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Abstract
Systems biology represents a paradigm shift from the study of individual genes, proteins or other
components to that of the analysis of entire pathways, cellular, developmental, or organismal
processes. Large scale studies, primarily initiated in S. cerevisiae, have allowed the identification
and characterization of components on an unprecedented level. Large scale interaction,
transcription factor binding and phosphorylation data have enabled the elucidation of global
regulatory networks. These studies have helped provide an understanding of cellular pathways and
processes at a global and systems level.

Keywords
Systems biology; genomics; proteomics; transcriptome; phosphorylome; S.cerevisiae

Introduction
Systems Biology represents the study of entire pathways, processes or even organismal
interactions usually at a molecular level. This larger analysis has allowed elucidation of
basic principles that may not be apparent at the level of individual components. Such
information is expected to be valuable to understanding how an entire system operates.

A Paradigm Shift
Until the early 1990's nearly all biological research was focused on the detailed study of
individual components in which proteins or genes were studied one at a time, a very
laborious and inefficient process. This approach shifted in the early and mid 1990's with
several types of large-scale studies that allow the analysis of large numbers of components
systematically and/ or simultaneously for the first time (Figure1 and Table 1). As the field
matured, analysis moved from qualitative to quantitative experiments as a prerequisite to
compare and draw meaningful conclusions from large datasets. The first study was our
transposon tagging project which tagged a large number of yeast genes allowing for large-
scale gene expression, protein localization, and disruption phenotype analyzes as well as
identification of unannotated sequences [1]. The second was DNA microarrays, which
allowed the monitoring of gene expression of large numbers of, and ultimately all, known
and potential genes within an organism [2]. Subsequently, studies to systematically disrupt
gene function and biochemically characterize proteins on large-scale emerged (see Table 1).
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Each of these projects usually required development of a new method (RNAi for
multicellular organisms; protein expression collections for biochemical assays).

The vast majority of these projects were first pioneered in yeast because of a) its relatively
small genome and numbers of genes (approximately 6000), b) the genome was one of the
first sequenced (completed in 1996; [3]) and c) its facile genetics. Table 1 summarizes the
different large-scale projects performed for yeast. Projects for characterizing gene
expression, protein localization, gene disruption, transcription factor binding, biochemical
studies and protein profiling have been carried out providing a wealth of information about
each gene, and its corresponding RNA and protein in the cell. Perhaps most importantly,
these studies have generated valuable collections of tagged strains and mutants that have
proven very valuable to the scientific community. The culture of sharing reagents and
information within the yeast community has greatly enhanced the entire field and
community. Subsequent to the launch of the different yeast studies, parallel projects have
been performed for C. elegans, Drosophila, Arabidopsis and vertebrates and enabled
extensive gene characterization in those organisms [4-8]. Many of these have been
performed as systematic efforts by consortia e.g. modENCODE to systematically analyze
the genomic association of all transcription factors [9,10].

These studies enabled assignment of functions to genes at a rapid pace. For example, when
the yeast genome sequenced was completed in 1996 the function of two thirds of the
encoded genes was not known [3]. Now 13 years later this figure has been reduced to 10%
[11]. Through the integration of different types of large-scale data [12,13], some level of
function can be inferred about most yeast genes, although this information is by no means
comprehensive, and new function of proteins continue to emerge. As a consequence of these
various global studies, we also have a much deeper understanding of entire biological
processes and pathways.

Analysis of Networks and Regulatory Circuits
In conjunction with the advent of large-scale characterization of genes and proteins, came
the large-scale analysis of their interactions and regulation. To date a number of interaction
networks have been generated including protein-protein interaction and transcription factor
binding to DNA. These global interaction studies have help elucidate entire pathways as
well as regulatory networks controlling biological processes.

