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ABSTRACT

A majority of SNPs (single nucleotide polymorphisms) map to noncoding and intergenic regions of the genome. Noncoding SNPs
are often identified in genome-wide association studies (GWAS) as strongly associated with human disease. Two such disease-
associated SNPs in the 5’ UTR of the human FTL (Ferritin Light Chain) gene are predicted to alter the ensemble of structures
adopted by the mRNA. High-accuracy single nucleotide resolution chemical mapping reveals that these SNPs result in substantial
changes in the structural ensemble in agreement with the computational prediction. Furthermore six rescue mutations are
correctly predicted to restore the mRNA to its wild-type ensemble. Our data confirm that the FTL 5’ UTR is a “RiboSNitch,” an
RNA that changes structure if a particular disease-associated SNP is present. The structural change observed is analogous to that of
a bacterial Riboswitch in that it likely regulates translation. These data further suggest that specific pairs of SNPs in high linkage
disequilibrium (LD) will form RNA structure-stabilizing haplotypes (SSHs). We identified 484 SNP pairs that form SSHs in UTRs of
the human genome, and in eight of the 10 SSH-containing transcripts, SNP pairs stabilize RNA protein binding sites. The
ubiquitous nature of SSHs in the transcriptome suggests that certain haplotypes are conserved to avoid RiboSNitch formation.
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INTRODUCTION

Noncoding but nonetheless transcribed regions of the human
genome often play important regulatory functions in the cell
(Griffiths-Jones et al. 2005; Rana 2007; Chu and Herschlag
2008; Tseng et al. 2009; Halvorsen et al. 2010). In particular,
the 5" and 3" UTRs of genes are central components of the
regulatory machinery (Lai et al. 1998; Pesole et al. 1999; Boffa
et al. 2008; Halvorsen et al. 2010; Kilty et al. 2010). In
bacteria, Riboswitches in 5° UTRs will bind small molecules
(often metabolite precursors) that alter their conformation to
regulate protein expression levels (Tucker and Breaker 2005;
Edwards and Ferre-D’Amare 2006; Weinberg et al. 2007;
Stoddard et al. 2008; Wang et al. 2008a). Riboswitches exist
because certain RNA sequences will adopt multiple, near
isoenergetic conformations; small molecule binding stabilizes
one conformation over the other (Wilkinson et al. 2005;
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Edwards and Ferre-D’Amare 2006; Stoddard et al. 2008;
Wang et al. 2008a; Tseng et al. 2009). Analogously, we ex-
pect that specific mutations will significantly alter the RNA
conformational ensemble (Halvorsen et al. 2010). If the
RNA plays a regulatory role in the cell, the consequences
of these structural changes can be a contributor to human
disease (Teresi et al. 2007; Pezzolesi et al. 2008).

A RiboSNitch is a functional RNA regulatory element
(generally in the 5" or 3’ UTR of a gene or a noncoding RNA)
where one or more single nucleotide polymorphisms
(SNPs) or mutations cause a large conformational rearrange-
ment in the RNA structural ensemble (Halvorsen et al.
2010). Of particular interest are RiboSNitches where the SNP
or mutation is associated with a human disease (Chappell
et al. 2006; Kimchi-Sarfaty et al. 2007; Garcia-Barcelo et al.
2009; Glinskii et al. 2009; Fujimoto et al. 2010; Kilty et al.
2010). Using the SNPfold algorithm (Halvorsen et al. 2010),
we predicted that two SNPs in the 5 UTR of the human FTL
(Ferritin Light Chain) gene associated with hyperferritinemia
cataract syndrome (a rare but dominant hereditary disorder
resulting in early onset cataracts) alter the mRNA structural
ensemble (Ferrari et al. 2006; Sanchez et al. 2006; Burdon
et al. 2007; Halvorsen et al. 2010). Our data reveal the
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ensemble of conformations adopted by mRNA is exqui-
sitely sensitive to specific mutations despite being de-
scribed as “unstructured.” Furthermore, these structural
changes can be rescued with multiple secondary compensat-
ing mutations. This raises the possibility that certain SNPs in
high linkage disequilibrium (LD) stabilize critical regions in
transcripts. A comprehensive analysis of common human
genetic variation reveals that such “structure-stabilizing
haplotypes” are ubiquitous in mRNA and in a majority of
cases stabilize RNA binding protein (RBP) sites.

