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Synchronization and entrainment of
coupled circadian oscillators
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Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic
nucleus of the hypothalamus. In physiological conditions, the system of neurons is very effi-
ciently entrained by the 24 h light–dark cycle. Most of the studies carried out so far
emphasize the crucial role of the periodicity imposed by the light–dark cycle in neuronal
synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of
these cellular interactions seemingly plays a major role in these biochemical processes. In
this paper, we use a model that considers the neurons of the suprachiasmatic nucleus
as chemically coupled modified Goodwin oscillators, and introduce non-negligible hetero-
geneity in the periods of all neurons in the form of quenched noise. The system response to
the light–dark cycle periodicity is studied as a function of the interneuronal coupling
strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that
the right amount of heterogeneity helps the extended system to respond globally in a more
coherent way to the external forcing. Our proposed mechanism for neuronal synchronization
under external periodic forcing is based on heterogeneity-induced oscillator death, damped
oscillators being more entrainable by the external forcing than the self-oscillating neurons
with different periods.

Keywords: circadian oscillations; quenched noise; noise-induced oscillator death;
modified Goodwin model; noise-induced synchronization
1. INTRODUCTION

Circadian rhythms are light–dark-dependent cycles of
roughly 24 h present in the biochemical and physiologi-
cal processes of many living entities [1]. In mammals,
the main mediator between the light–dark periodicity
and the biological rhythms is formed by two intercon-
nected suprachiasmatic nuclei (SCN), located in the
hypothalamus. These nuclei form the so-called ‘circa-
dian pacemaker’ and contain about 10 000 neurons
each [1,2].

The main property of the SCN is that their activity
displays self-sustained oscillations in synchrony with
the external forcing imposed by the light–dark cycle.
The exact mechanism leading to this behaviour has
been the subject of intense research. It has been shown
that, when taken individually, neurons produce oscil-
lations with a constant period ranging from 20 to 28 h
[3,4]. The oscillatory behaviour originates in a regulatory
circuit with a negative feedback loop. The relevant
question is how this individual oscillatory behaviour
translates into common, global, oscillations of the SCN
activity synchronized with the external light stimulus.

It has been shown that the origin of the oscillatory
activity of the circadian pacemaker at the global level
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resides on the interaction between the SCN neurons.
Coupling between cells in the SCN is achieved partly
by neurotransmitters [3,5] and it is by means of those
neurotransmitters that external forcing by light influ-
ences the neuronal synchronization. For example, the
vasoactive intestinal polypeptide (VIP) has been
shown to be necessary in mediating both the periodicity
and the internal synchrony of mammalian clock
neurons [6–8]. Therefore, a model of coupled and
forced neurons appears quite naturally as responsible
for the circadian rhythms. Along these lines, an inter-
esting mechanism has been put forward recently by
Gonze et al. [9] and by Bernard et al. [10]. They pro-
posed that synchronization to the external forcing is
facilitated by the fact that interneuronal coupling
transforms SCN into damped oscillators that can then
be easily entrained.

In this paper, we show that the presence of some level
of heterogeneity or dispersion in the intrinsic periods of
the oscillators [11,12] can improve the response of the
coupled neuronal system to the external light–dark for-
cing. The proposed mechanism for the improvement of
the neuronal synchronization under external periodic
forcing bears some similarities to the one proposed in
Gonze et al. [9] and Bernard et al. [10] in the sense
that the oscillators are brought to a regime of oscillator
death [13,14], but in our case, this regime is induced by
the presence of heterogeneity. Once this regime has
been reached, the damped oscillators are more
This journal is q 2010 The Royal Society
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entrainable by the external forcing than the self-
oscillating neurons with different periods, or the
synchronized oscillatory state that appears in the
strong coupling regime but with a period larger than
the individual neuronal periods.

To be more specific, we will assume that the periods
of the individual neurons are random variables drawn
from a normal distribution. We will then analyse the
global response of the system to the light–dark cycle
periodicity as a function of the interneuronal coupling
strength, external forcing amplitude and neuronal
heterogeneity. We show that the presence of the
right amount of dispersion in the periods of the
neurons can indeed enhance the synchronization to
the external forcing.

