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Abstract
Allelic DNA aberrations across our genome have been associated with normal human genetic
heterogeneity as well as with a number of diseases and disorders. When copy-number variations
(CNVs) occur in gene-coding regions, known relationships between genes may help us understand
correlations between CNVs. However, a large number of these aberrations occur in non-coding,
extragenic regions and their correlations may be characterized only quantitatively, e.g.,
probabilistically, but not functionally. Using a signal processing approach to CNV detection, we
identified distributed CNVs in short, non-coding regions across chromosomes and investigated
their potential correlations. We estimated predominantly local correlations between CNVs within
the same chromosome, and a small number of apparently random long-distance correlations.

I. INTRODUCTION
Copy-number variations (CNV), including allelic duplications, deletions and
rearrangements, represent a significant part of our normal genetic variability, and occur in
both gene-coding and non-coding regions [4][23][11]. To date, more than 66,000 CNVs
have been reported in the Database of Genomic Variants (DGV) [6][18][2]. In addition to
normal DNA aberrations, pathological CNVs have been associated many diseases and
disorders [13][22][9]. One of the challenges of genomic research is to identify and
characterize correlations between CNVs, potentially driven by biologically-relevant
mechanisms. In cases where CNVs occur in gene-coding regions, knowledge of individual
genes in these regions and biological pathways may help explain correlated variants.
However, a high number of identified CNVs are located in non-coding regions of healthy or
pathological genomes. Thus, their role and correlations with distributed aberrations also in
non-coding regions are often unclear [7][9][16]. There is, however, increasing evidence that
non-protein coding DNA may play an important regulatory role, e.g. [10]. Extra-genic
regions constitute ~98% of our genome and have been the focus of a large number of
studies. There is also evidence that highly conserved non-coding regions may play a role in
structural connections between chromosomes [17][5][8]. However, the function and
correlations of genomic regions which are distant from known genes remain unclear [19]. In
addition, it is unknown whether the occurrence of these CNVs is entirely random or guided
by currently unknown mechanisms. We present preliminary results on the estimation of
correlated CNVs in a small set of non-coding, evolutionarily ultra-conserved genomic
regions, detected in Array Comparative Genomic Hybridization (array CGH) data from
healthy individuals. To detect these CNVs we applied a novel signal processing-based
method that treats genomic sequences as continuous signals and uses a matched-filtering
approach to identify regions of pairwise similarity and dissimilarity [21]. We show that there
are predominantly local correlations between CNVs within the same chromosome, but that
there are only limited correlations between CNVs in different chromosomes.
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II. METHODS
A. Array CGH data and genomic regions of interest

Array comparative genomic hybridization (aCGH) is a high-resolution technology that
enables simultaneous detection of CNVs across the genome. It involves hybridization of
differentially fluorescent dye-labeled reference and test sequences on a microarray, and
subsequent estimation of relative allelic changes as the log2-ratio of the two fluorescence
intensities. Here, 200 normal array CGH sequences (log2 intensity ratios) from the Cancer
Genome Atlas [1] were analyzed (Agilent Human Genome CGH Microarray 244A, 60 bp
resolution). A common reference sequence was used to normalize each sequence in a
particular batch. Array CGH data is typically noisy and contains genomic artifacts which
were suppressed using a denoising procedure involving sequence decomposition into
individual signal components and elimination of low-amplitude, high-frequency
components, a process that also increased the data signal-to-noise ratio (SNR) [21].
Matched-filtering, a quasi-optimum pattern matching filtering method, was then applied to
detect regions of dissimilarity between sequences and thus CNVs.

Although CNVs have been identified across the entire non-coding part of the genome, this
preliminary study focused on CNVs identified in ultra-conservative extragenic DNA
segments. Thus, genomic regions of interest were selected as followed, based on the study
by [5] who identified 481 ultra-conservative (UC) non-coding segments longer than 200
base pairs, of which 111 overlapped the mRNA of known protein-coding genes, and only
256 showed no evidence of transcription and did not overlap actively transcribed genomic
regions[5]. From these, inter-genic segments in close proximity (≤~40 Kbp in either
direction) to protein coding genes, were also eliminated. Ultimately, 24 clearly extra-genic
DNA segments were chosen, which included UC elements. Table I lists analyzed segments
in each chromosome, their length and corresponding cytoband. Segments were extracted
from the database in [3] and compared to the DGV to ensure that all analyzed segments
contained previously identified CNVs.

