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We manufactured a novel type of lipid-coated superparamagnetic nanoparticles that allow for a
rapid isolation of plasma membranes (PMs), enabling high-resolution proteomic, glycomic and
lipidomic analyses of the cell surface. We used this technology to characterize the effects of
presenilin knockout on the PM composition of mouse embryonic fibroblasts. We found that many
proteins are selectively downregulated at the cell surface of presenilin knockout cells concomitant
with lowered surface levels of cholesterol and certain sphingomyelin species, indicating defects in
specific endosomal transport routes to and/or from the cell surface. Snapshots of N-glycoproteomics
and cell surface glycan profiling further underscored the power and versatility of this novel
methodology. Since PM proteins provide many pathologically relevant biomarkers representing
two-thirds of the currently used drug targets, this novel technology has great potential for biomedical
and pharmaceutical applications.
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Introduction

Contemporary cell biology is increasingly challenged toward
the global and comparative analysis of the molecular
phenotype of the cell under investigation. Whereas powerful
techniques exist for the quantification of genome-wide
changes in gene expression, these approaches provide only
indirect insights in the global protein, lipid and sugar
composition of the cell. Global biochemical compositional
analysis remains therefore challenging. Despite major techno-
logical improvements, mass spectrometry (MS) analysis of
total tissue or cell extracts is biased towards the identification
of the more abundant proteins (Wisniewski et al, 2009). This
problem can be partially circumvented by isolating individual
subcellular compartments, which allows to identify also the
more rare proteins, resulting in a better understanding of their
functional roles in their specific micro-environment (Huber
et al, 2003; Foster et al, 2006). The most reliable results have
been obtained with organelles for which good purification

protocols are available, including cilia, exosomes, mitochon-
dria and synaptic vesicles (Pisitkun et al, 2004; Forner et al,
2006; Ghesquière et al, 2006; Takamori et al, 2006; Mayer et al,
2008; Deery et al, 2009). A major challenging compartment is
the plasma membrane (PM), and by extension, its dynamic
interplay with the endocytic/recycling system. These compart-
ments are highly dynamic in nature with overlapping physical
features such as buoyant densities, rendering it far more
difficult to isolate them to the quality required for ‘organellar
omics.’ Being the physical boundary of the cell, the PM acts as
an interface between the cell and its environment for inter- and
extracellular communication, intracellular transport, stress
responses, cell–pathogen interaction and downstream signal-
ing (Tan et al, 2008). Furthermore, these processes can induce
rapid and selective changes in the overall composition through
internalization and endocytic recycling, adding significantly to
the dynamic nature of the PM. Likewise, the membrane compo-
sition can be affected in many diseases, giving rise to the
expression of proteins that can act as markers in, for example,
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specific cancers and inflammatory diseases (Josic and Clifton,
2007). Therefore, resolving the structural complexity of the
PM is an important challenge.

In this study, we developed a procedure to isolate PMs under
physiological conditions based on novel phospholipids-coated
superparamagnetic nanoparticles (SPMNPs; Ø 10–15 nm).
This technology does not involve affinity tags (biotin, ligands
or antibodies) nor invasive approaches like silica coating, is
compatible with MS-based proteomic and lipidomic analysis
and can be used for the analysis of post-translational
modifications (e.g. N-glycoproteomics, N-glycan profiling) of
cell surface proteins.

We used this novel technology here to begin to address
a long-standing question in the field of Alzheimer’s disease
(AD), that is to what extent the presenilins (PSENs), apart
from their function as catalytic subunits of the g-secretase
complex (De Strooper and Annaert, 2010), are also involved in
membrane or protein trafficking events. Genetic knockout of
PSEN does indeed not only block the proteolytic processing of
APP (De Strooper et al, 1998), Notch (De Strooper et al, 1999),
cadherins (Marambaud et al, 2002) and many other substrates,
but additionally causes alterations in the subcellular localiza-
tion and turnover of proteins like caveolin-1 (Wood et al, 2005),
telencephalin (Esselens et al, 2004) and b1-integrin (Zou et al,
2008). PSEN-deficient cells have also increased levels of
cholesterol and sphingomyelin (SM) (Grimm et al, 2005)
and present with defects in lysosomal fusion (Esselens et al,
2004). This raises the question whether this diverse array of
alterations can be traced to selective defects in the transport of
proteins or membranes to and from the cell surface. As a first
step, we analyze here the effect of PSEN deficiency on the
global biomolecular composition of the PM of mouse
embryonic fibroblasts (MEFs). We indeed identify qualitative
and quantitative changes of the cell surface proteome and lipid
composition, likely resulting from transport defects. We
analyzed also the cell surface N-glycosylation profile, which
appeared less affected. Overall, this novel SPMNP-based
isolation procedure constitutes a timely and much sought-
after tool for subsequent generation of protein and lipid
inventories (and their modifications) of PMs of potentially
different cell types.

Results

Particle synthesis and magnetic isolation

SPMNPs are synthesized by thermal decomposition resulting
in oleic acid coated nanoparticles of 9.4±3.0 nm size with
superparamagnetic properties (Supplementary Figure S1a
and b, left panel). Subsequent coating with 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine (DSPE)-PEG-NH2 increases
their hydrodynamic diameter to 16.3±5.0 nm (Supplementary
Figure S1a and b, right panel), without compromising the
superparamagnetic properties (Supplementary Figure S1c).
Even after several weeks, these particles remained dispersed
in the water phase in a water-organic solvent mixture
(Supplementary Figure S1a0). To characterize their behavior
in cell culture, we used fluorescently labeled variants in
which carboxyfluorescein and the NH2-functionalized PEG-
linked phospholipid conjugates were mixed in 1:4 ratios
during ligand addition. When briefly applied to cells at 4 1C,
these SPMNPs adhered strongly to the cell surface with no
detectable internalization as judged from confocal and
transmission EM (TEM) analysis (Figure 1B (confocal) and
Figure 1C (TEM)). Zeta-potential measurements confirmed the
positive charge of SPMNPs, suggesting that they have strong
electrostatic interactions with the negatively charged PMs
(Supplementary Figure S1d).

