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Summary
Overwhelming evidence suggests that the JNKs are a set of key stress responsive kinases that
mediate cell apoptosis, which is an important process for tumor suppression. However, the JNKs
have also been implicated in the malignant transformation and tumorigenesis of cells. This review
attempts to reconcile these two contradictory functions of the JNKs with the recent discoveries on
the role of the JNKs in the compensatory growth of the neighboring cells and stem cells, which
may provide new mechanistic understanding on the role of the JNKs in the regulation of cancer
stem cells and the pathogenesis of cancers.

In the past few years, a new concept in tumorigenesis, the cancer stem cell (CSC), has
emerged (1). It is believed that CSCs are a population of rare cells that are capable of
initiating and maintaining the tumor, differentiating into endothelial cells for tumor
vascularization and allowing the propagation and colonization of the tumor cells at sites
distant from the original tumor location. Similar to normal stem cells, CSCs retain the
properties of self-renewal and multi-lineage differentiation. However, these cells distinguish
themselves from normal stem cells by maintaining their malignant potentials such as a loss
of both the genomic integrity and epigenetic identity of the normal stem cells. An unsolved
issue in CSC theory is whether CSCs are truly stem cells or if they are non-stem cells in
which the self-renewal is activated by oncogenic mechanisms.

C-Jun N-terminal kinases (JNKs) are protein kinases involved in the cellular stress response,
apoptosis and malignant transformation (2–4). They regulate a wide spectrum of
intracellular signaling pathways that converge to regulate both gene expression and the
homeostasis of macromolecules including mRNAs and proteins (5). In the human genome,
three genetic loci encode JNK1, JNK2 and JNK3, each of which has 2 to 4 isoforms that
result from the alternative splicing of the corresponding pre-mRNAs. Both JNK1 and JNK2
are ubiquitously expressed, while JNK3 is expressed predominantly in the brain and to a
lesser extent in the heart and testis (2, 4). The JNKs have a well-documented functional
redundancy to phosphorylate their cognate and non-cognate substrates, which include c-Jun,
JunD, ATF2, PRC1 subunit Bmi1 (6), Akt (7) FoxO4, PPARγ1, c-Myc, p53, NFATc2,
STATs (8), IRS-1, Itch, 14-3-3, histone H3 (9), SIRT1 (10), and other proteins (5).
However, there is also evidence implying that JNK1, rather than JNK2 or JNK3, is the key
JNK family kinase responsible for the phosphorylation of c-Jun on serines 63 and 73 and for
the expression of RNA polymerase III (11, 12). In myoblast cells, JNK1, but not JNK2,
mediates TNFα-induced cell proliferation by inhibiting myoblast cell differentiation and
promoting the generation of the inflammatory cytokines such as IL-6 and LIF (13). In
addition, the importance of JNK1 over JNK2 had been demonstrated in the pathogenesis of
several human diseases including diabetes, lung fibrosis, and cancer (14). Furthermore, gene

*Phone: (313) 577-9201; fchen@wayne.edu.

NIH Public Access
Author Manuscript
Cancer Res. Author manuscript; available in PMC 2013 January 15.

Published in final edited form as:
Cancer Res. 2012 January 15; 72(2): 379–386. doi:10.1158/0008-5472.CAN-11-1982.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



knockout studies in mice revealed that JNK1 is the most important JNK family kinase for
the proliferation of the CD8+ T cells (15) and for neural development (16, 17).

