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Objective. Current generation smartphones’ video camera technologies enable photoplethysmographic (PPG) acquisition and
heart rate (HR) measurement. The study objective was to develop an Android application and compare HRs derived from a
Motorola Droid to electrocardiograph (ECG) and Nonin 9560BT pulse oximeter readings during various movement-free tasks.
Materials and Methods. HRs were collected simultaneously from 14 subjects, ages 20 to 58, healthy or with clinical conditions,
using the 3 devices during 5-minute periods while at rest, reading aloud under observation, and playing a video game. Correlation
between the 3 devices was determined, and Bland-Altman plots for all possible pairs of devices across all conditions assessed
agreement. Results. Across conditions, all device pairs showed high correlations. Bland-Altman plots further revealed the Droid
as a valid measure for HR acquisition. Across all conditions, the Droid compared to ECG, 95% of the data points (differences
between devices) fell within the limits of agreement. Conclusion. The Android application provides valid HRs at varying levels
of movement free mental/perceptual motor exertion. Lack of electrode patches or wireless sensor telemetric straps make it
advantageous for use in mobile-cell-phone-delivered health promotion and wellness programs. Further validation is needed to
determine its applicability while engaging in physical movement-related activities.

1. Introduction

Many cellular phones now possess high-speed data transmis-
sion capabilities (e.g., 3G, 4G) and have embedded micro-
processors (e.g., Bluetooth, ANT) with the capability to wire-
lessly connect to external devices. As a result, cell phones
offer several advantages over desktop or laptop computers in
telemonitoring-related applications such as higher popula-
tion penetration, increased privacy, lower cost to purchase,
easier ability to transport, and overall increased personal
convenience of use [1, 2]. Cell phones are widely used in
telemonitoring serving as a conduit for receiving biohealth

information from portable medical devices (e.g., blood
pressure, glucose and pulse oximeter monitors, weight scales)
and mobile sensors (e.g., physical activity; accelerometer
counts, heart rate, respiration rate, pulse pressure via chest-
or armbands, and wireless electrodes). Once cell phones
have received the pertinent information, it is microprocessed,
encrypted, and the data packets are transferred to some
form of localized or web-based server for secondary pro-
cessing. At the server level, the data packets are organized
into a functional database for analyses, integration, and
user feedback. The process enables users the ability to
easily self-monitor various health parameters and provides
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important information to healthcare providers facilitating
timely healthcare decisions [3–8]. The capture and transfer
external biomarker signals from cell phones are not without
potential hindrances. Some of the biomarker devices can be
fairly expensive to purchase and/or maintain functionality.
There is the potential of unexpected loss of wireless sensor
connection, increased power depletion upon the cell phone
for implementation of the device, and often a burden of res-
ponsibility in terms of keeping track of the external detection
device. Further, many of these devices require the wearing
of multiple sensors, which may be somewhat uncomfortable,
and possibly impede movement.

Assessment of electrocardiographic- (ECG-) derived
heart rate (HR) in the natural environment is a common
component of health and fitness programs. Wireless HR
monitors are widely available and provide users with real-
time feedback of their HR at rest, during and following
physical and/or mental exertion [9, 10]. However, wireless
HR monitors often require wearing a telemetric strap around
the thoracic region or arm, maintaining vigilance, and mak-
ing intermittent adjustments of the device to ensure contin-
ued proper placement. An alternative approach is through
use of a pulse oximeter, a small device that uses photo-
plethysmography (PPG) to capture blood volume change by
illuminating the finger with a light-emitting diode (LED) and
measuring the changes in skin illuminated light by trans-
mitting it through a photodiode. Although easy to position
on the finger, pulse oximeters are somewhat obtrusive and
impractical for intermittent use throughout the day.

The current generation of cellular phones includes video
recording capabilities using a photodetector with an accom-
panying light-emitting diode (LED) light source positioned
close to or surrounding the photodetector lens. Verkruysee
et al. (2008) showed that the camera photodetector signal,
rather than photodiode, enables PPG imaging with improved
sensitivity [11]. Jonathan and Leahy [12] recently conducted
a single case study and demonstrated that reflection PPG
imaging of an individual’s finger tip using a consumer grade
third-generation cell phone (Nokia model E63) in video
mode was able to detect changes in HR from rest to after
exercise [12]. However, no attempt was made to determine
the validity of this technique.

