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One goal in the post-genome-wide association study era is characterizing gene-environment interactions,
including scanning for interactions with all available polymorphisms, not just those showing significant main effects.
In recent years, several approaches to such ‘‘gene-environment-wide interaction studies’’ have been proposed.
Two contributions in this issue of the American Journal of Epidemiology provide systematic comparisons of the
performance of these various approaches, one based on simulation and one based on application to 2 real genome-
wide association study scans for type 2 diabetes. The authors discuss some of the broader issues raised by these
contributions, including the plausibility of the gene-environment independence assumption that some of these
approaches rely upon, the need for replication, and various generalizations of these approaches.

epidemiologic research design; genetic epidemiology; genome-wide association study; genotype-environment
interaction; polymorphisms, single nucleotide

Abbreviations: G-E, gene-environment; GEWIS, gene-environment-wide interaction study(ies); G-G, gene-gene; SNP, single
nucleotide polymorphism.

For decades, the pages of the Journal have been filled
with philosophical debates over the meaning of words such
as ‘‘interaction’’ and ‘‘synergism,’’ as well as distinctions
among statistical, biologic, and public health contexts.
Recently, there has been a resurgence of interest in this topic
by a new cohort of genetic epidemiologists working on
gene-environment (G-E) and gene-gene (G-G) interactions.
Various authors have offered classifications of patterns ofG-E
interaction (1–3), although the concept of ‘‘epistasis’’ (G-G
interaction) can be traced back to 1909 (4) and of G-E in-
teraction to 1938 (5).

Most epidemiologic analyses of interactions have tested
for a departure from some simple main effects model, most
commonly a multiplicative one.Without belaboring the issue,
we point out that this may not be interpretable as a biologic
interaction or a synergistic public health impact (6). With the
advent of genome-wide association studies, discussions have
shifted from these philosophical topics to more practical
concerns about study designs and analysis methods for dis-
covering G-E interactions on a massive scale, what Khoury

et al. called a ‘‘GEWIS’’ (gene-environment-wide interaction
study(ies)) (6, 7). The advent of ‘‘EWAS’’ (environment-
wide association studies) (8) and the ‘‘exposome’’ concept
(9, 10) is likely to ratchet the importance of this topic up yet
another notch. Two papers in this issue (11, 12) compare
the performance of several novel approaches with GEWIS
analysis.

Mukherjee et al. (11) used simulation to compare case-
control, case-only, and several approaches that combine them
in various ways. They found, as expected, that the case-only
design generally yields the greatest power but is subject to
substantial false positives in the presence ofG-E associations.
Empirical Bayes (13), Bayesian model averaging (14), and
2-step (15) methods all yield better power than the case-control
method in most situations, with some performing better than
the others for particular parameter combinations. The one
notable exception is when a population-level G-E association
goes in the opposite direction from the G-E interaction.
Here, the case-only method also has low power because the
G-E association among cases will tend to be small. Because
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any GEWIS is testing many different single nucleotide
polymorphisms (SNPs) (and often several different exposure
variables), there is no uniformly most powerful procedure
across the full range of possible model parameters.

One observation reported by Mukherjee et al. (11) is that,
for a fixed number of cases and a fixed screening threshold
a1, the power of the 2-step method appears to decline with
increasing number of controls—the only example we are
aware of where having more data appears to be worse!
However, the reason for this apparent ‘‘lack of coherence’’
is that the power of the 2-step design for a fixed a1 (Figure 1A
at a1 ¼ 0.05 or 0.0005) and the optimal first step critical
value a1 (Figure 1B) depend strongly on the control:case
ratio. If one chooses the optimal a1 for a given control:case
ratio, the power does increase monotonically with increasing
sample size (Figure 1A, optimal), as one might expect. In
addition to the control:case ratio, the optimal choice for a1
depends strongly on the population disease prevalence and
number of SNPs analyzed. Because all of these quantities
are known or easily estimated prior to analysis, choosing an
optimal or near-optimal a1 is possible in practice (16).

In their discussion, Mukherjee et al. (11) claim that the
2-step procedure violates the likelihood principle (and that
the other methods compared do not). Actually, any test of
significance (whether multistep or not) violates the likelihood
principle, as it does not rely exclusively on the likelihood for
inferences but considers unobserved outcomes as well (more
extreme ones than actually observed) (17). Multistepmethods
have a long tradition in statistics. For example, sequential
and group sequential methods have been used in industrial
applications to reduce costs and in clinical trials to minimize
potential adverse side effects. Valid multistep methods have
also been proposed in situations where the data are not
collected sequentially, often leading to substantial improve-
ments in power (18, 19).