JNK1 and JNK2 in carcinogenesis
Although the JNKs are primarily attributed to pro-apoptotic cell death or tumor suppression
in response to a variety of stress, inflammatory or oncogenic signals (18), emerging
evidence suggests that the JNKs, especially JNK1, play a role in the malignant
transformation of cells and in tumorigenesis. For example, the genetic disruption of the jnk1
locus in mice decreased the susceptibility to a Bcr-abl-induced lymphoma (19). In UV-
induced tumorigenesis, activation of JNK1 is essential for the cell transformation and
proliferation in response to the oncogenic Ras signal (20). In cells derived from the soft
tissue of a childhood sarcoma, silencing of JNK1 but not of JNK2 by siRNA repressed the
growth of these tumor cells, indicating that JNK1 is pro-proliferative, while JNK2 might be
pro-apoptotic (21, 22). JNK1 has been viewed as a pivotal kinase that promotes the
development of tobacco smoke-induced lung tumors because the ablation of JNK1 alone
reduced the effect of tobacco smoke on both the lung tumor multiplicity and the tumor size
(23). Animal models of gastric cancer also showed that JNK1 contributes to the
development of gastric tumors that are induced by the chemical carcinogen N-methyl-N-
nitrosourea (24). The most compelling evidence for the role of JNK1 in cancer initiation is
from studies of hepatocellular carcinoma (HCC) in both human and animal models. By
using human HCC tissue samples that were case-matched with the adjacent non-cancerous
liver tissues, two independent studies found that more than 50% of the HCC samples
exhibited a higher activation of JNK1 but not of JNK2 (25, 26). Additional studies further
demonstrated that higher JNK1 activation was associated both with a poorer prognosis of the
patients and with the overexpression of several hepatic stem cell or progenitor cell markers,
such as EpCAM, CD24, CD133, KRT19, and AFP (27). In mouse HCC models, genetic
disruption of the jnk1 locus substantially reduced the number and size of HCCs that were
induced by diethylnitrosamine (DEN) (25). JNK1 has also been shown to be an essential
kinase for mediating the development of HCC due to a hepatocyte-specific deficiency of
IKKβ or IKKγ, which are the key subunits of the IKK kinase complex for NF-κB signaling
in mice (28–30).

JNK-induced compensatory proliferation links apoptosis to carcinogenesis
Overwhelming evidence has unequivocally unraveled the role of the JNKs, especially JNK1,
in cell apoptosis or tumor suppression (31–33). The pro-apoptotic or tumor suppressor-like
function of JNK1 was revealed even in studies that showed an oncogenic effect of the
sustained JNK1 activation in animal cancer models (25, 28). How can we reconcile these
two contradictory functions of JNK1? A growing consensus is that the evasion of apoptosis
is one of the hallmarks of cancer (34, 35). Accordingly, it is tempting to attribute this
defective in apoptosis to the oncogenic role of the JNKs, despite reports suggesting that the
major apoptotic signaling pathways, CD95 (Fas) and CD95 (FasL), are required for the
optimal growth of ovarian cancer, liver cancer and glioblastoma in animal models (36–38).
In addition to the possibility that the JNKs can directly induce growth signals at the same
time of inducing apoptosis, it is also possible that a compensatory proliferation of the
neighboring cells might be triggered by the apoptotic, stressed cells. In other words, the
compensatory growth might be an essential linker to bridge apoptosis and carcinogenesis.

a. JNK-induced compensatory growth in Drosophila
How JNK1-mediated cell death triggers the compensatory proliferation of neighboring cells
is not fully understood. The key evidence for the compensatory proliferation induced by
JNK-activated cell death is from studies in Drosophila (39, 40). After apoptosis was
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initiated by disrupting the anti-apoptotic signal from diap1 (XIAP in mammals) and the
activation of the effector caspase was blunted to create “undead” cells in the Drosophila
larval imaginal discs, an overgrowth of the neighboring, normal cells was observed (39).
Biochemical studies found that these undead cells were able to secrete wg and dpp mitogens
(the Wnt and BMP orthologues of mammalian cells, respectively) in a JNK-dependent
manner.