The purpose of the present study was to determine the
validity of an Android-based software program to detect
and capture HR measurements as a proof of concept for its
use. The system was developed and tested on a Motorola
Droid (Motorola, Libertyville, IL) running Android OS
2.2 (Google, Mountain View, CA). The Android program
utilizes the original equipment manufacturers (OEM) video
hardware and software. HRs derived from this application
were compared to those acquired using a four-lead ECG, as
well as a pulse oximeter. Subjects were evaluated at rest, while
playing a challenging video game and reading aloud.

2. Materials and Methods

2.1. HR Detection and Processing Software Development
Procedures. The application utilizes an imaging acquisition

concept similar to that found in commercially available
pulse oximeters in which infrared light is used to determine
oxygenated and deoxygenated blood based on the blood
opacity (i.e., oxygenated is brighter red than deoxygenated
which is blue/purple). Variable levels of opacity are illumi-
nated by the camera light and measured by the camera’s
five-megapixel photodetecting lens, as it passes through the
pulsating capillary tissue beneath the surface of the finger.
Measurements are tracked overtime and analyzed until a
pulsatile signal is properly detected. The first step was to
determine if the image captured from the light provided by
original equipment manufacturer’s (OEM) LED flash and
five-megapixel camera could be passed through software
image analysis filters to detect the appropriate wavelengths
for efficient pulse detection based on variations in opacity.
The next step was to determine whether the smartphone
could process frame-by-frame image analysis in a timely
and consistent manner, in order to detect the small pulsatile
color changes. An nv21 YUV planar frame format was used
to allow for efficient processing of both light and color
intensity changes. Real-time trials were used to determine
an optimum settings bundle of frame capture rate (20 fps),
image pixel density (176 × 144), focus mode (infinity),
and software image analysis filters. The next step was to
detect changes of blood flow by comparing values over a
series of frames. During this step, points were gathered and
graphed to help programmers visually discern changes of
blood flow. Throughout this process, the development team
compared signal detection by the developed application with
a Nonin Onyx II model 9560BT oximeter (Nonin Medical,
Plymouth, MN). Initial comparisons allowed assurance of
capturing opacity changes representative of accurate pulsatile
readings during the recording and graphing of data. A
history system aids the detection of HR pulses as well as
accumulates the pulses to generate beats per minute HR
feedback. Once the appropriate signal-to-noise ratio was
established, minor adjustments were made to ensure noise
or small changes in the user’s finger position did not disrupt
the continuous monitoring of HR. Finger movements that
resulted in unobtainable HR measurement or finger removal
results in vibration-based feedback to the user to reposition
the finger on the camera lens. The smartphone HR monitor
application directs each step of the process from video
capture, video processing and analysis, and feedback to the
user in a graphical user interface.

2.2. Subjects. The institutional review board approved the
study. A convenience sample of 14 adults, aged 18–59, vol-
unteered and participated in the study. The diverse sample
of participants consisted of 11 females, 6 non-Hispanic
Whites, 3 Hispanic Whites, and 5 Non-Hispanic African-
Americans. Following informed written consent, subjects
had their heights and weights measured and provided a brief
health history of chronic diseases and medication usage.
Descriptive characteristics are presented in Table 1.

2.3. Evaluation Procedures. Following anthropometric mea-
surements, subjects had two sets of electrodes interfaced with



International Journal of Telemedicine and Applications 3

Table 1: Descriptive Characteristics of Sample.

Sex Race/Ethnicity Age Weight (Ib) Height (in)
Chronic

Disease/Medication(s)

F NHW 49 160 67.5

M NHW 57 188 73 EH, HC; Zocor, Propanol

M NHW 33 162.6 68.25 Adderall

F NHW 20 116.1 63

F NHW 22 120 63

F NHW 59 144.4 63.75

F NHAA 43 320.2 61.25

M HW 32 177 73.25 HC, statin

F NHAA 22 185 60

F HW 47 260.6 65.25 EH;

F HW 18 145.4 65.25

F NHAA 58 182 62.75

F NHAA 32 178.2 65.25

F NHAA 42 118.5 62.5

M/F
3/11

NHW/NHAA/HW
6/5/3

38.1 175.6 65.3 Avg

14.6 53.4 3.9 Stddev

F: female; M: male; NHW: non-Hispanic White; NHAA: non-Hispanic African American; HW: hispanic White; EH: essential hypertension; HC: hyper-
cholesterolemia.