RESULTS

Disease-associated SNPs repartition the RNA
conformational ensemble

Certain noncoding RNAs (for example the Ribosome and
self splicing introns) have evolved to fold into unique three-
dimensional structures with highly specific function (Woodson
and Leontis 1998; Silverman et al. 2000; Weikl et al. 2004;
Sykes and Levitt 2005; Laederach et al. 2007; Waldsich 2008).
However, many regions in the transcriptome are under selec-
tive pressure that will not necessarily favor a single confor-
mation (Peng et al. 1995; Rana 2007; Chu and Herschlag
2008; Regulski and Breaker 2008; Tseng et al. 2009; Halvorsen
et al. 2010). Instead, they adopt an ensemble of confor-
mations that cannot be described by a single structure
(Russell and Herschlag 2001; Mathews 2004; Bernhart et al.
2006; Tyagi and Mathews 2007; Waldispuhl and Clote
2007). This is the case for a majority of human mRNA
transcripts, including the 5" UTR of the human FTL gene.

To visualize the conformational diversity of the FTL 5’
UTR, we performed Boltzmann sampling of suboptimal
secondary structures and projected these onto a principal
component decomposition of the ensemble (Ding et al.
2004, 2005). Unlike traditional minimum free energy methods
for predicting RNA structure (e.g., mFold), Boltzmann
sampling allows us to visualize the conformational ensem-
ble of an mRNA (Halvorsen et al. 2010). Each dot in Figure 1A
represents one suboptimal RNA structure, and the distance
between them is correlated to the difference in structure. What
is apparent from Figure 1 is that the human FTL 5" UTR is
predicted to adopt three major conformations. The wild-type
(WT) sequence (Fig. 1A) adopts primarily one conformation
(red), while two disease-associated mutations (U22G and
A56U, Fig. 1B,C, respectively) favor the alternative blue and
green conformations. The FTL 5" UTR includes an Iron
Response Element (IRE) which is indicated in light purple
(Fig. 1A). Only for the WT sequence does a majority of
structures adopt a conformation where the IRE is in the correct
hairpin conformation. These calculations suggest a putative
mechanism for the disease association. The Iron Responsive
Element-Binding Protein (IREBP) binds to the IRE and
represses translation (Sanchez et al. 2006). When the disease-
associated SNP shifts the equilibrium away from the WT
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conformation (Fig. 1A), FTL translation is enhanced leading to
the hyperferritinemia phenotype (Burdon et al. 2007).

A particularly important feature of computing RNA
ensembles such as those illustrated in Figure 1 is that they
also predict the probability of base-pairing for each nucleotide
(Mathews 2004; Bernhart et al. 2006; Waldispuhl and Clote
2007). The frequency of formation for a base pair in the
ensemble is proportional to the probability of that base pair
(Ding et al. 2004, 2005). Figure 2A schematically rep-
resents the FTL 5" UTR, and Figure 2B is a heatmap of the
predicted difference between the WT and U22G base-pair
probabilities. We immediately observe another important
aspect of this system. Even though the disease-associated
mutation is not in the IRE, the largest predicted changes
in base-pair probability are within the functional element.

Structure mapping confirms the presence
of a RiboSNitch in the FTL 5’ UTR

Changes in base-pair probability are experimentally assayed
using chemical mapping probes (Mitra et al. 2008; Quarrier
et al. 2010). We transcribed the human FTL 5’ UTR and
performed selective 2’-hydroxyl acylation analyzed by
primer extension (SHAPE) chemical mapping experiments
(Wilkinson et al. 2005, 2008, 2009). These experiments
probe RNA structure with single nucleotide resolution and
report the flexibility of the backbone, which is directly cor-
related with base-pair probability (Wilkinson et al. 2006).
Figure 2C illustrates raw capillary (+) SHAPE traces for the
WT, U22G, and a control G4A mutation (which is not pre-
dicted to affect the RNA structural ensemble, and is also not
disease-associated). From these raw traces alone, we visually
discern the effect of the U22G mutation on the structure of
the FTL 5" UTR. As predicted by Boltzmann sampling, the
IRE nucleotides (C33-A49) have higher SHAPE reactivity
for the U22G construct, indicative of a significant decrease
in base-pairing. The full extent of the disease-associated
SNP’s effect on the RNA ensemble is observed when the
peak areas are integrated, scaled, and averaged over multiple
repeats (Fig. 2D; Mitra et al. 2008). Analogous experiments
on the A56U construct reveal a similar effect, consistent with
the ensemble calculation prediction (Supplemental Fig. 1).
Furthermore the control SNP G4A has only minimal effect
on the RNA structure, as predicted (Fig. 2E).

