has been identified as
a marker of cancer stem cells in the human laryngeal tumor Hep-2 cell line.111 In an in vivo

Zhang et al. Page 6

Oral Oncol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



study, CD133+ cells sorted from the Hep-2 cell line showed higher tumorigenic potential
than CD133-or unsorted cells.112 Notably, CD44+ cancer stem-like cells expressed higher
CD133 levels than CD44- cells in HNSCC.113 In laryngeal squamous cell carcinomas,
Bmi-1 is highly enriched in CD133+ cells, induces the proliferation of these cells, and
prevents apoptosis.114 The analysis of these studies reveals that CD133 is an useful cancer
stem cell marker in HNSCC, and might serve as a putative biomarker to identify head and
neck cancer patients that are resistant to conventional chemotherapy.

C) CD44
CD44 is a cell surface glycoprotein that functions as a receptor for hyaluronic acid
(hyaluronan).115,116 CD44 has affinity with other ligands (e.g. osteopontin)117,118 and
certain matrix metalloproteinases (MMPs).119 In 1991, a CD44 variant was found to be
involved in the metastatic potential of tumor cells.120 As an adhesion molecule, CD44
provides a cell surface docking receptor that is necessary for MMP-9 activity.121

Localization of MMP-9 in the cell surface of keratinocytes depends on its interaction with
CD44, allows for activation of TGF-β, and is required for the promotion of tumor invasion
and angiogenesis.119 Interestingly, immunohistochemical staining showed that CD44 and
MMP-9 co-localize in tumor cells at the invasive front,122 the area where stem cells are
typically found in tumors.

CD44 was the marker used in the first description of cancer stem cells in a solid malignancy
(i.e. breast cancer).8 In 2007, Prince and colleagues unveiled that a subpopulation of CD44+
cells presented cancer stem-like properties in HNSCC.5 They found that CD44+ cells could
be serially passaged in vivo, consistently reproducing the original tumor. CD44+ cells
expressed high levels of Bmi-1 (stemness marker) and possessed the capacity of self-
renewal and differentiation. Since then, many studies have used CD44 as a marker of cancer
stem cells in head and neck cancer models.29,123,124 However, one must take into account a
report that showed that the expression of two variants of CD44 (i.e. CD44s, CD44v6) is
found in the majority of the cells in head and neck tissue (including carcinomas), and that
this marker by itself was not able to distinguish normal from benign or malignant epithelial
cells from the head and neck region.125 CD44 is considered a predictive marker for local
recurrence after radiotherapy in patients with larynx cancer.126 High levels of CD44,
aldehyde dehydrogenase and phosphorylated Stat3 are found in high-grade HNSCC, and are
indicative of poor prognosis.124 Also, a higher frequency of CD44+ cells was observed in
HNSCC that recurred than in human tumors without recurrence.127 Collectively, these
studies suggest a direct correlation between CD44 expression, cancer stem cells, and the
aggressiveness of head and neck tumors.

D) ALDH
Aldehyde dehydrogenase (ALDH) enzymes constitute a family of intracellular enzymes that
are involved in cell differentiation, detoxification and drug resistance via the oxidation of
intracellular aldehydes.128–131 ALDH1 is required to converse retinol (vitamin A) to retinoic
acid.132 ALDH1 is the prototypic member of the ALDH family and is highly expressed in
human hematopoietic progenitors or hematopoietic stem cells.129,131,133 ALDH1 has been
characterized as a marker of normal and malignant human mammary stem cells, and a
prognostic marker for breast cancer being a strong predictor of metastasis and poor patient
outcome.134,135 In primary non-small cell lung cancer (NSCLC), ALDH-positive cancer
cells showed stem-like properties, including tumorigenesis, colony formation and self-
renewal.136