Figure 1: Placement of index finger with Droid device.

a BioZ thoracic bioimpedance monitor (SonoSite, Bothell,
WA) placed 5 cm apart at the level of the xiphoid notch in
the midaxillary line and at the angle of the jaw on each side
of the neck. The sensors formed four ECG vectors. The BioZ
detects these ECG vectors, and the RR intervals are converted
into beat-to-beat HRs including a record of the real time of
each beat. To match readings provided by the Nonin 9560,
the BioZ ECG was set to measure 4 beat rolling averages.
Subjects were then seated at a desk, at a comfortable distance
(“15” to “20”) from a “15” diagonal laptop computer screen,
and the cell phone was held in the left hand with the index
finger covering the lens and LED (see Figure 1). All subjects
were right handed.

The left arm was positioned in proximity to the BioZ
impedance monitor screen such that both the phone screen
and BioZ screen were visible on a video camera. The subject
was given a cushioned object to use to comfortably hold
his/her left arm in position. The Nonin pulse oximeter was

Figure 2: Placement of Droid and Nonin devices during data acqui-
sition.

placed on the subject’s right-hand ring finger (see Figure 2).
Data from this device were transmitted via Bluetooth to a
laptop where time-stamped HR data were recorded every
second during the 3 five-minute evaluation conditions. A
Panasonic model VDR-M50 video camera was used to record
the BioZ and Motorola Droid display screens throughout
each condition. Video was captured to computer file by
PowerDirector (CyberLink, Santa Clara, CA). Files were then
reviewed frame by frame and displayed HRs recorded.

The subject was then directed to sit quietly, without
crossing his/her legs for 5 minutes. Next, the subject was
given printouts of recent local newspaper articles to read
aloud for 5 minutes. During these evaluations two research
assistants were present observing the presentation. Finally,
the 5-minute Atari video game “Break Out” was presented
via computer emulator on the “15” diagonal laptop screen.
This game has been used in a number of laboratory stress
cardiovascular reactivity evaluation studies and has shown
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Table 2: Heart rate means and SD across conditions and devices.

Device Sitting Reading Video game
All conditions

(average)

BioZ-ECG (bpm) 72.47± 12.89 77.39± 12.65 74.29± 11.93 74.72± 12.34

Droid (bpm) 71.94± 12.98 76.78± 12.51 74.10± 11.78 74.27± 12.27

Nonin (bpm) 72.86± 13.01 77.36± 12.79 75.09± 11.87 75.10± 12.73

Table 3: Correlations and SEE for the different conditions.

Condition
ECG versus

Droid
Droid versus

Nonin
ECG versus

Nonin

Sitting
r

SEE
.99
.59

.99

.47
.99
.25

Reading
r

SEE
.99
.94

.99

.58
.99
.80

Video game
r

SEE
.99
.66

.99
2.09

.99
2.04

to elicit significant increases in HR, and other hemodynamic
functions as well as being an independent predictor of future
blood pressure levels [13, 14]. The video game involves
knocking bricks out of a brick wall. A ball drops from the
top of the wall and one tries to bounce it back to knock out
bricks via timing positioning of a small paddle under where
the ball is directed. The participant controlled placement
of the paddle by slight sideways movements of a computer
mouse. The slight movements did not interfere with signal
acquisition and transmission on the Nonin 9560BT. After
completion of the three conditions, each subject’s data from
the three devices were date stamp matched. Video recordings
of the Droid cell phone screen, which displayed 4 beat rolling
average HRs, were synchronized with data recorded from the
other devices. The HR data from each device were averaged
for each minute such that there were 5 separate average HRs
for each device per each condition.