Period dispersion arises as a consequence of the cellu-
lar heterogeneity at the biochemical level, which is an
experimentally well-observed fact [3,15]. It can act in
either physiological or pathological conditions. An
example of the latter is the diversification of antigenic
baggage present in tumour cells that makes them
more difficult to be recognized and captured by the
defence mechanisms and therefore more prone to
migrate and develop metastasis [16]. Our results show
that some level of disorder can be of help when synchro-
nizing neuronal activity to the external forcing.
Although counterintuitive, it has been unambiguously
shown that the addition of various forms of disorder
can improve the order in the output of a large variety
of nonlinear systems. For example, the mechanism of
stochastic resonance [17,18] shows that the response
of a bistable system to a weak signal can be optimally
amplified by the presence of an intermediate level of
dynamical noise. Stochastic resonance is not a rare
phenomenon; it has been repeatedly shown to be rel-
evant in physical and biological systems described by
nonlinear dynamical equations [17,18]. In large systems
with many coupled elements, noise is responsible for
a large variety of ordering effects, such as pattern
formation, phase transitions, phase separation, spatio-
temporal stochastic resonance, noise-sustained
structures, doubly stochastic resonance, among many
others [19]. All these examples have in common that
some sort of order at the macroscopic level appears
only in the presence of the right amount of noise or
disorder at the microscopic level. Furthermore, it has
been proved that noise may play a constructive role in
nonlinear systems, by enhancing coherent (periodic)
behaviour near bifurcations and phase transitions
[20,21]. In this paper, we introduce non-negligible
random heterogeneity into the periods of all neurons,
the so-called quenched noise. Numerical simulations
suggest (data not shown) that the results are valid as
well when the quenched noise is introduced into the
model parameters. A different approach is the consider-
ation of intracellular stochastic variability owing to
low molecule numbers [22] or both variability and
heterogeneity.

Close to our work is the study by Ueda et al. [23],
where the effect of fluctuations in neuron parameter
values is assessed and it is shown that the coupled
system is relatively robust to noise. Previous theoretical
studies have addressed the effect of noise on genetic
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oscillators [24–26], and some have proposed an ordering
influence of noise on circadian clocks at the single cell
level in cases where neither light intensity nor coupling
strength by themselves can synchronize the system.
Collective phenomena induced by heterogeneity in
autonomous, non-forced systems have also been dis-
cussed in the literature. For example, de Vries &
Sherman [27] and Cartwright [28] have shown that col-
lective bursting or firing can appear in excitable systems
and a general theory of the role of heterogeneity in those
systems has been developed by Tessone et al. [29]. In
this paper, we refer to the collective response in systems
of nonlinear oscillators subjected to the action of an
external forcing representing the dark–light cycle.

The paper is organized as follows. In §2, we will
describe in detail the model of circadian oscillators
and the methods we use. It is a coupled extension of
the original Goodwin oscillator [30] as developed by
Gonze et al. [9]. In §3, we analyse the system response
to the periodic external forcing, as a function of the
external forcing amplitude, coupling strength and neur-
onal diversity or heterogeneity. By simulating
numerically the governing differential equations, we
identify the range of these parameters for which the
extended system oscillates in synchrony and entrained
to the external light period. Section 3.1 describes the
mechanism through which the neuronal heterogeneity
favours the synchronization with the external forcing
and analyses the combined influence of the coupling
strength, neuronal heterogeneity and light amplitude
on the stability of the linearized system of coupled
oscillators. We show that a mean variable in this
model exhibits a transition from a rhythmic to an
arrhythmic dynamics (the so-called oscillator death
[13,14]). Concluding remarks are found in §4.
2. MODEL AND METHODS

2.1. The circadian pacemaker

As stated in the introduction, our aim is to consider the
role that the heterogeneity in the population of neurons
plays in the global response of the SCN to an external
oscillating stimulus. To this end, we consider an ensem-
ble of coupled neurons subject to a periodic forcing.
Each of the neurons, when uncoupled from the others
and from the external stimulus, acts as an oscillator
with an intrinsic period. Heterogeneity is considered
insofar as the individual periods are not identical, but
show some degree of dispersion around a mean value.
For each one of the neurons in the SCN we use a four-
variable model proposed by Gonze et al. [9], which is
based originally on the Goodwin oscillator [30], to
describe circadian oscillations in single cells. The vari-
ables of the model are as follows. The clock gene
mRNA (X ) produces a clock protein (Y ), which acti-
vates a transcriptional inhibitor (Z) and this in turn
inhibits the transcription of the clock gene, closing a
negative feedback loop. The mRNA X also excites the
production of neurotransmitter V, which in the coupled
system will be then responsible for an additional
positive feedback loop. In order to overcome the high
Hill coefficients required for self-oscillations, Gonze
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et al. replaced the linear degradation by nonlinear
Michaelis–Menten terms. This leads to the system of
equations