Several studies have demonstrated that ALDH+ cells have a behavior that is consistent with
cancer stem cells in head and neck tumors.28,29,79,137 ALDH+ cells from patients with
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HNSCC showed enhanced tumorigenesis and radioresistance when compared with ALDH-
cells.137 Interestingly, knockdown of Snail decreased the expression of ALDH and inhibited
cancer stem-like properties and the tumorigenicity of CD44+CD24-ALDH+ cells.137 In a
study from the Prince laboratory, 500 ALDHhigh cells from primary HNSCC formed tumors
in 24 out of 25 mice, while only 3 out of 37 mice transplanted with ALDHlow cells showed
tumors.28 Another study showed that 1000 ALDH+CD44+ cells from primary human
HNSCC formed tumors in 13 out of 15 mice, whereas 10 000 ALDH-CD44- cells resulted
in only 2 tumors in 15 mice.29 The self-renewal of ALDH+CD44+ cells was confirmed by
colony and spheroid formation.29 These studies demonstrated that ALDH by itself, or in
combination with CD44, is capable of discriminating a sub-population of highly tumorigenic
cells that exhibit features of cancer stem cells in HNSCC.

E) Side population
Another strategy that has been used extensively to identify highly tumorigenic cells is based
on the ability of such cells to eliminate a DNA dye, Hoechst 33342.138 Side population (SP)
cells are enriched in hematopoietic stem cells139 and identified from a bone marrow-derived
cell population.138 These cells express high levels of ATP-binding cassette (ABC)
transporter family members (e.g. MDR1, ABCG2) that allow for the efflux of Hoechst
33342 and other drugs.140,141 Using fluorescence-activated cell sorting (FACS), SP cells
have been identified in normal tissues (e.g. skin,142 lung,143 brain,144 and liver145) and solid
tumors (e.g. hepatocellular carcinoma,146 glioma,147 gastrointestinal cancer,148 ovarian
carcinoma,149 neuroblastoma150 and breast cancer.150

In recent years, SP cells have been characterized in HNSCC as highly tumorigenic cells with
stem-like phenotype.151–155 The fraction of SP cells tends to be high in metastatic and
aggressive HNSCC cells.153 In head and neck cancer, SP cells express high levels of
ABCG2,152,153,155 Bmi-1,152,155 CD44, and Oct4.152 These cells exhibit abnormal Wnt
signaling and are highly invasive153 and chemoresistant.153,155 The identification of side
populations is technically simple and does not rely on the relative binding efficiencies of
antibodies. More research is necessary to demonstrate how it compares against antibody-
based approaches to specifically distinguish highly tumorigenic head and neck cancer stem
cells, from other cells of HNSCC that present low tumorigenicity.

Final thoughts and future directions
There are many factors that play a role in the study of the tumorigenic potential of cells.
Among them, the immunological status of the host appears to have a direct impact on the
efficacy of tumor initiation in murine experimental models. It has been reported that only 1
in one million acute myeloid leukemia (AML) cells generates a tumor when transplanted
into NOD/SCID mice.156 However, the frequency of tumor-initiating cells is higher when
these cells are transplanted into histocompatible mice. Indeed, 1 out of 10 lymphoma cells or
AML cells can form tumors when injected into such mice.157 In melanoma, it was
demonstrated that the frequency of tumor-initiating cells is less than 1 per 106 cells when
transplanted into NOD/SCID mice.25 However, when melanoma cells were transplanted into
highly immunocompromised NOD/SCID interleukin-2 receptor gamma chain null (Il2rg(−/
−)) mice, the fraction of tumorigenic melanoma cells was increased by several orders of
magnitude. In this case, 27% of unselected melanoma cells generated tumors.25

Collectively, these studies highlight the impact of the experimental model on the results of
studies exploring the tumorigenic potential of cells. They constitute an important reminder
that one should use caution while interpreting the results of laboratory studies involving the
transplantation of human cells into murine hosts.
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A critical issue that remains unanswered is what is the frequency of tumor-initiating cells in
head and neck squamous cell carcinomas. The seminal publication by Prince and
collaborators showed that CD44 expression distinguished a highly tumorigenic sub-
population of cells (that behave as cancer stem cells) from another cell population that had
low tumorigenic potential.5 A recent report revealed that tumor-initiating cells are rare (<1
in 2500 cells) in primary pancreas, lung, or head and neck tumors.158 And in a serial dilution
assay, we observed that the transplantation of as low as 1 ALDH+CD44+ cell/SCID mouse
consistently formed tumors (unpublished observations), while transplantation of 10,000
ALDH-CD44- generate tumors in only 13.3% of the mice.29 These studies, and many others
not described in detail here,28,110,127,152 suggest that head and neck squamous cell
carcinomas follow the cancer stem cell hypothesis. On the other hand, it was recently
reported that all single-cell clones randomly isolated from certain HNSCC cell lines can
form tumors when xenotransplanted to NOD/SCID mice.159 This study indicated that
essentially any cell from HNSCC cell lines has the ability to form tumors. Further studies
focused on the identification of the nature, frequency, and characteristics of the cells capable
of generating HNSCC are certainly warranted.