We exploited this feature to magnetically isolate PMs
(Figure 1A). Following a brief incubation (4 1C, 20 min) (1),
SPMNP-coated cells are homogenized using a cell cracker (2).
The total homogenate is centrifuged (200 g, 10 min) to remove
major contaminating membranes like cell debris and nuclei.
The resulting post-nuclear supernatant (PNS) is run over an LS
column placed within a strong magnetic field (0.5 T) to retain
SPMNP-coated PMs and to separate them ‘on line’ from
remaining non-coated contaminating membranes (3). After
extensive washing, PMs are eluted by withdrawal of the
magnet (4), concentrated by ultracentrifugation and processed
for analysis of proteins, lipids and glycoproteins (5). The
whole procedure, from applying SPMNPs to the isolated PM
fraction can be accomplished in B2 h. This short isolation
protocol significantly reduces the time that free or uncoated

Figure 1 Schematic diagram and quality control of the PM isolation procedure using SPMNPs. (A) Stepwise outline of the SPMNP-based affinity purification of
PMs: (1) SPMNPs are incubated with cell monolayers at 4 1C for 15 min; (2) after washing, cells are harvested, homogenized and centrifuged (200 g, 10 min) to yield a
PNS, (3) PMs are magnetically retained on an LS column, (4) followed by elution and concentration by ultracentrifugation and finally (5) protein/lipid are extracted for
subsequent analysis. (Inset) Coommassie Brilliant Blue staining of PNS, unbound (UB) and bound (B) fractions obtained from WT MEFs (first lane: SeeBlue plus2
rainbow protein marker (Invitrogen)). The distinct protein profile in the bound fraction underscores the high enrichment for PMs. (B) Confocal laser scanning microscopy
images of WT MEFs incubated with fluorescently modified NH2-lipid end-group SPMNPs and Alexafluor-647 conjugated cholera toxin subunit B (CTB) (15 min at 4 1C).
(C) TEM of WT, PSENdKO and hPSEN1rescue MEFs showing SPMNPs adhering to the cell surface (arrowheads). (D) TEM of an isolated PM fraction of WT, PSENdKO
and hPSEN1rescue MEFs showing uniform long PM sheets decorated with SPMNPs, that were virtually devoid of other subcellular organelles. (E) (Left) Representative
western blot analysis showing the strong enrichment for the PM marker NaþKþ -ATPase between total cell extracts (TOTAL) and isolated PMs (BOUND) for all three
investigated cell lines. (Right) Western blot analysis demonstrating endogenous PSEN1 in WT and exogenous human PSEN1 in PSENdKO-rescued MEFs. (F)
Quantitative western blot analysis of the indicated organelle marker proteins (x axis) in isolated PM fractions as a percentage of the total cell lysate (y axis, presented in
logarithmic scale) for WT, PSENdKO and hPSEN1rescue MEFs (mean±s.e.m., n¼3). NaþKþ -ATPase and FAS/CD95 were used as PM-localized integral membrane
proteins. Overall, very-to-extreme low levels of contaminations were detected for all subcellular compartments as judged from the many marker proteins. RBI represents
ER while the membrane proteins p58 and RER1p reside in intermediate to cis-Golgi compartments. GM130 is a Golgi-associated protein while lamin, HSP60 and the
membrane-associated PEX14p denote nuclear envelope, mitochondria and peroxisomes respectively. Rab7 represents late endosomes. Cytosolic and cytoskeletal
marker proteins are GAPDH and actin/tubulin. Proteins were resolved in a precast 4–12% SDS–PAGE gel. (*) Represents integral membrane proteins and (1) represents
membrane-associated/-anchored proteins. Line denotes 1% contamination level on the logarithmic y axis.
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parts of SPMNPs may non-specifically adhere to membranes
thereby minimizing potential contaminations and contributing
to a higher efficacy to obtain pure PM fractions (see below).

We next applied this approach to isolate PMs from cultured
wild-type (WT) and PSENdKO MEFs as well as from PSENdKO
MEFs stably rescued with human PSEN1 (hPSEN1rescue)
(Figure 1E). For all cell lines, western blot analysis of
magnetically isolated PMs showed very low levels of major
contaminating organelles compared with total cell lysates. On
average and for all three cell lines, recoveries for marker
proteins of the endoplasmic reticulum (Ribophorin, RBI),
intermediate compartment (p58), cytoskeleton (tubulin) and
peroxisomes (PEX14p) were around or below 4%, while for
mitochondria (HSP60), nuclear envelope (lamin A/C), cytosol
(GAPDH, actin) and intermediate compartment/cis-Golgi
(RER1p, GM130) even below 1% (Figure 1F, mean±s.e.m.,
n¼3). On the contrary, two bona fide integral membrane
proteins of the PM, FAS and NaþKþ -ATPase, were recovered
up to 40 and 60% compared with total cell lysates in
agreement with SPMNPs associating essentially with the PM
facing the culture medium and indicating a very high and
identical degree of recovery of the PM from all three cell lines.
This is further corroborated by the 420-fold enrichment of the
NaþKþ -ATPase in PM isolates obtained from the different cell
lines as well as by the distinct protein composition as revealed
by SDS–PAGE followed by Coommassie blue staining of WT
PMs (Figure 1A, inset). We systematically recovered higher
levels (between 4 and 7% in the different cell lines) of the late
endosomal Rab7 GTPase. However, when we performed in WT
MEFs cell surface biotinylation followed by internalization
(20 min, 37 1C) and removal of remaining cell surface-bound
biotin (using sodium 2-mercaptoethanesulfonate to reduce the
biotin-S-S-NHS), subsequent SPMNP isolation of PMs recov-
ered only 1.23±0.90% (n¼3) of biotin. This experiment
indicates that the contamination from endosomal compart-
ments is extremely low (Supplementary Figure S2a and b) and
suggests that the Rab7 ‘contamination’ in our isolation
procedure may originate from Rab7 being transiently associated
with the cell surface, as previously documented, for example, in
the case of cell injury (Andrews, 2002) or in exosomal secretion
(Simpson et al, 2008). To estimate the purity, we next measured
the percentage of total immunoreactivity of the PM marker
NaþKþ -ATPase relative to the sum of the immunoreactivities
of all compartments analyzed (each represented by a single
organelle-specific marker protein, that is, NaþKþ -ATPase-PM,
RBI-roughER, RER1p-intermediate compartment, GM130-Gol-
gi-associated protein, internalized biotin endosomes; lamin-
nucleus, HSP60-mitochondria, PEX14p-peroxisomes; GAPDH-
cytosol, actin and tubulin-cytoskeletal; see also Figure 1F). This
resulted in purities of 92.2±1.4% (WT), 88.7±4.2% (PSENd-
KO) and 90.0±3.6% (hPSEN1rescue) (mean±s.e.m., n¼3) and
allows us to conclude that with our new method, purities can be
obtained in the range of 85–95%. This is finally supported by
TEM of the PM isolates for all three cell lines confirming the
presence of large membranous sheets covered with SPMNPs
and the apparent lack of other subcellular compartments
(Figure 1D).

As our approach obviates the need of detergents and the fact
that we isolate intact PM sheets, we retain full active protein
complexes in their in situ lipid environment. g-Secretase

consists of PSEN complexed with nicastrin, APH-1 and PEN-2
and liberates through intramembrane proteolysis amyloid b
peptides from APP C-terminal fragments (APP-C99) (De
Strooper and Annaert, 2010). Quantification of g-secretase
activity in PNS and PM fractions resulted in an 8.0±2.6-fold
(n¼3) fold enrichment of surface-associated activity (Supple-
mentary Figure S2c).