dX
dt
¼ n1

K4
1

K4
1 þ Z4

� n2
X

K2 þ X
; ð2:1Þ

dY
dt
¼ k3X � n4

Y
K4 þ Y

; ð2:2Þ

dZ
dt
¼ k5Y � n6

Z
K6 þ Z

ð2:3Þ

and
dV
dt
¼ k7X � n8

V
K8 þ V

; ð2:4Þ

which, depending on parameters, might produce
oscillations in a stable limit cycle. Using the values
n1 ¼ 0.7 nM h21, n2 ¼ n4 ¼ n6 ¼ 0.35 nM h21, n8 ¼ 1
nM h21, K1 ¼ K2 ¼ K4 ¼ K6 ¼ K8 ¼ 1 nM, k3 ¼ k5 ¼

0.7 h21, k7 ¼ 0.35 h21, the period of the limit cycle
oscillations is T ¼ 23.5 h.

For the complete model, we take N neuronal oscil-
lators, each one of them described by four variables
(Xi, Yi, Zi, Vi), i ¼ 1, . . . , N, satisfying the above evol-
ution equations. Heterogeneity in the intrinsic periods is
introduced by multiplying the left-hand side of each one
of the equations (2.1)–(2.4) by a scale factor ti. Hence,
the intrinsic period Ti of the isolated neuron i is tiT.
The numbers ti are independently taken from a
normal random distribution of mean 1 and standard
deviation s. Since the periods must be positive, in the
numerical simulations, we have explicitly checked
that, for the values of s considered later, ti never
takes a negative value, which would be unacceptable.
The standard deviation s will be taken as a measure
of the diversity. A value of s ¼ 0.1 for example corre-
sponds to a standard deviation of 10 per cent in the
individual periods of the uncoupled neurons, close to
the observed variation of periods between 20 and 28 h.

Two additional factors influence the dynamics of
single cell oscillations: forcing by light and intercellular
coupling. Both are assumed to act independently from
the negative feedback loop and are added as indepen-
dent terms in the transcription rate of X [9]. Light
is incorporated through a periodic time-dependent
function L(t), which can be realized in various forms.
In the majority of the presented results, and unless
stated otherwise, we have used a sinusoidal signal,
L(t) ¼ (L0/2)(1 þ sin vt). In some cases, for compari-
son and to simulate different day lengths, we have
used a square wave

LðtÞ ¼ L0; if ðt mod 24 hÞ , tlight

0; otherwise:

�

In both ways, the signal oscillates between the values
L(t) ¼ 0 and L(t) ¼ L0 with a period 2p/v ¼ 24 h.

Coupling between the neurons is assumed to depend
on the concentration F of the synchronizing factor (the
neurotransmitter) in the extracellular medium, which
builds up by contributions from all neurons. Under a
fast transmission hypothesis, the extracellular concen-
tration is assumed to equilibrate to the average,
mean-field, cellular neurotransmitter concentration,
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F ¼ (1/N)
P

i¼1
N Vi. The resulting model is

ti
dXi

dt
¼ n1

K4
1

K4
1 þ Z4

i
� n2

Xi

K2 þ Xi

þ nc
KF

Kc þKF
þ LðtÞ

ð2:5Þ

ti
dYi

dt
¼ k3Xi � n4

Yi

K4 þ Yi
; ð2:6Þ

ti
dZi

dt
¼ k5Yi � n6

Zi

K6 þ Zi
; ð2:7Þ

ti
dVi

dt
¼ k7Xi � n8

Vi

K8 þ Vi
ð2:8Þ

and F ¼ 1
N

XN
i¼1

Vi; ð2:9Þ

with nc ¼ 0.4 nM h21, Kc ¼ 1 nM.
There is experimental evidence supporting the

assumption of a chemical (rather than electrical) mech-
anism of intercell communication among SCN neurons
as a synchronization factor and, in fact, mechanisms
other than neurotransmitters or electrical coupling for
the SCN communication have been suggested (e.g. by
Pol & Dudek [31]). Furthermore, more realistic model-
ling that takes into account all variables known to
participate of the negative feedback loop has been intro-
duced. These models may include up to 10 variables
and corresponding equations for each single cell [10].