The Wnt and BMP proteins have long been viewed as key signaling proteins involved in
embryonic development, cell proliferation, oncogenesis, and stem cell maintenance (41).
Thus, it is very likely that wg (Wnt) and dpp (BMP), the secreted glycoproteins from the
stressed cells in which JNK is activated, are the master regulators for the JNK-induced
compensatory proliferation of the neighboring cells. The affected neighboring cells can be
either the same lineage as the stressed cells or a different lineage. The degree of the
compensatory proliferation might be dictated by both the intrinsic Wnt- and BMP-
responding pathways and the differentiation states of the affected cells. A number of reports
have suggested that Wnt and BMP stimulate cell growth and tissue regeneration in
vertebrates and insects by cooperating with or inducing the JAK/Start and/or the β-catenin/
TCF signaling pathways (42–44). Additionally, wg signaling is capable of repressing Notch
activity, which leads to the expression of dmyc and the microRNA bantam, which both
promote cell growth by affecting the G1-S phase transition of the cell cycle (45).

In addition to wg and dpp, the JNK-dependent activation or induction of the JAK/STAT
pathway might also be involved in the undead-cell- or tissue-damage-induced compensatory
proliferation of normal cells in Drosophila (46, 47), which could explain the compensatory
growth in Drosophila with the loss-of-function mutations of wg, dpp, or both wg and dpp
(48). Unlike its mammalian counterparts that contain multiple isoforms of all of the major
JAK/STAT pathway components, the Drosophila genome encodes only one JAK (HOP) and
one STAT (STAT92E) molecule (49). The evidence suggesting that the constitutive
activation of JAK/STAT signaling causes cancer has long been established in both human
and Drosophila. A gain-of-function mutation of the Drosophila HOP (JAK) protein resulted
in the over proliferation of the larval blood cells and subsequent melanotic tumors (50). In
the midgut of Drosophila, a tissue injury induced by bleomycin activates JNK, which in turn
induces a rapid translocation of the Yorkie (Yki, the mammalian Yap homologue) protein
from the cytoplasm to the nucleus. As a co-factor for transcriptional regulation, the nuclear
translocated Yki is capable of up-regulating the expression of the Unpaired family of
cytokines (Upd, Upd2 and Upd3, the IL-6 orthologues of mammalian cells) and the
activation of JAK/STAT signaling (51). In resting cells, Yki is predominantly localized in
the cytoplasm due to its phosphorylation by the tumor suppressor Hippo (Hpo)/Wts. It is
unclear how JNK impinges upon Hpo/Wts to activate Yki. One of the potential mechanisms
might be that JNK directly phosphorylates and inactivates Hpo or Wts. However, it is also
possible that JNK may phosphorylate Yki to antagonize the phosphorylation and
inactivation of Yki by Hpo/Wts. In apoptotic conditions, JNK-dependent activation of Yki
and the consequent release of the Upd cytokines from the stressed cells are pivotal factors
for the compensatory overgrowth of the non-apoptotic compartment (52).

Both the wg/dpp and JAK/STAT signaling pathways are essential factors for the self-
renewal of intestinal stem cells (ISCs) in the midgut of Drosophila (42, 51, 53–55). This
finding raises an interesting question about whether the compensatory growth is a result of
the over proliferation of the stem cells to replenish the damaged cells in response to stress or
tissue injury. It is well-recognized that adult stem cells are responsible for replenishing the
dead cells to maintain the homeostasis of the normal tissues. Earlier studies showed a
contribution of JNK activation in the intestinal absorptive enterocytes (ECs) to the
compensatory division and/or differentiation of ISCs in circumstances such as infection,
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chemical or mechanical damage (56, 57). Through asymmetrical division, Drosophila ISCs
give rise to an ISC and an enteroblast (EB) cell, which can then further differentiate into two
major types of intestinal epithelial cells: ECs and secretory enteroendocrine cells (EEs). The
activation of JNK in ECs by silencing of the JNK suppressor, puckered (puc), or expression
of the active form of hemipterous (Hep, Drosophila JNK kinase, DJNKK) resulted in a
substantial increase in both the Upd cytokines and in the number of ISCs (51, 56). It is
believed that upon the JNK activation in the ECs, the released Upd cytokines engaged with
the IL-6R-type receptor, Domeless (dome), on the surface of ISCs, which led to the
activation of the JAK/STAT signaling in ISCs followed by a dramatic increase in the mitotic
index of the ISCs. Similarly, paracrine wg from the circular muscles next to the ISCs had
been implicated as an external niche signal that is important for the self-renewal of ISCs
(54). In addition to the paracrine role of wg/dpp and the Upd cytokines from the stressed
ECs that is induced by the JNK activity on ISCs, JNK activity within the ISCs themselves
appeared to be critical for the ISC proliferation when the Drosophila were challenged with
paraquat or bleomycin (58). In this scenario, JNK- and ERK-dependent phosphorylation of
the FOS protein within the ISCs is sufficient to promote the stress-induced ISC proliferation,
which may occur through the AP-1 dependent transcriptional regulation of several genes
that drive the cell cycle transition.