Qualitative and quantitative PM proteomics

We obtained high quality and quantity of purified PMs from
MEFs (±80–140mg protein out of eight 10 cm dishes) that allows
MS-based proteomics. Following trypsin digestion of PM
isolates, extracted peptides were identified by LC-MS/MS. A
single analysis gave rise to over 10 000 peptides identifying over
1000 membrane proteins (using Gene Ontology) in each cell type
(n¼3) (Figure 2A and Pride Database Project No: 15826). In WT
MEFS, 66% of the identified proteins are authentic PM proteins,
with the remaining assigned to the ER (14%), Golgi (7%),
nucleus (4%) or ‘not known’ (9%). These numbers demonstrate
the exceptionally high enrichment for cell surface proteins in one
single purification step. The estimate of 66% is likely an
underestimation of the technique as many of the proteins
assigned to non-PM compartments are also partially present at
the cell surface, either in transition or because wrongly allocated
to only one compartment. Examples of ER-annotated proteins
are nicastrin, PSEN1, caveolin-2, stromal interaction molecule 1
and endophilin, all of which have been in other studies located
at the cell surface or in functional complexes with cell surface
proteins (Mora et al, 1999; Herreman et al, 2003; Chyung et al,
2005; Cheung and Ip, 2009; Carrasco and Meyer, 2010).

About two-third of the PM proteins are integral (Figure 2B),
60% of which are multitransmembrane proteins, consistent
with literature (Durr et al, 2004; Zhao et al, 2004). Of the
remaining proteins, 24% are membrane-associated (inner
peripheral/cytoskeletal-associated) and 15% are not charac-
terized. Related to g-secretase, we did not identify Aph-1 and
PEN-2 likely because they have minimal hydrophilic domains,
thereby generating insufficient numbers of MS-detectable
tryptic peptides. No nicastrin was identified in PSENdKO
PMs in agreement with its failure to mature and traffic beyond
Golgi in the absence of PSENs (Leem et al, 2002). Lastly, only
subtle differences between cell lines where found when
membrane proteins were categorized based on biological
processes or molecular function (Figure 2C and D).

In a second series of experiments, we compared quantita-
tively the membrane composition of PSEN-deficient cells
versus WT. As a control, we stably expressed human PSEN1
(hPSEN1rescue) in PSEN knockout cells, to keep the cellular
genetic background completely identical.

For these experiments, we post-metabolically labeled
endoproteinase Lys-C-digested PMs using either light 12C3 or
heavy 13C3-N-propionylation prior to LC-MS/MS analysis
(Ghesquière et al, 2009, 2011). In each analysis, the ratios of
the abundances of light labeled WT peptides over that of heavy
labeled peptides (PSENdKO or hPSEN1rescue) were quantified
(Supplementary Figure S3a and b and Pride Database Project
No: 15828). The broad ratio distribution when comparing WT
versus PSENdKO PMs indicates that a considerable number of
proteins are differentially expressed at the cell surface between
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both cell lines. The unimodal ratio distribution between WT
and hPSEN1rescue PMs (Supplementary Figure S3b) under-
scores that the changes in surface protein expression detected
by these experiments are indeed caused by PSEN deficiency.
We further selected the PM proteins that were not different in
WTand hPSEN1rescue MEFs but were changed in the PSENdKO
analysis (resp. x axis and y axis in Figure 3). This scatter plot of
61 shared proteins reveals a group of 20 unregulated (open
circles) and 41 downregulated proteins (filled circles) in
PSENdKO PMs. Among these we find, besides nicastrin, many
proteins linked to migration/adhesion, integrin signaling as
well as proteins associated with cholesterol-rich domains
such as lipid rafts (e.g. CD44, CD47) and caveolae (e.g.
caveolin-1, dystroglycan, myoferlin) (Table I). Furthermore,
we discerned categories identifying proteins involved in PM
fusion (e.g. SNAREs) and endosomal redistribution, notably
several Rab GTPases. Quantitative western blotting of
several of these proteins confirmed that they were signifi-
cantly downregulated in PSENdKO PMs (Figure 4A and B;
mean±s.e.m. (n¼3), *P40.05). Immunofluorescence experi-
ments confirmed also alterations emerging from the proteomic
analysis. For instance, while caveolin-1 localizes to the PM
region in the trailing edge of migrating WT and hPSEN1rescue

MEFs, this was not apparent in PSENdKO MEFs (Figure 4C
and D). Other proteins, shown to be altered in PSENdKO cells
like myoferlin, CD47 and b1-integrin, were similarly shown to
be less expressed at the surface of PSENdKO and/or coloca-
lized intracellularly with caveolin-1 in PSENdKO only. Finally,
the lower surface expression of proteins like b1-integrin
and caveolin-1 suggests alterations in cellular adhesion. In
agreement with this, immunostaining for actin/vinculin

confirmed that PSENdKO MEFs exhibited a more round
morphology and a clearly altered focal adhesion pattern
(Figure 4E) as observed previously (Waschbüsch et al, 2009).

PM glycoproteomics/N-glycan profiling

We performed a global N-glycoproteome analysis on isolated
PMs using a COFRADIC protocol. 533 N-glycosylation sites in
WT PMs were identified in 347 glycoproteins of which about
70% were annotated as PM proteins, with 75% of all
glycosylaton sites belonging to membrane proteins (Pride
Database Project No: 15827 and Figure 5A). Further analysis
using the gene ontology glycosylation qualifiers revealed
17.2% known, 28.4% potential and 54.3% non-reported sites.

N-glycan profiling was next performed using the DNA-
Sequencer Aided fluorophore-assisted carbohydrate electro-
phoresis (DSA-FACE) method. Only the PM fraction gave a clean
N-glycan profile in contrast to PNS where fluorescent non-glycan
compounds severely interfered with the analysis (data not
shown). Interestingly, the PM fraction was strongly depleted for
immature and enriched for mature/complex N-glycans further
underscoring the high purity of the isolated membranes.
Secondly, we identified the most prevalent murine glycan
structures present on WT and PSENdKO PMs, that is, mainly
a(1,6)-fucosylated, biantennary N-glycans showing differential
modification with a(1,3)-galactose or sialic acid at the b-linked
galactose residues. In the PSENdKO MEFs, the level of sialylation
was higher, accompanied with a lower extent of a(1,3)-galactose
modification, indicating that our method allows for the detection
of alterations in N-glycan profile (Figure 5B).

Figure 2 Qualitative MS/MS-based PM proteomics. (A) Pie chart showing that almost 70% of the proteins identified in the isolated PM fraction of WT MEFs (of a total
of B1000 identified in one magnetic isolation procedure) are expected to be PM proteins, based on Gene Ontology annotations. About 14% are annotated to the ER,
7% to Golgi and 4% nuclear. (B) Subclassification of PM proteins with 61% being integral membrane proteins and 24% associated. (C, D) Comparative classification of
PM proteomes of WT (inner circle) and PSENdKO (outer circle) MEFs does not show gross alterations in the biological processes and molecular function
profiles, respectively.