We are aware of 2 applications to real data of the 2-step
G-E approach. Ege et al. (20) applied the approach to data
on asthma from genome-wide association studies from the
GABRIELA consortium. They identified 15 genes showing
evidence of interaction with farm-related variables, although
none attained genome-wide significance. Figueiredo et al. (21)
compared case-only, case-control, and the 2-step procedure on
data from the Colorectal Cancer Family Registries for inter-
actions with 14 established environmental risk factors. None
attained genome-wide significance by any of the 3 methods.
This work points out the difficulty in identifying G-E interac-
tions for a complex trait and suggests the need for quite large
sample sizes in addition to efficient analytical approaches.
Programs to compute required sample size for interaction
tests are available for several study designs (22, 23) including
2-step testing in a genome-wide association study (16).

Cornelis et al. (12) took a different approach, comparing
similar methods on real data from 2 large GEWIS of type 2
diabetes. Here, the interacting variable was an ‘‘adipogenic
environment,’’ as measured by a dichotomization of body
mass index. What makes this an interesting application is that
this ‘‘exposure’’ variable is also partially under genetic control,
probably by some of the same genes that are involved in
diabetes, so one might expect a substantial number of false
positives due to G-E associations. Surprisingly, on the basis

of an examination of the quantile-quantile (QQ) plot of
P values, they found no evidence of an inflated type I error
rate for any of these tests, even the simple case-only test.
However, the loci that yielded the most significant interactions
were generally those that were also most strongly associated
with obesity, which should cause some concern. As the true
state of nature is, of course, unknown, it isn’t possible to assess
whether any of these are real interactions or simply reflect
G-E associations.

One interesting observation in this paper was the lack of
robustness of even the standard case-control test when the
model for a continuous exposure variable was misspecified.
This phenomenon was recently explored by Tchetgen
Tchetgen and Kraft (24), who also proposed using a robust
sandwich variance estimator that does not require dichoto-
mization of the exposure variable (with its inherent loss of

Figure 1. Empirical power to detect a single causal single nucleotide
polymorphism (SNP) for the case-control and 2-step (TS) analyses
(for fixed a1¼ 0.05, 0.0005, and optimal a1) as a function of the ratio of
number of controls to number of cases (n0/n1) (A) and optimal a1 as
a function of n0/n1 (B). Assumed parameter values are those used by
Mukherjee et al. (11), specifically: M ¼ 100,000 SNPs; n1 ¼ 2,000
cases;Rg¼Re¼ 1.0,Rge¼ 1.8; andPr(E)¼ 0.5, minor allele frequency
of dominantly coded casual SNP ¼ 0.2.
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power) (25). Alternatively, more flexible modeling of the
exposure using, e.g., generalized additive models (26) could
also help to make the inferences on G-E interactions with
quantitative exposures more robust.

So how plausible is the assumption of G-E independence?
Most tag-SNPs used in genome-wide association studies are
unlikely to be related to either the disease or exposure, so
a screening tool using a case-only test seems reasonable. Even
if a small proportion of the interactions discovered in this way
are false positives, they will be weeded out by a second step
that does not rely on this assumption. Nevertheless, there are
a few circumstances where caution is warranted. One is for
diseases with a strong behavioral component, such as lung
cancer where many genes might be associated with nicotine
addiction. Hormone-related cancers are another example
where various genes could influence a woman’s age at men-
arche, menopause, or reproductive history as the ‘‘exposures’’
of interest. A third example is a nonrandomized study of
treatment outcomes (e.g., second-cancer studies), where in-
dications for treatment could relate to disease severity or other
characteristics that are genetically influenced. Uncontrolled
population stratification can easily induce spurious G-E
associations due to confounding by genetic ancestry and
cultural factors influencing exposures, emphasizing the im-
portance of proper adjustment for ancestry covariates (27).
Finally, differential survival over time can induce associations
between genes and exposures so that both are risk factors even
if the 2 are independent initially (28). Uncontrolled confound-
ing of the G-E association will lead to inflated type I errors
for the case-only or empirical Bayesian approach, but not
for the case-control or 2-step approaches.

Although it is tempting to pretest for G-E independence
among controls and on this basis decide whether to use the
more powerful case-only test (which requires it for validity)
or the more robust case-control test (which does not), Albert
et al. (29) showed that this can be a seriously biased strategy.
This bias arises because the pretesting is ignored when assess-
ing significance in the follow-up test. Unlike the screening
step in the Murcray et al. approach, the test of G-E indepen-
dence using only controls is not independent of the standard
case-control test. However, at least in principle, pretesting for
G-E independence in controls would result in an acceptable 2-
step test if one properly accounted for pretesting by either
conditioning on the outcome of the pretest or by considering
the true unconditional distribution of the resulting test statis-
tic. This distribution is a weighted mixture of the case-only
and case-control statistics with weights given by the proba-
bilities of acceptance and rejection of the hypothesis of G-E
independence in the pretest. The latter is similar to the em-
pirical Bayes and the Bayes-model-averaging procedures,
both of which are weighted averages of the 2 statistics.
Nevertheless, one should be cautious about blindly disregard-
ing concerns about the validity of the G-E independence
assumption. Even if the various 2-step procedures (properly
applied) ensure a valid test, power can be adversely affected
if the first step passes too high a proportion of false positives
to the second step.