It seems, however, that in order to get an under-
standing of the SCN dynamics, a sufficient tool is the
four-variable model described above. In fact, the
synchronization of damped oscillators is independent
from the particular intracellular model used and as
discussed by Bernard et al. [10], this system, the
model developed by Leloup & Goldbeter [32], and
other simple negative feedback oscillators have similar
synchronization properties. In this paper, we have
decided to use the simpler four-variable model although
most of our results are also valid in the more complex
10-variable model.

A model close to equations (2.5)–(2.9) has been used
by Ullner et al. [33], where the authors investigate
how the interplay between fluctuations of constant
light and intercellular coupling affects the dynamics
of the collective rhythm in a large ensemble of non-
identical, globally coupled oscillators. In their case,
however, an inverse dependence of the cell–cell coup-
ling strength on the light intensity was implemented,
in such a way that the larger the light intensity the
weaker the coupling.
2.2. Measures of synchrony and entrainment

Owing to the effect both of coupling and of forcing, the
neurons might synchronize their oscillations. There are
several possible measures of how good this synchroniza-
tion is. In this paper, the interneuronal synchronization
will be quantified by the parameter of synchrony
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Figure 1. Synchrony order parameter r (see equation (2.10)). Values are coded in colour levels, and displayed as a function of L0

and s for several values of K. Data from numerical simulations of N ¼ 1000 neurons with dynamics ruled by equations (2.5)–
(2.9). Synchrony among the neurons (yellow region) is favoured by strong or very weak light intensity L0, low diversity s and
large coupling K. The thick black line is the linear stability limit discussed in §3.1 (see also figure 7).
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r, defined as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kPN

i¼1 ½ViðtÞ � FðtÞ�2PN
i¼1 ViðtÞ2

l
vuuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k FðtÞ2

1
N

PN
i¼1 ViðtÞ2

l
vuuut ; ð2:10Þ

where k � � � l denotes a time average in the long-time
asymptotic state. The parameter r varies between a
value close to 0 (no synchronization) and 1 (perfect syn-
chronization, with all neurons in phase, Vi(t) ¼ Vj(t),
8i,j). It is important to note that even if the neurons
synchronize perfectly their oscillations, the period of
those oscillations does not necessarily coincide with
the mean period T of the individual oscillators or
with the period 2p/v of the external forcing. In fact, in
the unforced (no light) case, the period of the common
oscillations (for the set of parameters given before and
a dispersion of s ¼ 0.05 and coupling K ¼ 0.5) is
approximately equal to 26.5 h whereas the period of
the forcing is 2p/v ¼ 24 h and the mean period of the
individual uncoupled oscillators is T ¼ 23.5 h [9].

Besides the previous measure of synchronization
among the oscillators, we are also concerned about
the quality of the global response of the neuronal
ensemble to the external forcing L(t). A suitable
measure of this response can be defined using the
average gene concentration,

XðtÞ ¼ 1
N

XN
i¼1

XiðtÞ; ð2:11Þ

and computing the so-called spectral amplification
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factor R [17],

R ¼ 4
L2

0
jke�ivtXðtÞlj2: ð2:12Þ

R is nothing but the normalized amplitude of the Four-
ier component at the forcing frequency v of the time
series X(t). We will show that, under some circum-
stances, the response R will increase with the intrinsic
diversity s and that the period of the oscillations at
the global level coincides with that of the external
forcing, these being the main results of this paper.
3. RESULTS

The synchronization properties of the set of circadian
oscillators are influenced by the amplitude of the exter-
nal forcing L0, the coupling strength K and the diversity
in the individual periods s. The role of the first two has
been studied in Bernard et al. [10], Gonze et al. [34] and
Becker-Weimann et al. [9]. In this section, we focus on
the heterogeneity of neuronal periods and analyse the
combined influence of L0, K and s on the different
parameters quantifying interneuronal synchronization
and response to the forcing.