B. CNV detection
We have previously developed a methodology based on the matched-filter for detecting
regions of pairwise similarity and dissimilarity between genomic sequences [20][21]. By
definition, the matched-filter increases the signal-to-noise ratio (SNR) in regions of pairwise
waveform similarity and decreases SNR in regions of mismatch. Therefore, when comparing
genomic sequences that are spatially similar to each other with the exception of regions
containing CNVs in some sequences but not in others, signal mismatch may be used to
identify these regions. The matched-filter improves SNR by reducing the noise spectral
bandwidth to that of the desired signal. In theory, the optimum filter h(k) that maximizes
SNR is the time-reversed signal itself, i.e., h(k) = y(−k), under the assumption of white
noise. Thus, the filtered signal yMF is given by

(1)

where ⊗ denotes convolution. As a waveform matching technique, matched-filtering treats
discrete DNA sequences as continuous signals, potentially resulting in spurious spatial
correlations between probes. However, we have previously shown that this approach does
not introduce significant correlations in the filtered sequence [21]. In addition, the method
strongly depends on the choice of the template sequence. There is no unique filter in this
case, since there is no unique genomic sequence that captures all normal human genomic
variability. Thus, we sequentially matched each sequence with all other sequences and at
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each iteration obtained a new filtered sequence with increased SNR in regions of genomic
similarity and decreased SNR in regions of dissimilarity. An allelic gain was called if the
log2 ratio at a particular marker was , thus assuming a threshold of 1 copy gain, and
an allelic loss was called if the log2 ratio was , assuming a threshold of 1 copy loss.
Although thresholds may be set according to the analysis of interest, we used thresholds of
one gain or one loss for simplicity. Finally, a CNV was called based on the frequency of its
occurrence. The probability of a CNV at marker i was defined as the union of the
probabilities of gain and loss at that marker [21]:

(2)

where j = 1, …, J is the number of sequences with gains above the threshold, m = 1, …, M
the number of sequences with losses below the threshold, and n the total number of
sequences in the sample. A 10% frequency was chosen as the threshold. There are a number
of studies that have shown that common CNVs in the healthy genome are relatively rare,
with frequencies ≤ 10% [12][15]. Only very few CNVs occur at high frequencies, often in
specific populations.

Figure 1 shows examples of raw and matched-filtered sequences, with locally increased
SNR.

Note that depending on the structure of a sequence and its similarity to the template,
matched-filtering may have a negligible effect on the test sequence, as shown in the top plot
in Figure 1. The CNV probability distribution across markers within each segment appeared
to be best described by an exponential distribution. The parameter λ of the distribution was
estimated for each segment, using the maximum-likelihood method. An example of the
distribution of of CNV frequency (separately for allelic gains and losses) in a single segment
is shown in Figure 2. The maximum frequency of CNV gain/loss at each segment and
corresponding estimated rate parameter of the exponential distribution, of CNV probability,
obtained using Equation 2, are shown in Figures 3(a) and 3(b), respectively. There is no
apparent chromosome-dependent variation of the CNV frequency of occurrence or the
spatial probability distribution of these CNVs as a function of genomic distance.

III. RESULTS
Many analyzed genomic segments included multiple allelic gains, but very few losses (only
chromosomes 1,2,3 had detectable losses). In total 52 CNVs were detected of variable
length (30–187kb). Examples of CNVs at four chromosomes and multiple segments is
shown in Figure 4. The actual level of gain/loss is not shown, only ±1, for gain/loss,
respectively.

To assess potential correlations within and across segments and chromosomes we computed
auto-correlation and sample covariance matrices, assuming each marker corresponds to a
random variable Xm, taking values 1, 0,−1 (gain, no change, loss). Examples are shown in
Figures 5(a)–5(d) and 6.

Clusters of markers corresponding to CNVs were locally correlated in several individual
segments. However, there were only a few regions across chromosomes which appeared
correlated, and these were typically very short clusters of markers, often ≤ 50 kb long. From
the auto-correlation and covariance matrices, the adjacency matrices Ai,j between nodes Xi
and Xj of the network graph was defined as Ai,j = 1σ(i,j)≥α, where α is a threshold on the
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covariance. Random variables Xi and Xj correspond to markers at position i and j either
along the same segment (in which case the sample covariance was the n × p autocorrelation
matrix ri,j of the segment, with p the number of markers in the segments and n the number of
observations), or along two different segments. Since we are interested in assessing
correlations between segments, and consequently chromosomes, we set the covariance
threshold as: α = mins(maxm,s(ri,j, i ≠ j)), where the min is taken over all segments s and the
max is over all markers m in a segment. This is a data-based empirical threshold and thus
not unique. It is a conservative threshold to identify edges between strongly correlated
nodes, since it is based on the autocorrelation matrices of individual segments. Based on this
threshold and estimated sample covariance matrices, a random graph was identified, shown
in Figure 7.