Protein-protein interactions
The first of the interaction studies were protein-protein interaction projects. Initial research
focused on high throughput yeast two-hybrid studies; these studies were initially incomplete
although a more recent study and related protein complementation method generated much
larger datasets [14-18]. These studies generally identify direct interactions among protein.
Subsequent to the initial two-hybrid studies large-scale studies using affinity purification of
tagged proteins and identification of associated proteins by mass spectrometry were
performed [19,20]. This approach tends to identify members of a complex, usually at
physiological levels in vivo and was a dramatic shift away from assigning protein function to
pathways from protein-protein associations rather than classical mutant characterization.
Smaller scale in vitro interaction studies using protein microarrays have also been performed
[21] and allowed computational detection of noncanonical small molecule binding motifs. In
general, the overlap between the approaches is rather modest. This is partly because these
approaches themselves are incomplete and are rarely performed to saturation. Moreover,
each method has its biases and limitations and this likely also contributes to the observed
incomplete overlap.
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Transcription Factors
A second major area for the analysis of regulatory networks is the monitoring of gene
expression using DNA microarrays. Expression profiling has now been performed for a
large number of organisms and now thousands of microarray experiments have been
performed for yeast, C. elegans, Drosophila, Arabidopsis, mice and humans [2,22-24]. More
recent studies avoid DNA microarrays and involve direct sequencing of RNA (RNA-Seq;
[25,26]), which is much more sensitive and accurate due to lack of cross hybridization [27].
These different studies have allowed the profiling of all annotated genes under diverse
conditions, different tissues and/or different developmental stages. By correlating gene
patterns, it has been possible to determine which genes work together and often identify
common DNA sequence motifs in promoter regions.

Other large-scale studies have been performed to characterize transcription factor binding
sites. We have found that 27% of epitope-tagged proteins localize to the nucleus and the
majority of these exhibit punctate patterns of staining of chromosomes using meiotic
chromosome spreads [28]. Together with Dr. Patrick Brown's laboratory, we invented the
ChIP-chip method for large-scale identification of binding sites throughout the yeast genome
[29,30]. This method involves immunoprecipitation of a transcription factor along with its
associated DNA, followed by probing of DNA microarrays containing genomic sequences.
This method led to several large-scale studies to map DNA binding sites of many factors
during either vegetative growth or under different conditions [30-32]. A modification of the
ChIP method is ChIP-Seq, which uses high-throughput DNA sequencing as its readout
[33,34]. A version for yeast uses bar coding of samples so that large numbers of samples can
be analyzed at once [35]. ChIP-chip and ChIP-Seq, when combined with gene expression
studies, are a particularly powerful method for dissecting regulatory circuits. To date most of
the global DNA binding studies have been performed at a single time point; however recent
studies have demonstrated that transcription factor binding sites can have vary temporally
presumably reflected the combinatorial effects of multiple binding partners [32]. After an
initial challenge to yeast, changes in the transcription factor binding can be graphed over
time (Figure 2). Possible outcomes are no change, a rapid increase/ decrease, a lag in change
transcription factor binding or a transient binding dissociation of the transcription factor.
Adding temporal component to mapping transcription factor binding allows a dynamic
picture of cellular response to environmental changes.

Genetic Interactions
Genetic screens uncover interactions that are not necessarily physical, but rather indicate
functional relationships between proteins at the pathway, cellular, or even organismal level.
The most common of these are synthetic lethal screen in which strains containing
combinations of gene mutations in have a much more severe phenotype (typically death)
than that of mutations in individual genes [36]. The first screens systematically examined
the effects of combining different null mutations for the “knockout collections” [37]. More
recent studies using a collection of DAMP alleles, which contain hypomorphs of essential
proteins [38], have revealed synthetic interactions of essential genes. These types of studies
have been extended to not only examine negative interactions (synthetic lethal interactions),
but also positive interactions (suppression) between mutated genes. The analysis of multiple
global screens can also reveal parallel pathways by clustering interactions by the similarities
in of genetic interactions (E-MAPs) that would otherwise be missed by analysis of only
physical interactions [39,40].

Phosphorylome
A fourth area of global analysis is protein phosphorylation. Initial estimates have suggested
that 30% of proteins in yeast and humans are phosphoproteins; although, this estimate is
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likely to be a significant underestimate. However, from the limited number of recent studies,
over 12,000 high confidence phosphorylation sites on ~50% of yeast proteins have been
identified in yeast using mass spectrometry [41-44] and the number of phosphorylated sites
is expected to grow even higher as additional sites continue to be mapped. A significant
challenge has been linking kinases to their substrates: yeast have 122 putative kinases
whereas humans have 518 [45]. Thus far several methods have been employed for this. To
begin to systematically identify 95 kinase substrates, we used protein microarray containing
4400 yeast proteins to find in vitro targets for 95 yeast kinases [46,47]. From the first 87
kinases, 4200 substrates were identified, an average of 47 targets per kinases. Among the
many interesting findings from this study was the observation that closely related kinases
such as the three protein kinase A homologs, Tpk1, Tpk2 and Tpk3, each have different
targets. Likewise, the cyclin-dependent kinase, Pho85, phosphorylated different targets
when associated with different cyclins. A related approach has been to incubate purified
kinases with GST fusion proteins or to use modified kinases that only use a modified ATP
[48-50]. Another strategy has been to identify differences in phosphorylation patterns in the
presence and absence of a protein kinase [51]. Phosphoproteins are purified from cells
lacking a protein kinase and identified using mass spectrometry. Phosphorylation is a
dynamic post-translational modification crucial for rapid response in cell signaling pathways
and mapping these sites trace provide connections between pathways.