Figure 1 shows colour plots of the parameter of
synchrony r as a function of the diversity s and the
light intensity L0, for different values of the coupling
strength K. High values of the light intensity L0 favour
interneuronal synchrony. Also in agreement with its
intuitive disordering role, high neuronal diversity leads
to a low synchrony parameter r in several parts of the
diagrams. However, there is a region of values of L0[
[0,Lmax] for which there is a non-monotonic dependence
of the synchrony order parameter with respect to the
diversity. This can be seen more clearly in figures 2a
and 3a where we plot r as a function of diversity s for
fixed values of K ¼ 0.6 and L0 ¼ 0.005. r first decreases
by increasing s within the interval 0 � s� 0.05, but
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then it develops to a maximum. The range of values of L0

for which this non-monotonic behaviour is observed
depends on the coupling constant K: the larger is K,
the larger is Lmax.

As stated before, the fact that neurons synchronize
among themselves does not mean that they synchronize
to the forcing by light. To study this point, we have
computed the individual periods Ti, i ¼ 1, . . . , N, of
the oscillators in the ensemble. In those cases in which
the concentrations do not oscillate with exact period-
icity, we still define the period as the average time
between maxima of the dynamical variables. In
figure 4, we plot the mean value �T ¼ ð1=N Þ

PN
i¼1 Ti

as a function of s and L0 for different values of K. As
the dispersion in Ti is small, it turns out that �T is
close to the period of the average variable X(t).

Although, by construction, individual neurons have
periods that fluctuate around T ¼ 23.5 h, it turns out
that the period of the resulting synchronized oscillations
that occur in the unforced but coupled (L0 ¼ 0, K . 0)
case increases with increasing coupling K. For example,
�T � 30 h for K ¼ 0.6, mostly independent of the value
of s. As the forcing sets in, at low values of the coupling
strength, the mean period is now �T ¼ 24 h for all values
of L0 and s. As the coupling between neurons increases,
larger values of L0 and/or s are needed in order for the
mean period to coincide with that of the external
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forcing. An important feature that emerges from these
plots is that for low light intensity it is possible to
achieve a mean period of 24 h by increasing the neur-
onal diversity. For example, in the areas at the left of
the different panels of figure 4, or figures 2b and 3b cor-
responding to the case K ¼ 0.6, while identical neurons
have periods of �30 h, increasing s induces an adjust-
ment of the period to 24 h. The transition between
�T ¼ 24 h and �T = 24 h is rather sharp, specially for
large K. This is a clear manifestation that diversity
indeed is able to improve the response to the external for-
cing. The same conclusion about the constructive role of
diversity can be reached by looking at the measure of
response R (figures 5, 2c and 3c). These figures show
that there is a region in parameter space in which the
system response to the periodic light forcing displays
a maximum value as a function of diversity s. This
indicates that it is possible to improve neuronal
synchronization to the daily-varying light input by
taking s close to an optimal value. Too small or too
large a diversity will not yield an optimal response.
This is a clear manifestation that diversity indeed is
able to improve the response to the external forcing.

A complementary perspective on this constructive
role of diversity is attained looking at spectral amplifi-
cation factor, R, from equation (2.12). This is a
normalized measure of the amplitude of the oscillation
of the neuronal system at the frequency of the daily for-
cing. Figures 5 and 2c show that there is a region in
parameter space in which the system response to the
periodic light forcing displays a maximum value as a
function of diversity s. In fact this maximum is very
large when compared with the R value at zero diversity,
so that one can say that one of the most noticeable
effects of a non-vanishing neuronal diversity is to give
the system the capacity to respond efficiently to the
24 h forcing in situations of small or no response at
this frequency in the absence of diversity (the non-
diverse neuronal ensemble could be oscillating at a
different frequency, as revealed by high values of r).
In summary, it is possible to largely improve neuronal
synchronization to the daily-varying light input by
taking s close to an optimal value. Too small or too
large a diversity will not yield an optimal response at
this frequency, although the response is generally
larger than for zero diversity.