RiboSNitch rescue through double mutation

To further validate our ensemble model for the FTL 5" UTR
(Fig. 1) we performed a comprehensive SNPfold analysis to
identify secondary mutations that restore the ensemble to WT
partitioning. These mutations are reported in Supplemental
Table 1. We experimentally validated the top three mutations
for both constructs. The SHAPE data for the U22G-G17C
double mutant shows that this mutation restores IRE
structure to WT (Fig. 3A). This prediction is particularly
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FIGURE 1. (A) Projection of 10,000 Boltzmann sampled suboptimal structures of the human FTL 5" UTR onto a principal component
decomposition of the structural space (Ding et al. 2005). The projection allows us to visualize the conformational ensemble of the noncoding
RNA. We identify three distinct conformations illustrated by the representative secondary structures (blue, green, and red conformations). The
FTL 5’ UTR includes an IRE, which is a regulatory motif known to repress translation when bound by the IREBP (Ferrari et al. 2006). In the two
alternative conformations (blue and green), the IRE does not adopt a functional hairpin conformation. (B,C) Visualizations of the structural
ensemble for the U22G and A56U SNP-containing FTL 5" UTRs, respectively, identified in patients suffering from hyperferritinemia cataract
syndrome (Cremonesi et al. 2001, 2003; Ferrari et al. 2006; Burdon et al. 2007). Both SNPs repartition the ensemble favoring the blue and green
conformations. We propose that the FTL 5" UTR is a “RiboSNitch,” which much like a bacterial Riboswitch (Tucker and Breaker 2005; Grundy
and Henkin 2006; Gilbert et al. 2008) undergoes an important structural rearrangement that controls translation. On the secondary structure
diagrams the two hyperferritinemia cataract syndrome SNPs (U22G and A56U) are indicated with arrows while SNPfold predicted structure-
stabilizing mutations for U22G are indicated in purple.

interesting as it does not simply restore the U22-A58 base  in the IRE of FTL. The performance of SNPfold for

pair (Fig. 1, red conformation) through isosteric replace-  RiboSNitch detection is high (Fig. 3C, short dashes, area

ment of a canonical Watson-Crick pair (Lescoute et al. under the curve 0.97).

2005). Instead it further destabilizes the first stem in the

blue and green conformations favoring the WT structure.
We systematically collected SHAPE data on the WT,

single and double mutants predicted to affect the IRE  Our results on the FTL 5" UTR reveal that specific SNPs

Structure-stabilizing haplotypes

structure to evaluate the performance of the SNPfold al- can have profound effects on the structural ensemble of
gorithm. Figure 3B illustrates a subset of these data (the  noncoding regions of RNA and that the SNPfold algorithm
additional data are summarized in Supplemental Fig. 1C). accurately predicts these (Fig. 3C). It is important to realize

The SHAPE data were used to calculate the True Positive, that a majority of SNPs have little or no effect on the
False Positive, True Negative, and False Negative rates of our ~ ensemble partitioning of RNA. An analysis of all possible
SNPfold predictions for each base. We compared traditional ~ FTL 5 UTR mutations previously showed that the U22G
minimum free energy predictions to our SNPfold algorithm  and A56U SNPs are in the top 5% in terms of their predicted
using a Receiver Operator Curve (ROC) analysis (DeLong structural effect (Halvorsen et al. 2010). Our experimental
et al. 1985). The SNPfold algorithm performs better with an  results predict that an individual with the U22G-G17C
area under the curve of 0.86 (solid line, Fig. 3C) compared  (Fig. 3A) haplotype will not have the hyperferritinemia
to that of the minimum free energy predictions (long dashes,  phenotype since this double mutation stabilizes the IRE in
Fig. 3C) with an area under the curve of 0.62. Furthermore,  the FTL 5" UTR. The U22G and A56U mutations are ex-
we evaluated SNPfold for identifying SNPs that cause  tremely rare, as is hyperferritinemia cataract syndrome. We
a SHAPE reactivity change in more than eight nucleotides  performed a comprehensive search of HapMap haplotypes
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FIGURE 2. (A) Schematic of the human FTL 5" UTR and Exon 1; the IRE is indicated in green. (B) SNPfold prediction of the changes in the
probability of a base being paired caused by the U22G hyperferritinemia-associated SNP (Cremonesi et al. 2001, 2003; Ferrari et al. 2006; Burdon
et al. 2007) as a heatmap, with red indicating the disease-allele results in higher base-pair probability and blue indicating a lower probability. (C)
Raw capillary traces of SHAPE analysis of the WT (black), U22G (cyan, disease-associated), and G4A (purple, not disease-associated) FTL 5’
UTRs. (D) Quantification, averaging, and scaling of multiple repeats for WT (black) and U22G (cyan) SHAPE data. The thickness of the line
indicates one standard deviation over six repeats of the experiment. The heatmap below the data is orthologous to the predictions made in B since
changes in SHAPE reactivity correlate with changes in base-pair probability (Badorrek and Weeks 2005; Badorrek et al. 2006; Wilkinson et al.
2008). (E) Scaled and averaged repeats for G4A construct indicating the control mutation has no effect on base-pair probability as predicted.
These experiments validate the SNPfold prediction and indicate that the FTL 5" UTR is indeed a RiboSNitch.