2.4. Data Analyses. The ECG-derived average HRs per
minute from the BioZ bioimpedance cardiograph system
using the 4 beat rolling average served as the criterion
measure. HR values recorded from the cell phone and the
Nonin pulse oximeter were averaged and compared to the
ECG at their respective time periods. Pearson correlation
coefficients (r) and standard errors of estimate (SEE) were
calculated. As devices are expected to be highly correlated
measuring the same signal agreement of the 3 devices was
assessed for each activity using Bland Altman plots for
repeated measures with 95% limits of agreement [15].

3. Results

All participants completed the testing procedures. Table 2
portrays the HRs obtained via the different devices and
during the three conditions. Table 3 displays the correlation
coefficients and standard errors of estimate (SEE) for the
different conditions. As expected, mean HRs were slightly

increased for the reading aloud and video game challenge
conditions, compared to the resting sitting condition.

Previous research has suggested that HR monitors are
valid if the correlation coefficients are ≥.90 and the SEEs are
≤5 beats per minute (bpm) [16]. The HRs obtained from
the Motorola Droid cell phone were highly correlated with
those from the BioZ ECG (r ≥ .99), and the SEEs calculated
between the Droid and BioZ ECG were ≤1 bpm during
all conditions. There was also high correlation between the
Motorola Droid and the Nonin 9560BT during all conditions
(rs ≥ .99, SEE ≤ 2.09 bpm). However, high correlations
between multiple monitors do not necessarily equate to
adequate agreement, as data from two HR devices can align
on any linear plane and will result in high correlation
coefficients.

To determine if adequate agreement existed across
devices, Bland Altman plots with 95% limits of agreement
were developed across all conditions between all possible
pairs of devices (Figure 3). All pairings of devices showed
good agreement, that is, ≥95 percent of data points (differ-
ences between measurement methods) falling between the
limits of agreement, except for ECG versus Nonin during
reading which had slightly lower agreement with 94%. The
width of the 95% limits of agreement ranged from 3.9 bpm
for the ECG versus Droid during videogame and ECG versus
Nonin during sitting at rest to 9.5 bpm for both ECG and
Droid versus Nonin during the video game challenge.

4. Discussion

The present findings are based on a limited-size group but
the results provide preliminary evidence that our Android
software program using the Motorola Droid OEM video
imaging system provided valid measurement of HRs across
three different tasks which varied in HR intensity. This easy-
to-use application has significant potential for use in collect-
ing intermittent HR measurements during environmental
activities without having to attach spot electrodes, wiring
harness or chest or arm straps, and/or wear wristwatch like
receiver devices. The device is able to accurately detect ranges
of HR across individuals, comparable to those produced by
activities of light intensity.

HR monitoring has played an integral role in the field of
health promotion and disease prevention. Electrocardiogra-
phy (ECG) is the gold standard for beat-to-beat heart rate
measurement. However, financial costs of ECG holter mon-
itoring equipment and cumbersome attachment of multiple
patch electrodes with wire connections to the device make
this methodology impractical for most individuals interested
in monitoring their HRs in the natural environment. As
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Figure 3: Bland-Altman plots comparing agreement between Droid, Nonin, and ECG at three activities.

described earlier, a number of user friendly and affordable
HR monitors are widely available which have been validated
at rest and during various levels and types of physical activity
[16–19]. However, these devices are still somewhat problem-
atic in terms of requiring the wearing of a telemetric strap,
ensuring shifting capable of measurement interference does
not occur, and maintaining signal and receiver connections
between the telemetric strap and watch interface.

Recently, Lee and Gorelick (2011) validated an HR wrist-
watch monitor, which does not require wearing a telemetric
strap nor patch electrodes [20]. The back of the watch
casing serves as one electrode (for wrist conductivity), while
two front casing electrodes are located above and below
the wristwatch display (for finger conductivity). The watch
displays the HR when the fingers of the opposite hand are

placed on the electrodes. The device was shown to provide
valid HR readings at rest and during treadmill walking and
light jogging. It tended to lose ability to acquire HRs at higher
treadmill speeds. Although an improvement over chest straps
and electrode attachments, one still has to purchase and wear
an external device. The Android HR acquisition application
circumvents this for those with generation 3 smartphones
with similar OEM equipment to the device we tested (i.e.,≥5
megapixel cameras with ≥4x zoom, autofocus, DVD quality
(720 × 480 resolution) up to 24 fps capture; up to 30 fps
playback and dual LED). In order to fully ensure the OEM
equipment is provided with other brands/makes of Android-
based OS smartphones, additional validation is required.