A novel strategy for analysis of isolated PMs
DB Thimiri Govinda Raj et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 5



Quantitative PM lipidomics

We next explored the potential of the technique for the study of
the lipid composition of the cell surface. We extracted lipids
from total cells and isolated PMs (see Materials and methods)
and analyzed them using nanoelectrospray ionization (ESI)-
MS, except for cholesterol, which was measured by fluoro-
metry. Distinct lipid species were used as internal standards
and data are presented as mol% of lipid species relative to the
total amount of lipids quantified. In WT PMs, cholesterol and
SMs were significantly increased compared with the
total cell extract (7.8±3.0 mol% (PM) compared with
3.98±0.40 mol% (total) for SMs; Po0.05) while phosphati-
dylinositol (PI) levels were decreased (from 8.7±1.1 mol%
(total) to 4.3±1.8 mol% (PM); Po0.05) (Figure 6A; Supple-
mentary Table SI). Phosphatidylethanolamine (PE) was also
decreased, although not reaching statistical significance
(Figure 6A; Supplementary Table SI). Similar changes were
obtained for PSENdKO PMs, to a lesser extent for PI but
significant for PE (see below and Figure 6B). High SM and
cholesterol, and low PI and PE are characteristic for cell
surface lipid composition (Renkonen et al, 1972; Kalvodova
et al, 2009). We also found moderate changes for other
glycerophospholipids that were not significant. To illustrate
the power of the technique, we analyzed in more detail the
combined acyl chain lengths of phosphatidylcholine (PC)
species and noticed a significant increase in the PM compared
with total cell extract for species with 34 carbons and a
decrease for fatty acid moieties of X36 atoms (Supplementary
Figure S4a and b). In the PMs, these PC species have more zero

or one degree of unsaturation (both acyl chains combined)
while polyunsaturation (X2 unsaturations in both chains
combined) is less abundant, as reported earlier (Kalvodova
et al, 2009) (Supplementary Figure S4c and d). In the case of
phosphatidylserine (PS), a significant decrease in polyunsa-
turation of X41 (in both chains combined) was observed
(Supplementary Figure S5).

Surprisingly, cholesterol and SM levels (mainly d18:1/16:0
(1.6±0.1, n¼3, Po0.05), d18:1/18:0 (1.5±0.1, n¼2, Po0.05)
and d18:1/18:1 (4.5±0.8, n¼3, Po0.05)) were significantly
increased in the total cell extracts of PSENdKO compared with
WT MEFs and this trend was not recapitulated in isolated PMs
of PSENdKO (Figure 6B; Supplementary Table SII) (Grimm
et al, 2005). In fact, while SM levels were not different between
WT and PSENdKO PMs, the latter harbor significantly lower
levels of cholesterol concentrations compared with WT
PMs. This was further validated by filipin staining, indeed
revealing an excessive intracellular accumulation of cholester-
ol in PSENdKO but not WT MEFs (where cholesterol is more
surface localized) and this was rescued again in hPSEN1rescue

MEFs (Figure 4F). Finally, we generated heat maps (using log2

ratios of PSENdKO/WT in total cell extract and PM) to
investigate subtle variations in lipid species (Supplementary
Figure S6; Supplementary Table SIII). This revealed a higher
abundance of polyunsaturated glycerophospholipid species in
PSENdKO PMs compared with total cell extract. In the case of
SM species, no enrichments were found, instead we detected
decreased ratios of saturated and monounsaturated species.
Thus, these alterations in the lipid composition of PSENdKO
PMs underscore the proteomics finding and also point towards

Figure 3 Quantitative proteomics using shotgun approach on WT, PSENdKO and PSEN1rescue MEFs. Scatter plot of the PM protein in Log2 ratio’s of PSENdKO
versus WT (y axis) and WT versus PSEN1rescue (x axis) generated using Tableau software. For the x axis, only ratio’s in the interval (�1, 1) between WT versus
PSEN1rescue are taken (hence not significantly regulated between WT and PSEN1rescue PM). Analysis of the Log2 ratio’s of these proteins in PSENdKO versus WT
(y axis) identified 41 proteins that were significantly higher expressed in WT PMs (or downregulated in PSENdKO PMs) (ratio42, marked blue circles with
accession number as opposed to unregulated proteins (unmarked blue circles)). Identified proteins are listed in Table I along with their known or proposed
functions.
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an underlying transport defect in PSENdKO, something that
could only be revealed by the comparative and comprehensive
analysis of the biomolecular composition of isolated PMs.

Discussion

We here introduce an SPMNP-based isolation procedure
allowing multiplexed analysis of the PM with respect to lipids,
proteins and N-glycosylation, one of the most common
co/post-translational modifications. The technology is excep-

tionally gentle, as it is based on a non-covalent association of
phospholipid-coated SPMNPs with the PM lipid bilayer. This
approach obviates the use of detergents and classic affinity
labeling procedures with biotin or antibodies directed against
surface proteins, the latter strategy being in many cases limited
by antibody availability (Zhang et al, 2003; Watarai et al, 2005;
Wollscheid et al, 2009). The method is clearly superior to the
often used colloidal silica coating (Durr et al, 2004), as it
avoids multistep surface chemistry on living cells. Such
chemistry inherently affects membrane fluidity, nanodomain
dynamics and compromises PM-associated enzymatic activities.

Table I List of 41 differentially regulated proteins between WT/PSENdKO and WT/PSEN1rescue along with their known or proposed functions

Annotation Description WT/rescue
ratio

WT/dKO
ratio

Function/location

Q64314 CD34 (hematopoietic progenitor cell antigen CD34) 1.23 3.38 Cell adhesion

A

P15379 CD44 1.72 5.91 Cell adhesion/integrin signaling/raft associated
Q61735 CD47 1.48 5.2 Cell adhesion/integrin signaling/raft associated
Q62470 ITA3 (integrin a-3) 0.84 3.25 Cell adhesion
P09055 Integrin b 1.96 6.59 Cell adhesion/negative regulation of cell

migration
Q91ZU6 BPA1 (bullous pemphigoid antigen 1) 0.99 3.23 Cell adhesion/calcium ion binding
P13595 NCAM1 (neural cell adhesion molecule 1) 1.32 4.28 Cell adhesion/GPI
Q80TH2 LAP2 1.31 3.06 Cell junction
Q7TT50 MRCKB (serine/threonine-protein kinase MRCK b) 1.48 3.31 Cell junction

P49817 Caveolin-1 1.34 3.88 Caveolae associated

BQ03145 EPHA2 (ephrin type-A receptor 2) 0.71 3.23 Caveolae associated
Q62165 Dystroglycan 0.75 5.38 Caveolae associated/calcium release
Q69ZN7 Myoferlin 1.81 7.07 Caveolae/lipid raft associated
Q91ZX7 LRP1 1.41 2.44 Endocytosis/cholesterol homeostasis

Q60767 Lymphocyte antigen 75 1.02 3.77 Endocytosis

C

Q99JB8 PACN3 (protein kinase C and casein kinase II protein 3) 1.49 3.9 Endocytosis
P63024 VAMP3 0.92 2.29 Endosomal SNARE/required for integrin

transport
Q9QY76 VAPB (vesicle-associated membrane protein-B) 0.68 15.09 Ligand for Eph receptor
O09044 SNP23 (synaptosomal-associated protein 23) 1.7 2.86 Plasma membrane SNARE/involved in

migration
Q9CQW1 YKT6 (synaptobrevin) 1.3 2.92 Plasma membrane SNARE
Q3TZZ7 ESYT2 (extended synaptotagmin-2) 0.69 3.45 Exocytosis
P17047 LAMP-2 1.11 2.65 Late endosome associated