An external signal of square wave form and with
different day lengths leads to similar results. As can
be seen in figure 3, the response R to the external
signal passes through a maximum at an intermediate
value of diversity. The mean period and the synchrony
parameter behave as in the case with a pure sinusoidal
as the driving force. Furthermore, the qualitative result
is independent of the chosen day length.
3.1. Diversity-induced oscillator death

Why does an increase in the diversity of the oscillators
lead to an improved response to the external forcing?
We argue that the main effect of the increase of the
diversity is to take the oscillators into a regime of oscil-
lator death [13,14] in which they can be easily entrained
by the varying part of the forcing. To understand this
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mechanism, we first split the forcing into a constant
(the mean) and a time varying part: L(t) ¼ L0/2 þ
(L0/2)sin(vt). Taking only the constant part, L(t) ¼
L0/2, figure 6a–c shows that the oscillators go from
self-sustained oscillations to oscillator death, i.e. the
amplitude of the self-sustained oscillations decreases,
as s increases. Once oscillators are damped, they
would respond quasi-linearly to periodic forcing, at
least if this forcing is not too large, and linear oscillators
always become synchronized to the external forcing,
independently of their internal frequency. This is con-
sistent with what is seen in figure 6d– f, where the
neurons in the case of low heterogeneity oscillate
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synchronously with each other, but their common
period is larger than the one of the light forcing. Only
when diversity brings the neurons to oscillator death
can all of them be entrained to the period of the forcing
signal. The mechanism is related to the one discussed
by Gonze et al. [9] and Bernard et al. [10], but here
we stress that neuron heterogeneity, as opposed to
internal neuron parameters and couplings, is enough
to damp the collective neuron oscillations and bring
the system to a non-oscillating state where it can be
more easily entrained. It is interesting to note that it
has been shown experimentally for fruitflies that only
a subset of the pacemaker neurons sustain cyclic gene
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line on the bottom of the graphs is the external light signal. K ¼ 0.6.
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expression after changing the laboratory light con-
ditions to constant darkness, whereas the oscillations
of the other pacemaker neurons are damped out [35].
Although this does not reveal the mechanism by
which the oscillations die out it suggests that some of
the circadian oscillators do indeed work in the
damped regime, at least in Drosophila.

An alternative way of checking this mechanism
based on diversity-induced oscillator death is by
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analysing the stability of the steady state of the
system of equations (2.5)–(2.9) when considering a con-
stant forcing L(t) ¼ L0/2. The numerical calculation of
the fixed point of the dynamics is greatly simplified by
the fact that the concentrations of the biochemical vari-
ables are the same for each one of the N neurons
irrespectively of their specific value of ti. The system
(2.5)–(2.9) is linearized around this steady state and
the eigenvalues of the stability matrix computed for
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Figure 7. Colour plots of the maximum real part of the average eigenvalues of the system of equation (2.5)–(2.9), as a function of
s and L0, at different values of K. Increasing s or increasing L0 changes this quantity from positive to negative, i.e. transforms the
self-sustained neurons into damped neurons by stabilizing their constant concentration fixed points. Increasing the coupling
enlarges the region of self-sustained oscillations. Averaged from 10 realizations of heterogeneity in 200 neurons.
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several realizations of diversity parameters ti. In each
case, the positive or negative character of the real
part of the eigenvalue with the largest real part
indicates the instability or stability, respectively, of
the fixed point solution. In figure 7, we plot the mean
of that maximum real part of the eigenvalues averaged
over various realizations of the time scales ti, for N ¼
200 coupled neurons, as a function of L0 and s, and
different values of the coupling K (see figure 2d). In
every diagram, we can see that low diversity or low
forcing yield an unstable steady state (yellow region).
This is where self-sustained oscillations are observed.
A thick black line in the contour plots indicates a zero
real part. The relevance of this line separating positive
from negative maximum average eigenvalues is more
apparent when we note that it also delimits regions of
interest in figures 1, 4 and 5.

In summary, increasing the diversity or the (con-
stant) forcing term decreases (on average) the
maximum eigenvalue of the coupled system and thus
a Hopf bifurcation can be crossed backwards, so that
self-oscillations disappear. When applying the periodic
external forcing on the system formed by self-sustained
neurons, coherence with the external frequency is
difficult to achieve because there is the competing
effect of mutual neuron synchronization to a different
frequency. However, when the periodic external forcing
is applied on the system of damped neurons, they all
synchronize to the external forcing, and thus with
each other since this is the only dynamical regime
available to forced damped oscillators (if forcing is not
too strong to excite further resonances). Increased
coupling strength increases the range of unentrained
self-oscillations.