Integration of Datasets
Individually, these studies have provided a wealth of information for specific types of
regulation. However, considerable emphasis is now being placed on integration of different
data types. Initial studies integrated gene expression and transcription factor binding data to
determine the roles of transcription factors (e.g. positive or negative regulation). Moreover,
studies have been performed to integrate additional data types such as protein-protein
interaction data, phosphorylation data [46], and even metabolite data [52] into large “meta
network” or “ridiculograms,” which are visually stunning networks containing extensive
interactions. The combined data in these meta networks can be searched for motifs or
modules that are overrepresented in the networks. Examples of overrepresented modules are
shown in Figure 3, including the scaffold module, in which protein kinase and their
substrates each interacting with a third proteins and the “ménage à trois” module in which
kinases interact with two interaction partners [46,53].

Interdisciplinary Research
System Biology by its very nature operates at the interface of Biology and Computational
Biology. Biologists are typically responsible for collecting large data sets often involving
many data points and computational biologist are typically responsible for both initial
scoring of results and more general analyses. The production of these dataset also provides
materials to propose mathematical models for pathways that can identify and or predict key
regulators. Furthermore, engineers are having a profound impact on reducing sample size
therefore saving reagents and increasing throughput. In some areas of systems biology,
chemists and biologist are designing small molecular probes or inhibitors to specific proteins
or a class of proteins to probe function.

Regardless of the project, systems biology by necessity is becoming more quantitative, both
in data collecting and modeling pathways and biological processes. These models make
predictions which in turn can be tested through additional experimentation with respect to
data collection as well as with regard to the modeling of biological pathways and processes.
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Conclusion
Science today is different from that of 20 years ago. Whole genomes have been sequenced
and the opportunity for comprehensive analysis of biological pathways has arrived. Not only
is it possible to uncover the biological components and events that occur, but the ability to
obtain a quantitative description is now possible. This information will be extremely
valuable in medicine for understanding how pathways go awry in human disease. Often
common diseases arise from complex interactions between genetics (polymorphisms in
coding and non-coding regions) influencing transcription and translation the proteome and
the environment. Global analysis of molecular components and states during human diseases
is expected to be valuable for diagnostics and monitoring treatments [54].
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Figure 1.
Timeline of yeast projects
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Figure 2.
Types of temporal patterns of transcription factors binding to DNA A) Constitutive binding
(no change). B) Rapid binding (immediate response and no attenuation of signal). C)
Delayed binding (lag in binding and then no change in binding). D) Transient binding
(immediate response then return to steady-state levels). E) Rapid dissociation (immediate
response and no reassociation). F) Delayed dissociation (lag before complete dissociation).
G) Transient dissociation (initial dissociation before reassociation). (Reproduced from [32])
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Figure 3.
Simple motifs/ modules found in complex regulatory networks. Seven different motifs of
interactions described between kinates: kinases, their substrates and transcription factors.
(Reproduced from [53])
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Table 1

Large Scale Yeast Projects and Methods

Project/Method Goal Reference

Transposon tagging Gene expression; protein localization; disruption phenotypes [1,28,55]

DNA Microarrays Gene expression [22]

Systematic Knockouts Phenotypes [56,57]

Protein Localization Using Directed Tagging Subcellular protein localization [1,28,55,58]

Biochemical protein characterization Biochemical activities [59,60]

Protein Microarrays Biochemical activities; protein modifications; interactions [21,45,60]

Mass Spectrometry Protein profiling; Quantitative protein levels [61-63]

Protein-Protein Interactions Two hybrid Protein interaction maps; Protein function prediction [14-16]

Protein-Protein Interactions Complex purification Protein interaction maps; Protein function predication [19,20,64]

Genetic Interactions Global synthetic screens [37,39,65,66]

Phosphorylation Kinase substrate map; Large-scale phosophylation mapping [41,42,46,67]

Other post-translational modifications Mapping of glycosylation; SUMO, acetylation, ubiquitination, [68-72]
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