Q9DC51 GNAI3 (guanine nucleotide-binding protein subunit-a) 0.97 2.07 GTPase/vesicular trafficking

D

P35278 RAB5 0.96 2.76 Early endosome fusion
P61027 RAB10 0.99 2.66 Endosome recycling to PM
P46638 Rab11B 1.25 3.5 Endosome recycling to PM
Q9DD03 RAB13 (Ras-related protein Rab13) 1.14 4.52 Endosomal sorting
P35293 RAB18 (Ras-related protein Rab18) 1.47 4.69 Endosomal sorting
Q6PHN9 RAB35 (Ras-related protein Rab35) 0.88 2.91 Endosome recycling to PM
P63321 RALA (Ras-related protein Ral-A) 1.47 4.19 GTPase/vesicular trafficking
Q8BU31 RAP2C (Ras-related protein Rap-2c) 1.14 4.95 GTPase/vesicular trafficking
Q9JIW9 Ras-related protein Ral-B/RABIB 0.81 3.65 GTPase/vesicular trafficking
P62835 Ras-related protein Rap-1A/RAB1A 1.05 3.65 GTPase/vesicular trafficking
Q80U72 SCRIB (protein scribble homolog OS) 0.93 2.6 GTPase/cell polarity and migration

Q9QXX0 JAG1 (protein jagged-1) 1.74 4.51 Notch signaling

EQ62312 TGFR2 1.5 5.52 TGF signaling

P57716 Nicastrin 1.51 21.23 Component of g-secretase complex

Q8VDN2 AT1A1 (sodium/potassium-transporting ATPase a-1) 1.47 3.16 Sodium/potassium ion transport
P55012 S12A2 (solute carrier family 12 member 2) 1.64 6.07 Sodium/potassium ion transport F
Q61165 SL9A1 (sodium/hydrogen exchanger 1) 1.51 4.08 Sodium/potassium ion transport

Proteins are grouped according to their functions in cell adhesion/migration (A), association with caveolae (B), or functionally involved in transport regulation from
endosomal recycling compartments to the surface, such as SNAREs (C), small GTPases (D), signaling molecules (E), and transporters (F).
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Figure 4 Validation of quantitative proteomics data using western blot analysis and indirect immunofluorescence microscopy. (A, B) Western blot analysis of PNS and
PM fractions for various proteins that were significantly downregulated in PSENdKO MEFs compared with WT/PSEN1rescue MEFs as obtained by quantitative proteome
analysis following shotgun approach. (A) Proteins (12 mg protein/lane) were resolved on 4–12% precast SDS–PAGE gels, transferred to nitrocellulose and
immunoprobed for the indicated proteins isolated from PM using the SPMNPs-based isolation method. NCT and LAMP-2 were immunoprobed after PM protein isolation
using cell surface biotinylation. (B) Quantification of the ratio of the indicated proteins in PSENdKO PM fractions normalized to WT. No mature NCT was detected at the
surface of PSENdKO MEFs (mean ratio±s.e.m., n¼3, *Po0.05). (C–E) Altered cell morphology and localization of adhesion and migration proteins in PSENdKO
MEFs. WT, PSENdKO and hPSEN1rescue MEFs were fixed and immunostained for caveolin-1 and myoferlin (C); CD47 and caveolin-1 (D); and F-actin (using phalloidin
conjugated to Alexafluor-488) and vinculin (E). (F) Filipin staining reveals the intracellular accumulation of cholesterol in PSENdKO MEFs in contrast to a prominent cell
surface localization in WT and hPSEN1rescue MEFs. Scale bar¼10 mm in all panels.
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As we demonstrate here, PMs can be isolated in a prepa-
rative way and in an unsurpassed short experimental time
window. The ease of the procedure opens the way to profile
the overall PM composition of any given cell type allowing
to evaluate conclusively PM changes in differentiated or
diseased conditions. The SPMNP-loaded isolated PMs are,
as demonstrated, compatible (i.e. no interference from
SPMNPs themselves) with protein/lipid extraction procedures
and enzymatic digests required for (N-glyco)-proteomics,
lipidome analysis as well as N-glycan profiling. We thus
present a very significant methodological advance that enables
exploration of the overall PM composition in the most
comprehensive way possible.

Comparative quantitative proteome analysis of the PM
of WT, PSENdKO and hPSEN1rescue MEFs revealed significant
changes in a subset of proteins. The changes at the cell
surface were PSEN dependent, as they became rescued in
hPSEN1rescue PMs. Absence of PSENs resulted in significant
downregulation of 41 proteins, including many proteins
functionally involved in migration/adhesion, either as surface
proteins or within the process of endosomal redistribution and
fusion with the PM (SNAREs and RABs). Also evident is the
cell surface depletion of proteins known to associate or

scaffold on cholesterol-rich microdomains or lipid rafts. These
include several GPI-anchored proteins like NCAM1 and
dystroglycan and associated proteins like flotillin-2. Another
protein, myoferlin, scaffolds on rafts as well as caveolae
(Bernatchez et al, 2009) and b1-integrin recycling is caveolae
dependent (Wang et al, 2010). Lipidome profiling recapitulated
major hallmarks of PM composition including high cholesterol
and SM levels and more saturated lipids (Kalvodova et al,
2009; Zech et al, 2009). Besides SM, these lipids turned out to
be relatively depleted from the PM of PSENdKO. This was
unexpected as previous publications documented accumula-
tions of cholesterol and SM in total cell extracts of PSENdKO
MEFs (Grimm et al, 2005). Therefore, these increases had to be
intracellular in nature, as we demonstrated (Figure 4F).
Secondly, in membrane modeling systems, lateral segregation
is aided by the interaction of cholesterol with hydrocarbon
chains of saturated lipids, while associations with polyunsa-
turated lipids are disfavored, excluding them from cholesterol-
rich domains (Kahya and Schwille, 2006; Garcı́a-Sáez et al,
2007; Lingwood and Simons, 2010). In agreement with a
relative depletion of cholesterol, PMs of PSENdKO are
relatively enriched in polyunsaturated lipid species (Supple-
mentary Figure S6). We noticed also a concomitant and

Figure 5 FACE-based glycan profiling and N-glycoproteomics. (A) Subcellular localization classification of glycoproteins identified from SPMNPs-based PM isolation.
For known and characterized proteins, protein subcellular localization was classified based from the SWISS-PROT database. For N-glycosylation, sites from hypothetical
proteins and peptide sequences were identified using gene ontology. (B) N-glycan profile (before and after sialidase treatment) of PM fractions derived from WT
and PSENdKO MEFs. Sialylated N-glycans are represented in red and gray peaks originate from the presence of Nonidet P-40 detergent. [ : galactose,

: N-acetylglucosamine, : mannose, : fucose; symbols are those suggested by the Consortium for Functional Glycomics (http://glycomics.scripps.edu/
CFGnomenclature.pdf)].
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significant downregulation of many raft-/caveolae-associated
proteins. These findings overall suggest a selective but severe
imbalance in the sorting of cholesterol-rich microdomains,
resulting in the intracellular accumulation of such lipids and
associated (membrane) proteins in PSENdKO MEFs and
causing a significant remodeling of their PMs. While these
observations do not resolve the mechanism by which PSEN
affects these changes, they demonstrate at least the amazing
impact of PSEN deficiency on the cell membrane composition
to an extent that was not realized before. We are currently
addressing whether the observed PM remodeling is caused by
PSEN-related defects in selective endosomal routing/recycling
as endosomal/lysosomal dysfunction is among the earliest
features in AD neuronal pathology (Nixon, 2005).