b. JNK-induced compensatory growth in animal disease models
Whereas the majority of studies on JNK-regulated compensatory proliferation were
performed in Drosophila, there are reports suggesting that JNK is a key contributor to the
compensatory proliferation of the hepatocytes in a mouse HCC model with an IKKβ
deficiency (28, 30). Mice with a hepatocyte specific disruption of the IKKβ gene exhibited a
substantial increase in cell apoptosis, reactive oxygen species production and JNK activation
in the hepatocytes in response to DEN treatment. Meanwhile, these mice also showed a
marked enhancement in the hepatocyte proliferation and carcinogenesis induced by DEN.
Such effects were prevented in the progenies from the cross breeding of these mice with
JNK1 knockout mice, suggesting that the JNKs, especially JNK1, play a central role in the
hepatocyte apoptosis and in the compensatory proliferation of the non-apoptotic cells.
Similar findings were observed in murine liver tumor models with a hepatocyte-specific
IKKγ/NEMO or TAK1 deficiency (29, 59). It was originally hypothesized that this
compensatory proliferation was induced by the growth factors released from the Kupffer
cells. Alternatively, it is possible that mitogens released from the apoptotic hepatocytes in
which JNK is activated induce the compensatory proliferation of the non-apoptotic
hepatocytes.

A potential role of JNK in cancer stem cells
As links were revealed between the JNK activation and wg/dpp or JAK/STAT signaling in
the tissue damage- or stress-induced compensatory proliferation, it is plausible to
hypothesize that some human cancers are formed as a result of the compensatory
overgrowth of stem cells (Fig. 1). Either wg/dpp or JAK/STAT, which are both regulated by
JNK activation, can provide a suitable niche for the dynamic proliferation of stem cells.
Sustained activation of JNK will cause the aberrant generation of the wg/dpp and JAK/
STAT signals, which will be potentially dangerous for either the over-compensatory
proliferation of tissue stem cells or, alternatively, for the oncogenic transformation of stem
cells. It is also possible that a prolonged activation of such signals in non-stem cells might
cause trans-differentiation of these cells into cancer stem cells. Although the specific
contributions of JNK, Yap (Yki in Drosophila), Wnt/BMP (wg/dpp in Drosophila), and
JAK/STAT signaling to stem cell overgrowth and cancer in vertebrates remains to be
established, we expect that similar signaling pathways and their regulatory effects on stem
cells might be involved in the development of murine or human cancers. Indeed, the
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augmentation of the JNK signaling via the transgenic gut-specific expression of
constitutively active JNK1 in mice significantly increases the ISC proliferation and villus
length (60). Remarkably, there appears to be a convergence between JNK signaling and Wnt
signaling in which the activation of JNK not only induces the expression of c-Jun, cyclinD1
and CD44, the classic JNK target genes (Fig. 1), but also up-regulates the mRNAs of some
of the Wnt target genes, including tcf4, axin2 and lgr5 in crypt base columnar (CBC) cells, a
group of intestinal cells with stem cell-like properties (61). In the case of the JNK dependent
expression of lgr5, a CSC marker of colon cancer, it was suggested that the phosphorylation
of c-Jun by JNK prevents c-Jun from recruiting the Mbd3/NuRD transcription repressor
complex at the promoter region of the lgr5 gene (62). Furthermore, in a mouse Apc mutation
model, JNK activation not only was associated with enhanced Wnt signaling from the loss
of Apc, but it also promoted mTORC1 activation, which led to a translational upregulation
of the proteins necessary for intestinal tumorigenesis (63). Thus, these data clearly indicate
that JNK signaling, compensatory overgrowth and stem cell proliferation are shared
mechanisms for tumorigenesis between invertebrates and vertebrates.