and did not find any individuals with the U22G or A56U
SNPs (Stranger et al. 2007; Morton 2008).

We nonetheless expect to find pairs of SNPs in high LD
that stabilize mRNA structure. We call these pairs of SNPs
“structure-stabilizing haplotypes,” or SSHs. Our experimental
results demonstrate that the SNPfold algorithm is highly
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predictive of SSHs (area under the curve 0.97) (Fig. 3C),
having correctly identified six pairs in the FTL 5" UTR. We
comprehensively analyzed LD SNP pairs in the human
genome that map to 5’ and 3" UTRs to identify potential
SSHs. A complete list of the 484 SSH pairs we identified in
human UTRs is provided in the supplement (Supplemental
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FIGURE 3. (A) SHAPE chemical mapping data scaled and averaged over six repeats for the WT (black), U22G (cyan), and U22G-G17C (magenta)
FTL 5" UTRs. The heatmap below the data shows that the U22G-G17C haplotype restores base-pair probability to near WT conformation, as
predicted by SNPfold. (B) SHAPE data heatmaps indicating experimentally determined SNP-induced changes in probability of a base being paired
for hyperferritinemia (U22G and A56U) and nondiseased genotypes. We made orthologous predictions using SNPfold and report the True Positive,
False Positive, and True Negative, and False Negative (TP, FP, TN, and FN, respectively) rates when comparing SNPfold predictions to SHAPE
chemical data. (C) ROC analysis of the SNPfold algorithm for predicting changes in IRE base-pairing probability (solid line, AUC = 0.86) and
identifying RiboSNitches (dashed line, AUC = 0.97), and using traditional minimum free energy (e.g., mFold) calculations (long dashes, AUC =
0.62). ROC analysis includes SHAPE data collected on the additional 10 FTL 5" UTR mutants reported in Supplemental Figure 1C.

Table 2). In Table 1, we report UTRs where more than four
SSH pairs were found. These are particularly noteworthy,
since observing multiple SSH pairs in the same UTR is un-
likely by chance (<1 in 100,000).

Figure 4A illustrates the subset of LD SNP pairs that are
predicted SSHs in the 3" UTR of RPAI (replication protein Al)
(Shao et al. 1999). In Figure 4B we plot the mean change in
base-pair probability caused by all individual SNPs in the
haplotype. This allows us to visualize the regions in the
RNA that are stabilized by the SSH and we observe that
these coincide with experimentally determined IGF2BP binding
sites (Hafner et al. 2010a,b). We performed a similar analysis
on the SSHs reported in Table 1, and find that, in eight of the
10 UTRs, the predicted regions of the UTR that are stabilized
coincide with RBP or miRNA binding sites determined by
photoactivatable-ribonucleoside-enhanced  cross-linking and
immunoprecipitation (PAR-CLIP) (Hafner et al. 2010a,b).