Integrating lipidomics as well as N-glycoprotein analysis
and N-glycan profiling using the same isolation strategy that
allowed the analysis of the protein composition of the PM is an
unprecedented, distinctive advantage of this novel technique
allowing the interpretation of congruent changes in lipid and
protein compositions. The identification of novel glycosylation
sites in surface-localized proteins is important and can provide
experimental evidence for topology predictions (Wollscheid
et al, 2009). Moreover, glycosylation of proteins and lipids has
a significant impact on several biological processes including
immunity and signaling (Dennis et al, 2009). However,
progress in this field suffered from the fact that no technology
was available to reliably profile the glycans that are specifically
present at the outer surface of the cells. Until now, lectin-based

Figure 6 Quantitative lipidomics. (A) Enrichment plot of PM versus total cell extracts of WT and PSENdKO MEFs for cholesterol (Chol) and the following major lipid
families: PI, PE, PC, PS and SM. (B) Lipid ratio levels in total cell extracts and in PM fractions of PSENdKO versus WT MEFs, respectively. Increases are essentially
observed in total cell extracts of PSENdKO, but not in their PM fraction. Cholesterol levels were determined by the amplex cholesterol assay. Total SM, SM species, PC
and PI were determined by ESI-MS (mean±s.e.m., n¼3; *Po0.05; **Po0.01; ***Po0.001; NS, not significant with respect to fold increase for (A) and with respect to
WT for (B).
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microarrays were used for this purpose, but they yield only
limited glycan structural information (Vanderschaeghe et al,
2010). Recent approaches to capture cell surface glycoproteins
use carbohydrate oxidation to selectively label the carbohy-
drates (Wollscheid et al, 2009). While suitable for the
identification of N-glycosylation sites, these approaches
inherently destroy at least part of the carbohydrate structure,
which makes it complicated or impossible to obtain full
structural information on the cell surface glycan composition,
a problem that can be now overcome using our approach.

Our technology allows for the first time to consider the
generation of integral PM ‘fingerprints’ of likely any cell type.
Thus identifying the biomolecular composition of PMs with
respect to proteins, lipids and their major modifications may
accelerate the systematic set-up of more comprehensive PM
inventories. It is conceivable now to profile the changes of the
cell surface during, for example, stem cell differentiation
(Gronthos et al, 2003), neuronal polarization as well as cancer
cells becoming metastatic. The identification of PM protein
and lipid alterations, as they occur as a consequence of
disease, is of paramount importance in experimental medi-
cine. Such alterations may provide novel biomarkers for
diagnosis or targets for drug discovery.

Materials and methods

Chemicals, antibodies and cell lines

For SPMNP synthesis, LC-grade reagents for iron (III) acetylacetonate,
1,2-hexadecanediol, oleic acid and benzyl ether were purchased
from Sigma-Aldrich, while Oleylamine was from Accor, Chloroform
from Merck and ethanol from Honeywell. DSPE-PEG(2000)-NH2 and
DSPE-PEG(2000)-CF were from Avanti Polar Lipids and MACS LS
column from Miltenyi Biotec. The following monoclonal antibodies
(mabs) were purchased: anti-actin, -Flag (M2) and -acetylated
tubulin (Sigma), anti-GM130 and -HSP60 (BDBiosciences), anti-
NaþKþ -ATPase (Novus-Biologicals), anti-GAPDH (Millipore),
anti-BIP (Sanbio), anti-RER1p (19432) (Spasic et al, 2007), polyclonal
antibodies (pabs) to murine Rer1p (19432) were produced in rabbits
using the 17 carboxyterminal amino acids coupled to KLH (Pierce) as
immunogen. Pabs against p58 and RBI were provided by R Schekman
(Berkeley) and against RAB7 by P Chavrier (CNRS, Paris).

Studies were performed in MEFs WT, PSENdKO and PSEN1rescue

using retroviral transduction and followed by puromycin selection
(Nyabi et al, 2003) and further subcloning. MEFs were cultured in
DMEM/F-12 (Invitrogen) supplemented with 10% FBS (Invitrogen).

Synthesis and functionalization of SPMNPs

Fe3O4 SPMNPs were synthesized using the thermal decomposition
method as reported (Sun and Zeng, 2002). In a typical synthesis for
8 nm Fe3O4 nanoparticles, iron (III) acetylacetonate (2 mmol), 1,2-
hexadecanediol (10 mmol), oleic acid (6 mmol), oleyl amine (6 mmol)
and benzyl ether (20 ml) were magnetically stirred under N2 flow,
heated to 200 1C for 2 h and then refluxed at 300 1C for 1 h. The black-
colored mixture (SPMNPs) was cooled to room temperature,
further precipitated by the addition of ethanol and then magnetically
separated using a rare earth magnet. Finally, SPMNPs were dispersed
in hexane and centrifuged (5000 r.p.m., 10 min) to remove aggregates.
The SPMNPs concentration and size were determined using thermal
gravimetric analysis (TGA) and dynamic light scattering (DLS),
respectively. Phospholipids-SPMNPs were synthesized by adopting
the ligand addition procedure described for water-soluble quantum
dots (Dubertret et al, 2002). In a typical experiment, 5 mg of SPMNPs
were dissolved in 1 ml of chloroform with DSPE(2000)-PEG-NH2

(10 mg) and vortexed for 4 h followed by the removal of chloroform by

evaporation. The residual solid was dried by N2 flow for 5 min, and
1 ml of deionized water was added immediately. After 5 min of
vigorous stirring, the uniform dark-colored water-soluble SPMNP
solution was centrifuged for 10 min at 5000 r.p.m. to remove the
aggregates. The supernatant was further purified on a Miltenyi MACS
LS column in the presence of a magnetic field. Removal from the
magnetic field allowed collection of the bound lipid-coated SPMNPs;
these were next pelleted, resuspended in 1 ml of PBS solution and
stored at 4 1C until use. To generate fluorescently labeled SPMNPs, 1:4
compositions (CF and NH2) were used in the functionalization step.

Quality control of SPMNPs

Transmission EM
SPMNP suspensions were adhered onto a carbon-coated copper
grid, dried and imaged on a 300-kV Philips CM30 instrument equipped
with a field emission gun electron source. The statistical size
distribution was determined on at least 50 particles visualized on
TEM images.