Several lines of evidence also support the notion that JNK and its regulation of Wnt and
JAK/STAT signaling are critical for cancer development in mammals, although the stem cell
hypothesis in this JNK-mediated process has not been tested directly. First, a number of
human cancers exhibit enhanced activation and/or increased expression of JNK, Yap, IL-6,
STAT3, Wnt, or TGFβ (2, 64). Second, the JNK1-dependent compensatory proliferation has
been viewed as a key mechanism in the mouse model of HCC with a hepatocyte-specific
deletion of the IKKβ or IKKγ gene (28, 29). Lastly, both the STAT3 and Wnt signaling
pathways have been viewed as important regulators for maintaining the self-renewal of
CSCs in some experimental cancer models (65, 66). Both Wnt and BMP, the downstream
targets of JNK signaling, have been shown to be important for the self-renewal of many
stem cells including embryonic stem cells (ESCs), lineage specific stem cells, or cancer stem
cells (67–70). The transgenic overexpression of wnt1 in mice induces a mammary
tumorigenesis with an increased number of cancer stem cells (71). In a cell culture model,
the addition of the exogenous Wnt protein is sufficient for the expansion of mammary stem
cells for many generations (72). The importance of Wnt signaling in mouse or human ESCs
also provided complementary support for the potential of JNK and Wnt in cancer stem cells.
Wnt signaling is believed to maintain the self-renewal of the stem cells by cooperating with
or enhancing the function of several stem cell transcription factors such as Oct3/4, Sox 2 and
Nanog (73). In contrast, BMP signaling induces the differentiation of the human ESCs by
limiting the activity of Nanog (74).

The notion that JNKs might be involved in the regulation of CSCs in human cancer is
reinforced by findings indicating an association between JNK or IL-6 and the CSC markers
in human HCC (27, 75, 76). Accumulating evidence suggests that the most common
etiological factors in HCC are the chronic inflammation of the liver due to HBV or HCV
infection or the exposure to environmental carcinogens. IL-6, the key inflammatory
cytokine, had been viewed as a central molecular linker between chronic liver inflammation
and HCC. Clinical data clearly show an elevated blood IL-6 level in male HCC patients
(77). Animal studies using IL-6 knockout mice demonstrated a nearly complete inhibition of
HCC development in mice treated with DEN (78). Positive feedback between JNK and IL-6
has been observed in an obesity-induced HCC model (79). As a preferential activator of
STAT3 signaling, IL-6 is capable of inducing the expression of the JAK-STAT3 target
genes such as VEGF, Bcl-xl, cyclin D1, MMP, and others for the sustained proliferation of
hepatocytes and hepatic CSCs (Fig. 1) (76, 80). Notably, genes downstream of IL-6 were
enriched in the surrounding noncancerous liver tissue of the HCC patients with the poorest
survival rates (81), which might indicate a compensatory proliferation of HCC cells or CSCs
induced by IL-6 from adjacent tissues with chronic inflammation.
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A potential link between JNK1 and HCC progenitor cells or CSCs was revealed in a gene
profiling study based on collected human HCC tissues that were stratified by their JNK1
activation levels (26, 27). The genes with signatures corresponding to both poor HCC
prognosis and hepatoblastoma, an embryonic liver tumor that features liver progenitor cells
or CSCs, were enriched in HCCs that had higher JNK1 activation (27). A re-analysis of the
gene profiling data in previous studies (26, 27) indicates that many important genes for the
CSCs are highly expressed in the HCCs with higher JNK1 levels including CD24, CD44,
CD133, Stat3, GPC3, EpCAM, KRT19, KRT7, SOX4, Tet1, Runx1, Runx2, Wdr, Seme6A,
JARID1a, and JARID1b. These data clearly suggest an important role for the JNK1
regulation of HCC progenitor cells or CSCs.