DISCUSSION

The SHAPE data we collected validate the presence
of a disease-associated RiboSNitch in the FTL 5" UTR as

computationally predicted by SNPfold. Our results illustrate
the extent to which specific disease-associated SNPs can
impact mRNA transcript ensemble partitioning. The two
hyperferritinemia-associated SNPs (U22G and A56U) cause
similar large rearrangements in the ensemble partitioning of
the RNA. The rearrangements favor alternative conforma-
tions where the IRE does not adopt a hairpin conformation,
a prerequisite for IREBP binding (Kaygun and Marzluff
2005). We find that the performance of the SNPfold al-
gorithm is better than traditional minimum free energy
approaches at identifying SNPs that alter mRNA structure
(Fig. 3C) most likely because it takes into account the
structural heterogeneity of the transcript (Mathews 2004;
Waldispuhl and Clote 2007). Most importantly, our results
indicate that transcripts, which are generally thought of as
“unstructured,” are nonetheless highly sensitive to specific
mutations.

The SNP-induced structural change in the FTL 5" UTR is
analogous in magnitude to that observed upon ligand binding
in bacterial Riboswitches (Tucker and Breaker 2005). Fur-
thermore, the effects on FTL protein expression are likely post-
transcriptional, explaining the hyperferritinemia phenotype.
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Indeed, IREBP binding represses translation, such that, if the
IRE is indirectly disrupted by SNP-induced ensemble repar-
titioning, excess protein will be translated. More importantly,
secondary compensating mutations exist that restore WT
partitioning, and the SNPfold algorithm correctly predicted
six of them for both diseased alleles (Fig. 3B). Interestingly,
these compensating mutations are not necessarily stan-
dard isosteric replacements of canonical base pairs (e.g.,
U22G-A58C), but also include more complex structural
mechanisms (e.g., U22G-G17C) (Fig. 3A).

These results suggest that certain SNP pairs are conserved
in the human population because they stabilize specific en-
sembles of conformations in mRNAs. Of particular interest
are genes where multiple SNP pairs stabilize structure (Table
1; Fig. 4). Combined with PAR-CLIP data that identify

transcriptome-wide RBP binding sites, an intriguing inter-
play between population genetics, RBP binding, and mRNA
structure is revealed. We have thus far found eight transcript
UTRs where multiple SSHs stabilize RBP and/or miRNA
binding sites (Table 1). This likely represents only a subset of
the genes where SNPs stabilize RNA structure, since we have
limited human genetic variation data and PAR-CLIP data
for four RBPs and one miRNA. Furthermore, to maintain
computational tractability, we analyzed only SNP pairs in
LD that map to the same UTR.

To identify pairs of SNPs in high linkage that stabilize
RNA structure (i.e., SSHs) we defined a new metric, the
Structure Recovery Ratio (SRR, Equation 1 below). Concep-
tually, the SRR measures the extent to which a pair of SNPs
restores structure relative to the SNP that has the largest effect

TABLE 1. Structure-stabilizing haplotypes in the human genome where more than four SNP pairs stabilize RNA structure

Representative

SSH
Gene name Full name UTR  # SSHs SNP Pairs LOD score Function RBP sites
RPA1 Replication 3 12 C380G/G417A 17.89 Bind ssDNA during IGF2BP
NM_002945 protein Al G417A/T463C 17.47 replication (Shao et al. 1999)
HLA-DOA HLA class I 3 12 G534A/C214A 25.74 Member of MHC class II, highly AGO,
NM_002119 histo-compatibility C774T/A347G 6.85 conserved (Naruse et al. 1999)  PUM2
antigen TNRC6
KIAA1609 TLD domain- 3 6 C2194G/C2131T 25.77 An ortholog for the EAK-7 protein  IGF2BP
NM_020947 containing A2259G/T2034G 2.7 in Caenorhabditis elegans, miR124
protein which controls development
KIAA1609 by inhibiting DAF-16/FoxO
activity (Alam et al. 2010)
L3MBTL4 Lethal (3) malignant 3 5 T665C/A74G 26.23 Chromatin formatter, deregulation  IGF2BP
NM_173464 brain tumor-like T665C/C103T 26.23 associated with breast cancer
protein 4A (Addou-Klouche et al. 2010)
ADAMTS14 Disintegrin and 3 5 C700G/A1580G 16.34 An amino-procollagen peptidase, —
NM_139155 metalloproteinase G546A/G1185A 3.40 mutations associated with
with thrombospondin Multiple Sclerosis
motifs 14 (Bolz et al. 2001;
Goertsches et al. 2005).
EP400 E1A binding 3 5 T73C/C193T 4.28 Destabilizes nucleosomes IGF2BP
NM_015409 protein G57A/C193T 4.28 during double strand PUM2
p400 breaks as part of
repair (Xu et al. 2010)

