Nucleotide sequence of valine tRNA mo⁵UAC from Bacillus subtilis

Katsutoshi Murao, Tsunemi Hasegawa and Hisayuki Ishikura

Laboratory of Chemistry, Jichi Medical School, Minamikawachi-machi, Tochigi-ken 329-04, Japan

Received 13 October 1981; Revised and Accepted 1 December 1981

ABSTRACT

INTRODUCTION

We have isolated a large amount of *B. subtilis* tRNA and studied their structures using non-labeled tRNA with the intention of preventing from missing or mistaking modified nucleotides. As a result, we found that *B. subtilis* tRNA contains some interesting minor components, i.e. 5-methoxyuridine $(m\sigma U)^1$, 5-carboxymethylaminomethyluridine² and 5-carboxymethylaminomethyl-2-thiouridine³, in the anticodon sequences. The main valine tRNA from *B. subtilis* as well as tRNA^{Ala} and tRNA^{Thr} contains mo⁵U instead of uridin-5-oxyacetic acid (cmo⁵U) as in *E. coli* tRNAs⁴⁻⁶. Here we report the purification, complete nucleotide sequence and coding properties of the tRNA^{Val} containing mo⁵U.

MATERIALS AND METHODS

Most of the materials, enzymes and methods used for the purification and sequence analysis of tRNA $_{1}^{Val}$ have been described^{7,8}.

RESULTS

<u>Purification of tRNA^Val</u>: Valine accepting activity was separated into two peaks on the DEAE-Sephadex A-50 column chromatography of bulk tRNA (1-2g) from *B. subtilis* W168. The first eluting main peak of tRNA^{Val} (referred to as tRNA^Val) was further purified by a combined use of sepharose 4B, BD-cellulose and RPC-5 column chromatographic systems. The purity of $tRNAV_{2}^{a1}$ reached more than 90% judged by chromatographic profile and complete digestion analysis with RNases.

<u>Sequence analysis</u>: The products of complete digestion with RNase T_1 and RNase A of cold tRNA₁^{Va1} were separated by two-dimensional fingerprinting technique or column chromatographies on DEAE-Sephadex A-25 at pH 7.5 and 2.7 as reported. Nucleotide composition and nucleotide sequence were determined by enzymatic digestion with RNase T_1 , RNase A, RNase T_2 , nuclease P_1 , RNase U_2 and/or silkworm nuclease followed by cellulose thin-layer and/or paper chromatography⁷. Overlapping procedure was performed by analysis of partial digest of cold tRNA₁^{Va1} with nuclease SI followed by fingerprinting analysis and one- or two-dimensional polyacrylamide gel sequencing technique of 5'- or 3'-[³²P]-end-labeled tRNA₁^{Va1} (Fig.1). The deduced nucleotide sequence is shown in Fig.2. Codon recognition of [¹⁴C]-valyl-tRNA₁^{Va1}: B. subtilis tRNA₁^{Va1} was aminoacylated with an *E. coli* aminoacyl-tRNA synthetase preparation and purified by gel filtration on Sephadex G-75 followed by acetylated DBAE-cellulose thromatograph

Fig.1 Two-dimensional gel electrophoresis of partial alkaline hydrolysate of [³²P]-3'-end-labeled tRNA^{Val}₁.
1st dimension: 10% polyacrylamide gel electrophoresis at pH 3.5
2nd dimension: 20% polyacrylamide gel electrophoresis at pH 8.3

Fig.2 Clover-leaf structures of tRNA^{Val}'s from *B. subtilis* and *E. coli*. (a) Structure of tRNA^{Val} from *B. subtilis*. (b) Structure of tRNA^{Val} from *E. coli*. Nucleotides different to those of tRNA^{Val} from *B. subtilis* are shown in boxes. Differences in the state of modification are enclosed with broken line.

graphy. Aminoacyl-tRNA binding to *E. coli* ribosomes was assayed by the procedure as described⁹. The binding of valyl-tRNA₁^{Val} to ribosomes was stimulated by the triplet codons GpUpA and GpUpG, and less efficiently by GpUpU. Recognition by GpUpU was 30-50 per cent efficiency of the others (data not shown).