Thermal gravimetric analysis
SPMNP concentration measurements were performed on a TA
instrument Q5000 IR under N2 atmosphere. Briefly, 100ml aliquots of
SPMNPs were heated to 80 1C at the rate of 10 1C/min and kept at 80 1C
for 30 min to remove all solvent/dH20. Next, the sample was heated to
800 1C at 20 1C/min to determine the nanoparticle concentration.

DLS and zeta-potential measurement
The hydrodynamic diameters and zeta-potential measurement of
SPMNPs were measured using Zetasizer Nano-ZS DLS system
(Malvern Instruments Ltd., UK) and reported using DTS application
software 7.1. All sizes reported here were based on number average,
which was obtained using a non-negative least squares analysis
based algorithm. Zeta-potential measurements of SPMNPs in water
were measured between pH 2 and 11 (adjusted using 10 mM HCl and
10 mM NaOH).

Magnetic characterization of SPMNPs
Magnetization measurements were made using a standard alternating
gradient field magnetometer (AGFM Model 2900; Princeton Instru-
ments, NJ). All measurements were made at room temperature with
the magnetic field applied in the film plane.

Isolation and purification of PM
MEFs were grown to near confluency in eight times 10-cm culture
dishes, placed on ice and washed once with ice-cold DMEM followed
by three washes with ice-cold PBS. Next, MEFs were incubated with
SPMNPs (for development and synthesis of SPMNPs, see Supplemen-
tary Information) diluted in PBS (2 mg/ml; 20 min, at 4 1C on a slow
rocking platform). After incubation, cells were washed once to remove
unattached SPMNPs, harvested in PBS and centrifuged (1000 r.p.m.,
10 min). Cell pellets were resuspended in 250 mM sucrose (supple-
mented with 10 mM Hepes, 1 mM EDTA (pH 7.4) and protease
inhibitors (Roche) and homogenized using a ball-bearing cell cracker
(20 passages, clearance 10mm, Isobiotec, Germany). After low-speed
centrifugation (200 g, 10 min), the PNS was loaded on a PBS-
equilibrated LS column placed inside a strong magnetic field (Super-
MACSII, Miltenyi Biotec). This LS column is packed with a
hydrophilically coated matrix that strongly enhances the magnetic
field and thereby ensures a more efficient retainment of the SPMNPs
(and adhering PMs) on the column. After loading, the column was
extensively and sequentially washed with ice-cold homogenization
buffer, high salt 1 M KCl and high pH 0.1 M Na2CO3 buffers. The PM
fraction was eluted from the column by removal of the magnetic field.
Pelleted PM fractions (55 000 r.p.m., 1 h) were resuspended in 200ml
homogenization buffer and subjected to further analysis. Total
proteins were measured using a Bradford assay (Bio-Rad) and
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denatured in sample buffer prior to separation on precast 4–12%
gradient Bis-Tris gels (Invitrogen). Western blot detection was done
using ECL (Western Lightning, Perkin-Elmer), imaged on a Fuji
MiniLAS3000 and quantified using Aida software (Raytest, Germany).
For further MS-based protein/lipid or glycan analysis, the SPMNPs in
the membrane fraction did not interfere with any of these subsequent
processing steps (enzymatic digestions, solvent extractions, etc) or
during the analysis.

Biotin internalization assay
To evaluate potential contaminations arising from endosomal
compartments in PM fractions, we performed cell surface biotinylation
using cleavable NHS-SS-biotin (0.5 mg/ml; Pierce Chemical Co.) as
described (Spasic et al, 2007). After labeling, cells were incubated at
37 1C for 20 min to induce biotin internalization (Zwang and Yarden,
2006). After removing the remaining cell surface-bound biotin using
100 mM 2-sodium-2-mercaptoethanesulfonate (Sigma) as a reducing
agent (15 min at 4 1C), PMs were isolated using SPMNPs, as described
in the Materials and methods section.

Cell-free g-secretase activity assay
PM and PNS fractions were extracted in CHAPS and mixed
with recombinant APP-C99-FLAG affinity isolated from transiently
transfected Aph-1 triple knockout MEFs as described (Spasic et al,
2007). Newly produced APP intracellular domain (AICD) was
separated on 10% precasted gels (NuPAGE) in MES buffer and
analyzed for western blotting.

Transmission EM
After magnetic labeling, cells were washed twice with PBS�/� and
subsequently fixed using 2.5% glutaraldehyde in 0.1 M Na-cacodylate
buffer for 30 min. Fixed cells were scraped in 1% gelatin and
centrifuged. The cell pellets were washed in buffer, post-fixed in 2%
osmiumtetroxide (1 h), rinsed with dH2O and dehydrated in a graded
ethanol series (50–100%). Finally, after embedding in Agar, ultrathin
sections of 50 nm were examined and micrographs were taken in a
JEOL JEM2100. Epon embedding and ultrastructural analysis of
isolated PMs was done as described (Ikin et al, 1996).

Confocal imaging
Following incubation with fluorescently labeled SPMNPs, cells were
washed in PBS�/�, fixed with 4% paraformaldehyde and mounted in
Moviol. Fluorescence was captured on confocal microscope (Radi-
ance2100, Zeiss) connected to an upright NikonE800 microscope and
using an oil-immersion plan Apo60x/1.40 NA objective. Image
processing was done using Lasersharp2000 (Zeiss) and Photoshop
(Adobe, CA).

PM proteomics

MS/MS analysis of PM and PNS
PM and PNS were fully dried in a vacuum concentrator and redissolved
in 200 ml of 100 mM TEAB (tri-ethylammoniumbicarbonate; Sigma-
Aldrich, Steinheim, Germany), pH 7.8. Samples were heated for 10 min
at 95 1C and immediately put on ice for another 15 min. Trypsin
(Promega, WI, USA) was added in a 1/100 (w/w) ratio and digestion
took place overnight at 37 1C.

Disulfides were reduced in 10 mM (final concentration) triscarbox-
yethylphosphine (Pierce, Rockford, IL, USA) and free thiols were
alkylated using 20 mM iodoacetamide (Sigma-Aldrich) for 15 min at
37 1C. Next, the sample was acidified with 20ml of 5% acetic acid, and
100ml of the acidified mixture was injected onto a RP-HPLC column
(2.1 mm internal diameter� 150 mm (length) 300SB-C18 column,
Zorbaxs, Agilent, Waldbronn, Germany) using an Agilent 1100 Series
HPLC system. Following a 10-min wash with HPLC solvent A (10 mM
ammonium acetate in water/acetonitrile, 98/2 (v/v), water (LC-MS
grade, Biosolve, Valkenswaard, The Netherlands) and acetonitrile

(HPLC grade, Baker, Deventer, The Netherlands)), a linear gradient to
100% solvent B (10 mM ammonium acetate in water/acetonitrile, 30/
70 (v/v)) was applied over 100 min. Using Agilent’s electronic flow
controller, a constant flow of 80ml/min was used. Peptides eluting
between 20 and 80 min were collected in 60 fractions of 1 min
each (80ml) in a 96-well plate (Agilent). To reduce the total number of
LC-MS/MS runs, collected fractions that were separated by 15 min
were pooled, vacuum dried, redissolved in 100 ml 2% acetonitrile and
stored at �25 1C until further analysis.