B3GALTL B-1,3-glucosyl 3 4 A1801G/G1836A 21.99 Post-translational modification IGF2BP
NM_194318 transferase-like G1836A/G2082T 18.42 protein (Wismar 2001) PUM2
SPTBNI1 Spectrin B-chain, 3 4 T1310C/G1913A 23.13 Interacts with calmodulin in a IGF2BP

NM_178313 brain 1 G852A/T1926C 11.21 calcium-dependent manner
(Hu et al. 1992)
APOL4 Apolipoprotein 5 4 C327T/C323A 12.38 Involved in lipid metaobolism. —
NM_030643 L4 C323A/A250G 11.43 Only present in primates
(Monajemi et al. 2002)
QDPR Quinoid 3 4 C510T/A468C 21.66 Regenerates tetrahydro-biopterin IGF2BP
NM_000320 dihydropteridine C408T/A403G 5.58 (needed for phenylalanine.
reductase metabolism).

Mutations associated with
tetrahydro-biopterin
deficiency (Thény and
Blau 2006)

PAR-CLIP sites stabilized by the haplotype are indicated in the RBP sites column.
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FIGURE 4. SSH identified in the 3’ UTR of the RPA1 using SNPfold analysis. (A) Schematic representation of RPA1 3’ UTR including the coding
sequence (CDS) and all currently known LD SNPs in the region, indicated as a triangle. The LOD scores of the SNPs are indicated in variable
shades of gray and the subset of SNP pairs that stabilize structure are indicated in blue. (B) Mean change in base-pair probability based on
a SNPfold analysis of the effects of individual SNPs that together stabilize structure. Red translucent bars indicate experimentally determined
IGF2BP (insulin-like growth factor binding protein) binding sites (Hafner et al. 2010a; Rodriguez et al. 2010) on the 3" UTR using the PAR-CLIP
approach. The SSH (indicated with a series of solid blue angled lines) stabilizes a majority of IGF2BP binding sites, suggesting an important
structural role for this region in the RPA1 3" UTR. We report in Table 1 an additional 10 SSHs, eight of which stabilize known RBP sites.

on that structure. Because it is a ratio, the numerical value of
the SRR is not dependent on length of the RNA. We show
this empirically in Supplemental Figure 2A, where there is no
correlation between the SRR and length. We empirically
chose an SRR cutoff value of two based on an analysis of the
number of SSHs as a function of this threshold (Supplemental
Fig. 2B). The mRNAs we identify in Table 1 are particularly
interesting as four or more SSHs were found in either the 5’
or 3" UTRs. We therefore expect that RNA structure likely
plays an important regulatory role in these gene’s regulation.

Covariation is common in large structured RNAs such
as the Ribozyme, tRNAs, and even bacterial Riboswitches
(Michel and Westhof 1990; Gutell et al. 2002; Leontis et al.
2002; Wang et al. 2008b). In fact, covariation models are often
used to identify structured RNAs in genomic data (Griffiths-
Jones et al. 2005). Traditionally, programs such as CMfinder
(Yao et al. 2006; Benjamin et al. 2007) or FOLDALIGN
(Havgaard et al. 2005) are used to predict structure. These
techniques require significant covariation to constrain a struc-
ture and make an accurate prediction. Linkage data do not
provide sufficient information to determine a structure in this
way, which is why we chose to combine our structural
predictions with PAR-CLIP data (Fig. 4) to make biological
predictions. Our data suggest that certain haplotypes in the

human population are conserved because they stabilize
specific ensemble partitioning of functional mRNA regions.

We conclude that RiboSNitches are likely ubiquitous in
the human genome, and that specific haplotypes are con-
served because they preserve mRNA ensemble partitioning.
We expect that SSHs in mRNA play an important regulatory
role, and that our strategy of combining common genetic
variation data with SNPfold analysis and PAR-CLIP data can
pinpoint important new regulatory regions in the tran-
scriptome. It is also likely that SNP-induced structure change
affects mRNA stability. As more eQTL (expressed Quanti-
tative Trait Loci) data become available, it will be possible to
correlate structural change and mRNA stability, greatly
expanding our understanding of post-transcriptional regu-
latory mechanisms (Majewski and Pastinen 2011).