IV. CONCLUSIONS
We have investigated potential correlations between CNVs within and across chromosomes,
in a small set of evolutionarily ultra-conserved segments of non-coding DNA, sufficiently
distant from any gene-containing regions. We analyzed 200 array CGH sequences from
healthy adults from the TCGA, using matched-filtering, a pattern matching signal processing
method, which increases SNR locally in the data and thus facilitates CNV detection. Using a
threshold based on the frequency of CNVs in the studied sample, we identified 52 CNVs,
predominantly allelic gains of variable length across chromosomes. Chromosomes 1–5
included the highest number of CNVs. CNV occurrence appeared to be exponentially
distributed across markers. Furthermore, we estimated both autocorrelation matrices of
individual segments, to assess potential local correlations between markers and CNVs, and
sample covariance matrices between segments, to assess long-distance correlations between
CNVs. Local correlations between markers and cluster of markers identified as CNVs were
significantly higher within segments. However, overall correlation between markers was
low (≤ 0.1) in some segments, particularly those with very short CNVs. In addition, based
on estimated segment covariances, a few CNVs in different chromosomes appeared to be
correlated, independently of the distance between them. Specifically, covariances in regions
containing CNVs in chromosomes 1, 2, 3, 10 and 19 were above the set threshold. The
location of these CNVs and their long-distance correlations appeared random. Evidently this
is an initial study on CNV correlations in extra-genic regions and is based on short DNA
segments. A more extensive study of multiple larger regions is necessary to estimate these
correlations robustly.
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Fig. 1.
Example of two sequences matched filtered with the same template. Raw sequences (green),
matched-filtered sequences (black). Circles mark regions with increased SNR which are
above the detection threshold in the filtered sequence but below the threshold in the original
sequence.
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Fig. 2.
Frequency of detected allelic gains (top) and losses (bottom) ratios at each marker of a
single segment.

Stamoulis Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
CNV frequency and probability distribution parameter.
(a) Maximum CNV frequency (gain (b) Variation of the exponential dis-(black), loss (red))
at each segment. tribution parameter.
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Fig. 4.
Detected CNVs at multiple segments in each chromosome. +1 corresponds to gain (not the
actual gain magnitude), −1 corresponds to loss.
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Fig. 5.
Autocorrelation matrices of segments 1, 2, 3, 4 in chromosome 1, to measure correlations
between loci within individual segments. In all matrices X and Y axes correspond to loci.
Colors represen levels of correlation, 0 (blue) to 0.7 (red).
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Fig. 6.
Clockwise from top left: covariance matrices between segments in chromosomes 1,2, 1,5,
1,6, 1,10, 1,15, 1,19. These matrices measure correlations between loci across segments.
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Fig. 7.
Network graph based on the adjacency matrix estimated from the covariance matrices
between segments.
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TABLE I

Analyzed non-coding genomic regions.

Chr Gen. coords (build 36/hg18) Cytoband Length (kbp)

1

10,774,189-10,888,710 p36.22 114.5

44,762,643-44,775,496 p34.1 12.85

87,801,345-88,701,111 p22.3-p22.2 899.8

211,655,265-213,956,186 q32.3-q41.0 2,291.1

2

57,825,856-60,295,497 p16.1 2,469.6

157,259,412-157,609,094 q24.1 349.68

164,369,890-164,552,815 q24.3 182.92

3

18,819,160-19,009,599 p24.3 190.44

70,648,908-70,955,219 p13.0 306.3

138,465,742-138,608,879 q22.3 143.14

148,532,029-148,532,925 q24.0 18.99

5
76,976,710-77,305,243 q14.1 328.53

87,204,003-87,729,136 q14.3 525.13

6
51,184,545-51,257,443 p12.3 72.9

98,223,040-99,102,761 q16.1 879.7

7 114,903,668-114,922,472 q31.2 18.8

9 80,662,013-81,062,015 q21.31 400.0

10 102,362,416-102,438,368 q24.31 75.95

13 71,566,646-71,670,119 q21.33 103.47

14
28,930,805-29,812,660 q12 881.85

96,500,869-96,949,518 q32.2 448.65

15 33,706,004-34,607,756 q14 901.75

18 33,818,719-34,318,041 q12.2 499.3

19 35,459,348-35,533,833 q12 74.48
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