JNK activation in the stemness of embryonic stem cells
The data derived from studies in Drosophila and some human cancers indicate that JNK
might be a regulator of stem cells or CSCs. The embryonic lethality of JNK1 and JNK2
double-knockout mice suggests that JNK kinases are essential for embryonic development
(16). Because of the central role of embryonic stem cells (ESCs) in the development of the
embryo, an important concept to examine is whether JNKs play a role in the establishment,
maintenance and differentiation of ESCs. Several protein kinase pathways had been
implicated as pivotal regulators for the self-renewal, proliferation or differentiation of the
ESCs, including PI3K (82), receptor and non-receptor tyrosine kinases (83), and others.
However, to date, a systematic study of the role of JNKs in certain aspects of ESCs such as
self-renewal, maintenance of stem cell totipotency and differentiation has not been
performed. Uncertainties and controversies remain regarding whether JNKs are required for
the proliferation or differentiation of mouse ESCs (mESCs). In testing the toxicity of the
carcinogenic metal chromium [Cr(VI)], Xia and associates demonstrated that JNKs protect
mESCs from Cr(VI)-induced cytotoxicity and suppress the differentiation of mESCs or the
derived embryonic bodies (EBs) (84). Similarly, JNK signaling appears to be important for
the proliferation of mESCs by collaborating with the Akt-mTOR pathway in response to
zinc stimulation (85). Furthermore, in a recent study to determine how an essential amino
acid, L-threonine, regulates mESCs, Ryu and Han showed that JNK is one of the key
kinases necessary for the self-renewal and proliferation of mESCs (86). The addition of the
JNK inhibitor, SP600125, blocked the L-threonine-induced expression of the stem cell
marker OCT4 and several cell proliferative molecules such as cyclin D1, cyclin E and c-
Myc (86).

In contrast, an earlier study that investigated the neurogenesis of JNK1-deficient mESCs had
found that a deficiency of either JNK1 or JNK2 had no effect on the expression of the mESC
markers or the self-renewal of the mESCs (87). However, JNK1 deficiency clearly impaired
the neural differentiation of mESCs because JNK1 was required for the transcriptional
expression of a neural-specific gene, the neurofilament light chain, in response to nerve
growth factor. That study also suggested that JNK1 might facilitate mESC differentiation by
inhibiting Wnt-4 and Wnt-6, which are two key Wnt signaling molecules in vertebrates. The
concept that the JNKs are involved in the differentiation of mESCs was supported by
another study showing that the JNKs are required for lineage specific differentiation but are
dispensable for the self-renewal of mESCs (88). These results appear to contradict what had
been found in the intestinal cells of Drosophila and of the mouse (39, 60).