DISCUSSION

B. subtilis $tRNA^{Val}$ can be aminoacylated by E. coli aminoacyl-tRNA synthetase. Comparison of the sequence of B. subtilis $tRNA_1^{Val}$ with those of E. coli $tRNA_1^{Val}$ (anticodon -cmo⁵U-A-C-) shows that only nine nucleotides are different and two different base modifications occur at U₈ and U₃₄ (Fig.2). The wobbling nucleoside cmo⁵U in E. coli $tRNA_1^{Val}$ was replaced by mo⁵U in B. subtilis $tRNA_1^{Val}$. The pairing properties of cmo⁵U in $tRNA_1^{Val}$ and $tRNA_1^{Ser}$ from E. coli were previously examined^{10,11}. These results indicate that cmo⁵U can be recognized by U in the third letter of codons at about 20 per cent of efficiency when compaired with A and G. A similar pattern of specificity for codon recognition was observed with mo⁵U. Both modified nucleosides show the structural similarity, that is, 5-substitution of uracil ring by 0-methyl derivatives. This structure was not observed in other uridine derivatives in the wobble position of two codon letter tRNA so far investigated¹².

The other value tRNAs from *E. coli* in which the first letter of the anticodon is occupied by G differ from *B. subtilis* tRNA^{Val} in about 30 nucleotides. A difference between *B. subtilis* and eucaryote cells (yeast, rabbit liver, mouse myeloma and human placenta) enlarges to 33-39 nucleotides even if post-transcriptional modifications of nucleotides are disregarded in comparison¹².

Total primary sequence analysis of *B. subtilis* $tRNA_1^{Val}$ was carried out by the convensional methods with the main use of non-labeled samples. The separation of mo⁵U nucleotide from U nucleotide is difficult in usual paper or thin-layer chromatography and electrophoresis. We have succeeded in the separation between nucleoside form of mo⁵U and U by the thin-layer chromatography on an aluminium roll cellulose sheet in the Rogg's system^{7,13}. These two components can be also separated in chromatography when they have different numbers of phosphate from each other and a distinction between them is established by measurement of UV absorption spectra¹. Sequencing techniques using radioactive tracers possess many advantageous characteristics such as rapid analysis with infinitestimal amount, but base identification should be carefully executed especially in tRNA studies.

AC KNOWL EDGEMENT

This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan. We are indebted to Miss M. Anzo and Miss K. Ohsato for expert technical assistance.

REFERENCES

- Murao, K., Hasegawa, T., and Ishikura, H. (1976) Nucl. Acids Res. 3, 2851-2860
- 2. Murao, K., and Ishikura, H. (1978) Nucl. Acids Res. s5, s333-s336
- Yamada, Y., Murao, K., and Ishikura, H. (1981) Nucl. Acids Res. 9, 1933-1939
- Murao, K., Saneyoshi, M., Harada, F., and Nishimura, S. (1970) Biochem. Biophys. Res. Commun. 38, 657-662
- 5. Yanif, M., and Barrell, B. G. (1969) Nature 222, 278-279
- Kimura, F., Harada, F., and Nishimura, S. (1971) Biochemistry 10, 3277-3283
- 7. Hasegawa, T., and Ishikura, H. (1978) Nucl. Acids Res. 5, 537-548
- Yamada, Y., Kuchino, Y., and Ishikura, H. (1980) J. Biochem. (Tokyo) 87, 1261-1269
- 9. Nirenberg, M., and Leder, P. (1964) Science 145, 1399-1407
- 10. Takemoto, T., Takeishi, K., Nishimura, S., and Ukita, T. (1973) Eur. J. Biochem. 38, 489-496
- 11. Ishikura, H., Yamada, Y., and Nishimura, S. (1971) Biochim. Biophys. Acta 228, 471-481
- 12. Gauss, D. H., and Sprinzl, M. (1981) Nucl. Acids Res. 9, r1-r23
- 13. Rogg, H., Brambilla, R., Keith, G., and Staehelin, M. (1976) Nucl. Acids Res. 3, 285-295