MATERIALS AND METHODS

Computational methods

The SNPfold algorithm was used to predict how RNA structure is
modified by SNPs (Halvorsen et al. 2010). The FTL SNPs were
originally selected for their disease association. Secondary correcting
mutations were predicted by identifying the SNP pair containing the
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primary mutant that resulted in the highest correlation coefficient to
the WT base-pair probability plot as computed by the partition
function (McCaskill 1990; Mathews 2004). The control SNPs were
selected because SNPfold calculations showed they had the highest
Pearson correlation coefficient (CC) in relation to the WT base-
pairing. Rescue SNPs were identified by using SNPfold to calculate
the CCs of the disease-associated SNP and a secondary SNP pair to
the WT base-pairing and selecting those pairs with the highest CC.
From the hgl8 genome assemble and hgl8 “refgene” datafile,
as downloaded from the UCSC dbSNP, 44,186 SNPs were iden-
tified. These SNPs satisfied the conditions that they were located
in the untranslated region of genes and mapped to fully assembled
chromosomes. Of these SNPs, 15,491 are located on the same spliced
UTR and have linkage disequilibrium values (LOD scores) greater
than or equal to one. The D' values were extracted from LD flatfiles
(available at the Hapmap webpage, http://hapmap.ncbi.nlm.nih.gov/
downloads/ld_data/2009-04_rel27/) corresponding to the CEU pop-
ulation of Hapmap (release #27, Phase II and III).
The SRR is defined as
SRR = 1= CCoin (1)
1 — CCpomn
where CCp,y, is the correlation coefficient of the pairing probability
of the RNA with both SNPs present, and CC;, is the correlation
coefficient of the pairing probability to WT for the SNP in LD that
has the largest effect on RNA structure (smallest CC). In both cases
the correlation coefficients are computed with respect to the pairing
probability of WT.

Principal component analysis

Principal components were calculated (as described previously;
Halvorsen et al. 2010) from a total of 10,000 Boltzmann sampled
structures generated equally from the five sequences: WT, C10U,
C14G, U22G, and A56U. The projection of the binary represen-
tation of these 10,000 structures onto the first two principal
components revealed three distinct clusters as identified by the
k-means clustering algorithm. The centroid structure of each
cluster was drawn using R2R. For a given SNP of interest, we
project 10,000 structures, generated just from that sequence, onto
the first two principal components with the projections colored
according to which cluster they belong to.

SHAPE experiments

The WT FTL 5’ UTR sequence (GCAGTTCGGCGGTCCCGCGG
GTCTGTCTCTTGCTTCAACAGTGTTTGGACGGAACAGATCCG
GGGACTCTCTTCCAGCCTCCGACCGCCCTCCGATTTCCTCTC
CGCTTGCAACCTCCGGGACCATCTTCTCGGCCATCTCCTGCT
TCTGGGACCTGCCAGCACCGTTTTTGTGGTTAGCTCCTTCTT
GCCAACC) was inserted between the Sgfl and Mlul sites of the
pCMV6-AC nontagged precision shuttle vector (Origene). The
modified plasmid was transformed into Escherichia coli DH5a
electro competent cells and grown up over night at 37°C. The re-
sulting plasmids were extracted using the Qiagen Miniprep Kit. A
T7 promoter (TAATACGACTCACTATAGG) was introduced to
the 5" end of the FTL 5" UTR during PCR amplification. Overlap
PCR was used to create mutants by introducing a point mutation
on oligonucleotides used during the first round of amplification
with a second round of amplification used to join the PCR frag-
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ments. The resulting PCR product was transcribed into RNA using
MegaScript followed by MegaClear according to Ambion’s pro-
tocol.

Selective 2'-Hydroxyl Acylation and Primer Extension (SHAPE)
experiments were performed in the following way: A total of 10
pmol RNA was suspended in 12 pL of 0.5X TE buffer and then
heated to 95°C for 2 min. Immediately after, the mixture was
placed on ice for 2 min. With gentle pipetting, 6 pL of folding mix
was added (3.3X folding mix; 333 mM HEPES, pH 8.0, 20 mM
MgCl,, 333 mM NaCl) to the mixture and then incubated at 37°C
for 20 min. Following incubation, the mixture was split equally to
obtain a negative control. The negative control was treated with 1
pL of dimethyl sulfoxide (DMSO) while the experimental mixture
was treated with 1 wL of DMSO containing 65 mM N-methyl-
isatoic anhydride (NMIA). Both mixtures were incubated for 45
min at 37°C, or roughly five half-lives of NMIA hydrolysis. RNA
incubated at —80°C for 30 min following the addition of 90 pL of
water, 4 pL of 5 M NaCl, 4 pL of 5 mg/mL glycogen, 2 pL of 100
mM EDTA pH 8.0, and 350 pL of 100% ethanol. RNA was
precipitated by centrifugation at 14,000 rpm at 4°C for 30 min. The
RNA was rinsed with 70% ethanol after the removal of the sup-
ernatant. After being spun down and dried by speed-vac for 10 min,
the RNA was suspended in 10 wL of 0.5X TE.