Unlike what has been found in mESCs, the potential role of JNKs in the self-renewal of
human ESCs (hESCs) appears to be straightforward (89–91). Interrogation of the
phosphoproteomes of the hESC line, WiCell’s H1, by identifying phosphorylated peptides
via multidimensional liquid chromatography-based mass spectrometry (LC-MS), Ding and
colleagues observed significantly elevated JNK activity in undifferentiated hESCs (89). This
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observation was further supported by the treatment of undifferentiated hESCs with the JNK
inhibitor SP600125 or with a JNK inhibitor III polypeptide. Inhibition of JNK by either
SP600125 or JNK inhibitor III caused the differentiation of the hESCs and the substantially
reduced expression of NANOG and OCT4, which are two important markers of
undifferentiated hESCs. The possible contribution of JNK signaling to the maintenance and/
or self-renewal of hESCs was additionally confirmed in a different hESC line, Harvard’s
HUES-7, by the stable isotope labeling of amino acids in cell culture (SILAC) combined
with LC-MS/MS (91). JNK1 activity and the activity of other kinases including CDK1/2 and
MAPK14 (p38α) was overrepresented in hESCs. In response to the BMP-induced
differentiation, a transient elevation of c-Jun phosphorylation was observed, which indicated
both the competence of the basal JNK pathway to maintain the stemness of the hESCs and
the possible involvement of JNK activation in the initiation of hESC differentiation.
Furthermore, as determined by electron transfer dissociation-based large scale tandem mass
spectrometry, the MAPK pathway appears to be the one of the top three signaling pathways
in another hESC line, although it was not defined which MAPK pathway among the ERK,
JNK or p38 pathways were activated (92).

The comprehensive analyses of the hESC transcriptome provided corroborating evidence for
the role of JNK signaling in the self-renewal and/or pluripotency of hESCs (93, 94). Both
jun and fos, two JNK target genes, have been found to be signature genes in several tested
hESC lines (95). Additionally, analysis of the gene expression dynamics of the hESCs
demonstrated that the expression of some of the JNK signaling molecules was significantly
higher in the undifferentiated hESCs than in the differentiated hESCs (94). These JNK
signaling molecules include the JNK target gene Jun and two upstream kinases of JNK:
MAP4K1 (MEKKK1) and MAP3K7 (TAK1). Both MAP4K1 and MAP3K7 are preferential
upstream kinases for the activation of JNK (96, 97). Differentiation of the hESCs by
removal of both the feeder cells and bFGF resulted in the down-regulation of these JNK
signaling molecules (94).

In accordance with these observations, recent genome-wide RNAi screening in hESCs
showed that the genes of several of the JNK signaling molecules, such as MEKK3, MEKK4,
MEKK8, JNK3, and Fos, contain binding sites in their promoter or enhancer regions for
PRDM14, which is a stem-cell-specific transcription factor (98). ChIP-seq analysis showed
that there is direct binding of PRDM14 to the regulatory regions of these genes. PRDM14
not only up-regulates the expression of Fos but also inhibits DUSP10 and DUSP12, the
negative regulators of JNK signaling. In mESCs, PRDM14 overexpression can enhance the
activity of NANOG to prevent the mESC differentiation of the extraembryonic endoderm
(99), which provided complementary evidence indicating a possible role for JNK signaling
in the maintenance of the ESCs.

JNKs in adult stem cells
While the function of JNKs in the proliferation and/or self-renewal of hESCs is noteworthy,
it is also of interest to investigate the role of JNKs on the proliferation of human adult stem
cells, such as adipose-derived stem cells (ASC) (100) and mesenchymal stem cells (MSCs)
(101). There is evidence indicating that JNK activation is essential for the injury-induced
proliferation of the ASCs and the release of several angiogenic factors and growth factors
such as PDGF, VEGF and HGF. The inhibition of JNK activity using a chemical JNK
inhibitor not only repressed the release of those growth factors but also reduced the number
of the cells harboring the stem cell marker CD34 (100). MSCs can differentiate into
mesenchymal lineage cells such as osteoblasts, chondrocytes, and adipocytes. MSCs have
also been thought to be the progenitor cells for some human cancers. In an attempt to
determine the contribution of MAP kinases to the growth factor FGF-induced MSC
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proliferation, studies by Ahn et al. showed that JNK but not ERK or p38 is critical for the
proliferation of the MSCs in response to FGF (101).