A measure of 10ml of the isolated peptides was sampled by
LC-MS/MS using an Ultimate 3000 HPLC system (Dionex, Amsterdam,
The Netherlands) in-line connected to a LTQ Orbitrap XL mass
spectrometer (Thermo Electron, Bremen, Germany). Peptides were
first trapped on a trapping column (PepMapt C18 column, 0.3 mm
I.D.� 5 mm (Dionex)) and following back-flushing from the trapping
column, the sample was loaded on a 75-mm I.D.� 150 mm reverse-
phase column (PepMap C18, Dionex). Peptides were eluted with
a linear gradient of 1.8% solvent B0 (0.05% formic acid in water/
acetonitrile (2/8, v/v)) increase per minute at a constant flow rate of
300 nl/min.

Lipid extraction and analysis
Phospholipids were extracted and analyzed by ESI-MS/MS as
published (Rysman et al, 2010). Briefly, the PM fractions and PNSs
were mixed with 0.9 ml of 1 N HCl: methanol 1:8 (v/v). Subsequently,
CHCl3 (0.8 ml), 200mg/ml of the anti-oxidant 2,6-di-tert-butyl-4-
methylphenol (Sigma) and lipid standards (PC (26:0), PC (28:0),
PC (40:0), SM (d18:1/12:0), PE (28:0), PI (12:0/13:0), PS (28:0))
were added. Lipid standards were added at 7.5 nmol/mg protein,
3.75 nmol/mg protein, 3.75 nmol/mg protein, 0.43 nmol/mg protein
and 0.15 nmol/mg protein for PC, SM, PE, PI and PS, respectively.
Finally, the organic fractions were collected by centrifugation (17 300 g
for 5 min), evaporated and reconstituted in CH3OH:CHCl3:NH4OH
(90:10:1.25, v/v/v) before MS analysis. Phospholipids were analyzed
by nanoelectrospray ionization tandem MS (ESI-MS/MS) on a hybrid
quadrupole linear ion trap MS (4000 QTRAP; Applied Biosystems,
Foster City, CA) equipped with a robotic nanoflow ion source (Advion
Biosciences) operated in the infusion mode. Quantification of
individual molecular species with respect to lipid standards was
carried out by multiple reaction monitoring (MRM) with collision
energies of 45, 40, 35, �40 and �55 eV for PC, SM, PE, PS and PI,
respectively. Individual MRM signals (100 ms dwell time) were
typically averaged over a period of 2 min. Data were calculated
according to Liebisch et al (2004) and were expressed as fold change
relative to the control samples (WT or total). Heatmaps were build
using the Heatmap Builder software (Clifton Watt, Stanford University,
USA).

Cholesterol levels were determined using the Amplex-Red choles-
terol assay (Molecular Probes).

PM glycomics

FACE-based N-glycan profiling was performed as published (Call-
ewaert et al, 2001; Laroy et al, 2006). After centrifugation
(13 000 r.p.m., 5 min), the PM fractions were resuspended in 50ml
ultrapure water (final protein concentration ranged from 0.25 to
0.5mg/ml) and an equal amount of the corresponding PNS fraction was
diluted to 50ml with ultrapure water. To each sample, 5ml of 5.0% SDS
and 0.4 M dithiothreitol in water was added and incubated for 10 min
at 100 1C, followed by 5 min at 4 1C. Subsequently, 7 ml of 0.5 M sodium
phosphate pH 7.5 buffer and 7 ml of 10% Nonidet P-40 in water were
added to each sample. Then, the samples were incubated at 37 1C for
3 h after the addition of 2ml Peptide N-glycosidase F (2 New England
Biolabs units), followed by an extra microliter of enzyme preceding an
overnight incubation at 37 1C. In all, 10ml of each sample was
evaporated to dryness (vacuum) and 5ml of a 1:1 mixture (v/v) of
50 mM APTS (Molecular Probes, USA) in 1.2 M citric acid and 1 M
NaCNBH3 in DMSO was added. After overnight labeling at 37 1C, the
samples were subjected to size-exclusion chromatography using
Sephadex G-10 resin (Laroy et al, 2006). Then, the samples were dried
and reconstituted in 100ml of 60% acetonitrile plus 0.05% TFA. They
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were loaded on NuTip P100 carbon tips (Glygen), conditioned with
100 ml of 60% acetonitrile plus 0.05% TFA (3� ) and with 100 ml of
0.05% TFA in water (3� ), by 20 aspirate-expel cycles using a
micropipette. Subsequently, the NuTips were washed five times in
100 ml of 0.05% TFA in water and the glycans were then eluted two
times with 50ml of 60% acetonitrile plus 0.05% TFA. Finally, the
obtained samples were dried and reconstituted in 10ml of ultrapure
water and diluted at least 150 times prior to their injection in the
capillaries of an ABI 3130 DNA sequencer (Applied Biosystems) for
80 s at 1200 V. To remove the sialic acid residues from the N-glycans,
1ml of 20 mM sodium acetate pH 5.0 buffer containing 40 mU of
Arthrobacter ureafaciens a(2-3,6,8)-sialidase (Glyko) was added to 2ml
of sample, incubated overnight at 37 1C and quenched to 10ml with
ultrapure water prior to their analysis on a sequencer (� 40 dilution).
To determine the level of sialylation, the amount of sialylated N-glycan
branches was normalized to the total amount of N-glycan branches
present in the N-glycome profile. The N-glycan structure of each peak
was assigned by enzymatic digestions with (combinations of)
exoglycosidases (e.g. a(1–3)- and b(1–4)-galactosidase, a(1–2,3,4,6)-
fucosidase and b(1–2,3,4,6)-N-acetylhexosaminidase) that cleave
specific sugar residues. APTS-labeled dextran was used as internal
standard in every sample to correct for injection differences due to
different salt concentrations.

Statistical analysis

All quantified data are represented as an average of at least three
independent experiments (mean±s.e.m.). Statistical significance was
determined by two-tailed Student’s t-test and set at *Pp0.05;
**Pp0.01; and ***Pp0.001.

Proteomics database online

Proteomics data from the experiments can be found on the PRIDE
database (http://www.ebi.ac.uk/pride/) using login ‘review43406’
and password ‘n3mSbXfK.’ Project number 15826 contains all the MS
data from the shotgun non-differential experiment, project 15827
contains the MS data from the N-glycosylation experiments and finally
project 15828 contains data from the differential experiments
involving WT, PSENdKO and PSEN1rescue cells.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J,
Grubmüller H, Heuser J et al (2006) Molecular anatomy of a
trafficking organelle. Cell 127: 831–846

Tan S, Tan HT, Chung MC (2008) Membrane proteins and membrane
proteomics. Proteomics 8: 3924–3932

Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N (2010)
Glycome profiling using modern glycomics technology: technical
aspects and applications. Biol Chem 391: 149–161

Wang C, Yoo Y, Fan H, Kim E, Guan KL, Guan JL (2010) Regulation of
integrin beta 1 recycling to lipid rafts by Rab1a to promote cell
migration. J Biol Chem 285: 29398–29405
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