The resulting mixtures had 1 pL of 5 wM of Cy5-labeled primer
solution added and mixed by pipetting. The primers were an-
nealed to the RNA by incubation at 65°C for 5 min, then 35°C for
5 min, and finally placed on ice for 1 min. The solutions with the
annealed primers had 7 pL of the reverse transcriptase buffer mix
which contained 250 mM KCl, 167 mM Tris-HCI, pH 8.3, 1.67 mM
each ANTP, 17 mM DTT, 10 mM MgCl,, and 40 U of Invitrogen’s
RNaseOUT. The reverse transcriptase buffer mix was also added to
the sequencing ladder reactions and, for the reactions lacking
NMIA, 1-2 pL of one ddNTP (5mM) was also added. The samples
were heated at 52°C for 11 min with 1 pL of Superscript III
(Invitrogen) added after the first minute and mixed by pipetting.
The resulting cDNA was cleaned up with the addition of 2 pL of
2 M NaOH and incubated at 95°C for 5 min. Following the
incubation, the samples were treated with a solution containing 2 pL
of 2 M HCl, 3 pL of 3 M Na-acetate, 1 pL of 100 mM MgCl,, and
90 L of 100% ethanol. The mixture was then centrifuged at 14,000
rpm at 4°C for 30 min and rinsed with 70% ethanol. The resulting
cDNA pellets were dried, suspended in 40 L of Sample Loading
Solution (Beckman), and subjected to capillary electrophoresis on
a Beckman CEQ 8000.

Taking advantage of the data independent Beckman ladders
and using custom written Matlab software (available at http://
ribosnitch.bio.unc.edu/The_Laederach_Lab/Software.html), the data
from the CEQ were aligned. The ShapeFinder (Vasa et al. 2008)
software package was used to analyze the aligned SHAPE data. The
reproducibility was determined by calculating the product of the
mean SHAPE value for each nucleotide and multiplying it by the
square root of the number of sets used divided by the standard de-
viation of that nucleotide. Our data were normalized using outlier
analysis as previously reported resulting in the majority of the re-
activities being between 0 and 1.5. SHAPE experiments were carried
out under standard RNA folding conditions (10 mM MgCl, and
100 mM KClI) as described in separate publications on the tech-
nique (Wilkinson et al. 2005). CAFA analysis of the SHAPE capillary
traces was performed with CAFA and Shapefinder as previously
described (Mitra et al. 2008; Vasa et al. 2008). The SHAPE data were
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normalized using standard outlier analysis (Vasa et al. 2008). ROC
analysis is based on thresholding the SHAPE data (DeLong et al.
1985), a Welch’s t-test was used to determine significance over a
minimum of three repeats per experiment. Raw SHAPE data were
made available using the SNRNASM standard (Rocca-Serra et al.
2011) and the data are available at http://snrnasm.bio.unc.edu.

Heatmap graphs

With the exception of the G4A mutant having only three data sets,
a minimum of four data sets per mutant were used to perform
statistical tests. The Shapiro-Wilkes test comparing the data set to
the normal distribution with the same mean and standard deviation
was performed individually for each position to confirm the ap-
propriateness of using a Welch’s #-test. The Welch’s t-test for mean
difference was performed at each nucleotide with the null hypoth-
esis being that that the mutant and WT data sets were equal. The
degree of mean difference for positions with P-values <0.001 are
color-coded red when the mutant has the higher value and blue
when the WT has a higher value with the depth of the color
indicating the degree of difference in 0.15 steps and a maximum
value of 0.6. Even in our most extreme cases, <8% of the positions
were non-normal with a P-value <0.05. All statistical tests were
performed using version 2.8.1 of R (R development Core Team).
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