Conclusion and perspective
Despite the mixed sentiments among researchers in the field, revealing the role and
regulation of intracellular signaling pathways is undoubtedly the most important task in
understanding how the capacity for both the self-renewal and multipotency of a given stem
cell is maintained. It is known that epigenetic modifications, especially modifications of the
histone proteins, determine the accessibility of the chromatin for the differentiation
programs to produce divergent cell types. Accordingly, any signaling that occurs to maintain
the stemness of a cell must be achieved by the epigenetic activation of the stemness
programs and the termination of the differentiation programs. In addition to the JNK-
regulated signaling pathways discussed above, the JNKs have also been implicated in the
phosphorylation of histone H3 serine 10 and serine 28 (102), which affects the binding of
the Trithorax (TRX) and Polycomb repressive complex 2 (PRC2) to the chromatin and, thus,
the propagation of active and silent chromatin, respectively. Furthermore, the JNKs or JNK
signaling molecules have been implicated in the antagonizing of the PRC complexes
formation of a permissive chromatin structure on some of the genes that are involved in cell
growth and lineage development (6, 103). Important issues concerning the mechanism by
which the JNKs affect the balance between the stability and plasticity of stem cells must
now be addressed. A critical question is whether JNKs are essential kinases for the
multipotency of stem cells or whether the kinases are required for the earlier differentiation
of stem cells. It might be overreaching to claim that the JNKs are the central kinases for the
key properties of stem cells. However, it would be fair to state that the JNKs are critical
kinases in concert with other key signaling molecules or transcription factors that govern the
development and fate of stem cells and CSCs.

The achievement of effective cancer treatments remains a challenge. Some of the new
treatment strategies, such as personalized medicine, are too cumbersome to be scaled up.
Because cancers very frequently originate from CSCs, the targeting of a particular signaling
pathway, such as JNK, in CSCs might circumvent some of the setbacks that are currently
faced by conventional therapies, such as fast relapse and chemoresistance. The significance
of stem cell research is its promise for the stem-cell-based treatment for some degenerative
diseases or for cancer. The recently recognized tumorigenic nature of hESCs, adult stem
cells and iPSCs has put stem-cell-based therapies in jeopardy. It is plausible to assume that
this tumorigenicity of stem cells might be a consequence of aberrant JNK activation. Thus,
the inhibition of JNK will not only force the differentiation of the stem cells to replace the
damaged tissues but also reduce the tumor burden in cancer patients by eliminating CSCs.
Recent evidence has shown that the administration of an inhibitor against the downstream
target of JNK, JAK, is clinically beneficial in treating some forms of myeloproliferative
neoplasm (104). Accordingly, a JNK-based therapeutic strategy that targets CSCs for
cancers could be developed in the foreseeable future.
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Fig. 1.
JNK signaling enhances the compensatory proliferation of the neighboring cells, stem cells
or cancer stem cells (CSCs). In response to stress signals, activated JNK induces the release
of Wnt/BMP and IL-6 from the stressed cells in which an apoptotic response might be
initiated but not yet completed, thus inducing a state of “undead” cells. The released Wnt/
BMP and IL-6 interact with Fz and JAK complexes, respectively, on the surface of the
neighboring cells, stem cells or CSCs, which is followed by the activations of the β-catenin/
TCF and Stat3 signaling pathways in these cells. Both β-catenin/TCF and Stat3 are capable
of enhancing the expression of the genes such as CCND1, OCT4, Sox2, KLF4, c-Myc,
CD44, and others that are important for the cell proliferation and self-renewal of the stem
cells or CSCs. There is a reciprocal positive feedback between Stat3 and JNK signaling in
the non-stressed neighboring cells or stem cells. Alternatively, JNK can affect Stat3 through
the suppression of Hpo/Wts (MST/LATS in mammals) to alleviate Yki (YAP in mammals)
that can induce Stat3 through IL-6 signaling. Similarly, in addition to the regulation of the β-
catenin/TCF pathway, the Wnt signaling can regulate the cell growth of stem cells by
suppressing Notch, a repressor of c-Myc and other cell cycle genes. Circled arrow indicates
a group of genes important for the self-renewal of the stem cells or CSCs.
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