The analysis of the existing literature suggests a hypothetical model for head and neck tumor
progression (Figure 3). The crosstalk between HNSCC cells and other cells of the tumor
microenvironment results in EMT, which enhances the motility of carcinoma cells and
endows them with stem cell properties. The invasive phenotype of cells that have undergone
EMT allows them to penetrate the lymphatic and/or angiogenic vasculature. And the highly
tumorigenic nature of cancer stem cells enables some of them to initiate tumors in regional
lymph nodes or in distant sites (e.g. lungs). According to this hypothetical model, patients
with HNSCC might benefit from therapeutic strategies that inhibit EMT by blocking the
crosstalk between tumor and stromal cells, or therapies that directly target the cancer stem
cell.

In conclusion, the discovery that heterogeneous HNSCC tumor cells exhibit a spectrum of
tumorigenic potentials has brought significant interest to the application of stem cell biology
concepts to the understanding of the pathobiology of head and neck cancer. Much work
remains to be done to more fully understand the biology of cancer stem cells in HNSCC. For
example, whether cancer stem-like cells exist in premalignant lesions and what is their
behavior and function through the multi-step process of disease progression remains largely
unclear. However, what is clear is that the development of mechanism-based therapies for
head and neck cancer will require deeper understanding of the biological processes that
generate the cells that drive recurrence and metastatic spread. It is tempting to speculate that
the combination of therapies aimed at debulking the tumor (e.g. surgery, conventional
chemotherapy, radiotherapy) together with targeted therapies aimed at the elimination of the
cancer stem cells might have a positive impact on the long-term outcome of patients with
head and neck cancer in the future.
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Figure 1.
Orosphere assay to study the acquisition of a cancer stem-like phenotype in vitro. UM-
SCC-22B is a cell line derived from the metastatic lymph node of a patient with HNSCC in
the hypopharynx. We have recently reported that UM-SCC-22B contains a sub-population
of cells that exhibit cancer stem-like characteristics.160 Photomicrographs (200x) of UM-
SCC-22B cells cultured with serum-free medium in ultra-low attachment plates in presence
of 0 or 50 ng/ml EGF for 5 days. The formation of spheroid-like colonies containing at least
25 cells (named orospheres) was enhanced by EGF treatment. Growth of carcinoma cells in
suspended spheres under low (or no serum) culture conditions has been considered
indicative of acquisition of a stem-like phenotype in vitro.
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Figure 2.
Cancer stem-like cells (ALDH+CD44+) inside a blood vessel in a primary human head and
neck cancer. (A) Highly aggressive human primary HNSCC cells invade a blood vessel
(H&E). (B,C) Close-up view of the area limited by a square in panel A, showing cancer
cells inside a blood vessel with positive staining for ALDH1 (B) and CD44 (C), as
determined by immunohistochemistry. Please note strong cytoplasmic staining for ALDH1
and typical cell membrane staining for CD44 in the cells located inside the blood vessel
(arrows).
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Figure 3.
Diagram depicting a putative model for the role of EMT and acquisition of cancer stem cell
phenotype in the metastatic spread of HNSCC. The epithelial tumor is a complex organ that
contains carcinoma cells, fibroblasts, immune cells, blood vessels, lymphatics, and a small
population of cancer stem cells. Through EMT, cancer stem cells become invasive and
acquire characteristics that enable them to metastasize to regional lymph nodes (through
lymphatic vessels) and to distant sites, such as lungs (through blood vessels). Notably, it is
unlikely that every single cancer stem cell has the ability to generate a viable metastasis.
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Table 1

Characteristics of normal epithelial and mesenchymal cells

Epithelial cells Mesenchymal cells

Morphology Cobblestone Elongated

polarized Non Polarized

Behavior Non-motile Migratory

Non-invasive Invasive

Markers E-cadherin Vimentin

Desmoplakin N cadherin

Cytokeratin Snail
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