Compared to the ECG readings, the Motorola Droid
smartphone acquired valid HR at rest and during several
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mildly stressful situations intended to increase HR levels
without physical exertion (i.e., oral reading in front of others,
challenging video game). In addition, the smart phone
application provided accuracy similar to the FDA-approved
(K081285, 2008) and ISO 9919 compliant, Nonin Onyx II
model 9560BT ambulatory finger pulse oximeter. The Nonin
9560BT was also shown to provide accurate measurements
compared to the ECG. The Nonin 9560BT provides the user
with ongoing feedback of HR changes, as well as oxygen sat-
uration levels, on the device’s display screen. The biodata can
also be transmitted via Bluetooth to an external computer or
Bluetooth-enabled smartphone platform in which ECG wave
patterns are displayed in real time and data charted. Our
Android smartphone HR acquisition appli- cation operates
in a similar manner with regard to processing of signals and
provision of real-time HR changes on the cell phone screen.
In addition, the Android software program is capable of
providing the user with feedback charts depicting average HR
per minute across continuous periods of time from previous
HR recording sessions stored on a secure localized server.

Although the findings are promising, there are a few
limitations of the study that warrant discussion. First, the
main goal of the study was to demonstrate proof of concept
for its use. The methods we used for validation are appro-
priate for this preliminary study. However, more detailed
analysis of validity using both our self-developed Android
application and the ECG monitor is warranted. Future stud-
ies using a larger sampler in conjunction with a blind source
separation analyses via principal component analysis (PCA)
and independent component analyses (ICA) would further
confer validation from a signal analysis perspective [21].
Second, data were acquired while subjects were stationary.
This was done intentionally, as the initial purpose of this
proof-of-concept study was to use HR acquisition software to
facilitate HR monitoring of individuals while stationary and
practicing smart-phone-delivered breathing meditation. It is
unclear whether the device is capable of capturing HR while
jogging and running, which require significant upper body
movement including that of the arms and hands. Although
only one hand is involved with the Droid device, as opposed
to both hands with Lee and Gorelick’s [20] wristwatch mon-
itor, further testing is required to determine whether indi-
viduals can maintain proper position of their finger on the
back of the phone while moving and, if so, can the software
detect accurate HR signals. Activities such as slow walking
and/or stationary bicycling may be more feasible conditions
for using the Android smartphone HR detection software.

In addition, although a wide age range of individuals
including both sexes and multiple ethnicities were evaluated,
no children were involved in the study. It is possible that
children’s smaller diameter fingertips may result in less
consistent detection of pulsatile flow changes on the camera
lens. We are currently using the Android HR acquisition
application software as part of a smartphone-delivered
breathing meditation study involving prehypertensive 6th
and 7th grade girls and adults. We are not experiencing any
problems with HR acquisition and processing in the girls
or the adults. However, as noted above, further evaluation
is needed to determine whether the Android software and

smartphone are useful in acquiring HRs while engaging
in various levels of physical exertion. It may be the case
that among children, with less developed running gates, the
combined task of holding a smartphone with a finger over
the photodetector lens proves challenging.

In conclusion, the results indicate that the Android HR
acquisition software embedded in a Motorola Droid smart-
phone provides valid measurements of HR while at rest and
when engaging in mildly stressful motion-free perceptual
motor/cognitive activities. This software appears useful for
health promotion preventive medicine programs (e.g., stress
management programs; monitoring of heart rate pre- and
postphysical exertion) in which individuals are interested in
evaluating HRs in the natural environment and storing the
data without having to purchase an HR monitoring system
with accompanying telemetric strap, spot electrodes, and/or
wristwatch. The software application and smartphone video
camera may be capable of detecting HRs while engaged
in walking, possibly jogging, as long as consistent fingertip
connection is made with the LED and photodetector lens.
However, whether such signal detection is feasible, especially
with higher-intensity movement, is unknown.
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