As pointed out byMukherjee et al. (11), the 2-step approach
is the only alternative to the standard 1-step case-control test
that guarantees asymptotic control of the type I error under

departures from G-E independence. Both the empirical
Bayes and Bayes model-averaging statistics, being weighted
averages of the case-only and case-control statistics, are
necessarily liberal under departures from G-E independence.
Thus, because even a modest inflation of the type I error can
translate into a sizable power increase, some of the power
gain of the empirical Bayes and the Bayes model-averaging
approaches over the standard 1-step case-control might be
due to type I error inflation. One can argue that, among tests
with similar power, it is preferable to use one that controls
the type I error. After all, why trade an unknown increase in
type I error (even if small) for extra power when one can
simply increase the level of significance to achieve the same
goal but with a known type I error?

However, perhaps a deeper question is whether we need be
concerned about type I error at all in a climate that demands
independent replication before publication in a top-tier jour-
nal. Won’t virtually all false positives be weeded out by the
requirement of genome-wide significance in the discovery
sample followed by significance at a conventional replica-
tion level such as a¼ 0.05? Perhaps yes, but this may be too
conservative a requirement, tantamount to requiring a genome-
wide significance level of a ¼ 0.052 ¼ 0.0025. The role of
replication is more to rule out bias and to ensure generaliz-
ability by testing associations or interactions with different
methods, by different investigators, in different populations,
than to avoid chance statistical flukes (which can always
be accomplished within a single study simply by adopting
a more stringent significance level) (30, 31). If independent
replication is planned anyway, then a good case could be
made for always using the most powerful case-only test for
the initial scan, provided the replication is performed with
a case-control test in an independent data set. This, however,
is not always an option in practice. In particular, for unique
exposure situations, uniquely well-characterized cohorts, or
consortia that comprise essentially the entirety of the world’s
data to generate sufficient cases for studying rare diseases,
replication may never be feasible (32). These situations put
a premium on using a powerful testing procedure that main-
tains control of the type I error rate.

These 2 papers are certainly not the last word on this
subject. Various extensions of 2-step procedures are possible.
Kraft et al. (33) discussed the use of a 2 df joint test for gene
main effects and G-E interactions, where the goal is not to
detect the interaction per se but rather to identify genes that
may be etiologically relevant either directly or through an
interaction (this test is also evaluated in the paper by Cornelis
et al. (12)). Our group recently described 2 different kinds of
2-step procedures, one for case-parent trios that exploits
a between-family comparison of G-E association among the
parents (19) and a hybrid approach (16) for case-control data
that screens SNPs on the basis of both marginal association
(34) andG-E association (15). Similar methods are applicable
for G-G interactions, where the multiple comparisons burden
is orders of magnitude more severe (half a trillion tests for an
exhaustive scan of 1 million SNPs) and the power advantages
of a 2-step method may be even larger than for G-E interac-
tion scans (35). Tests that exploit Hardy-Weinberg equilibrium
in the population (36), discussed in the contribution by
Cornelis et al. (12), may also enhance power. As we move
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into the era of targeted, whole-exome, or even whole-genome
sequencing, 2-step procedures for interaction testing may
become even more necessary. Power for testing interactions
with specific rare variants is likely to be miniscule, but in-
teraction testing for aggregate indices of multiple rare variants
in a gene or for discovering more complex pathways may
be feasible. Exposure measurement error is a longstanding
problem and can have unpredictable effects on G-E interac-
tions, although in general it is likely to make their detection
more difficult (37–39). The larger sample sizes available in
a consortium setting may be necessary to achieve adequate
power (40). Methods to analyze G-E interaction in the con-
sortium setting have begun to appear (41), but this is an area
of statistical research that requires more attention. All the
GEWISmethods discussed so far are ‘‘agnostic’’ (with respect
to the genes), but methods that incorporate external genetic
and environmental information offer further potential to
achieve substantial power gains (42, 43).

We commend Mukherjee et al. (11) for their rigorous com-
parison of several methods and Cornelis et al. (12) for their
thoughtful application of methods to real data. Together, these
papers raise a number of important issues, including the
largely untapped potential of GEWIS to discover novel
genetic variants in existing genome-wide association data sets.
For nearly all complex human diseases, it is clear that neither
genes nor environmental factors are exclusively to blame for
increased risk. As we move forward, well-designed studies
with careful measurement and efficient analysis of both genetic
and environmental factors will likely hold the key to further
understanding complex disease etiologies.
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