Oscillator death by diversity is not particular to this
system. Mirollo & Strogatz [14] analyse a large system of
limit-cycle oscillators with mean field coupling and ran-
domly distributed frequencies. They proved that when
the coupling is sufficiently strong and the distribution
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of frequencies has a sufficiently large variance, the
system undergoes ‘amplitude death’. In their approach,
the oscillators pull each other off their limit cycles,
which are translated into a stable equilibrium point
for the coupled system. Thus, this mechanism suggests
that the quenched noise we introduced in the system
‘pushes apart’ the limit cycles of the different neurons,
so that their competition enlarges the range of
parameters where fixed point behaviour is stable.

A qualitative argument explaining the diversity-
induced oscillator death in our system of coupled
neurons goes as follows. We know from Gonze et al.
[9] that a single oscillator can switch from a limit
cycle to a stable steady state by adding a constant
mean field (the term containing F in equation (2.5)
but with time-independent F) of sufficient strength to
equation (2.1). A constant light forcing term has the
same effect (see the zero coupling case in figure 7). Fur-
thermore, we have observed that the amplitude of the
oscillations decreases with rising diversity (compare
figure 6), but the mean does not change. In a system
with low diversity, we have large oscillations of F
around that mean value. If this value, taken as a
constant, determines a stable steady state, then we
argue that the large oscillations lead the system into
unstable regions, whereas by increasing s the
amplitude is decreased and the concentrations do not
leave the neighbourhood of the stable fixed point,
thus finding themselves damped all the time. This is a
possible mechanism for the diversity-induced oscillator
death phenomenon.
4. CONCLUDING REMARKS

In this work, we have analysed the role of diversity
in favouring the entrainment of a system of coupled
circadian oscillators. We introduce non-negligible het-
erogeneity in the periods of all neurons in the form of
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quenched noise. This is achieved by rescaling the indi-
vidual neuronal periods by a scaling factor drawn
from a normal distribution. The system response to
the light–dark cycle periodicity is studied as a function
of the interneuronal coupling strength, external forcing
amplitude and neuronal heterogeneity.

Most of the cases of order induced by heterogeneity
or noise carried out so far [17,18,21,29,33,36,37] empha-
size the fact that the diversity directly improves
oscillator synchronization. In our case, the mechanism
is rather different. Diversity does not improve system
synchronization directly. This is achieved indirectly,
leading first to a diversity-induced stabilization of the
fixed points of the neurons forming the system. Once
steady concentrations are asymptotically stable, it is
much better entrainable by the external forcing, so
that the damped neurons adapt easily to the external
forcing (and then, in addition, they appear as synchro-
nized between them). The synchronization arises,
therefore, not as a result of a direct diversity-induced
neuronal synchronization but indirectly, as a result of
the diversity-induced oscillator death. Our results indi-
cate, therefore, that the right amount of heterogeneity
helps the extended system to respond globally in a
more coherent way to the external forcing. In addition
to the robustness of the results against the use of non-
sinusoidal forcing we have checked that resonances in
the responses to the external forcing and matching of
the circadian period to the external forcing appear in
more complex models, such as the 10-variable model of
Bernard et al. [10] with diversity in the time scales ti,
or the four-variable model of Gonze et al. [9] with hetero-
geneity in all the reaction rate parameters ni. We expect
that a similar behaviour will be found in models of non-
mammalian clocks like those of Drosophila [38], Arabi-
dopsis [39], Neurospora [40] or cyanobacteria [41].

Of course, it is an open question whether the observed
diversity in the periods of the neurons of the SCN has
been tuned by evolution in order to display a maximum
response to the 24 h dark–light natural cycle. A detailed
experimental check of our predictions would require one
to be able to vary the amount of diversity. In this sense,
we suggest the possibility of using chimeric organisms
[42] to introduce diversity in a controlled way.

We acknowledge financial support from the EU NoE BioSim,
contract LSHB-CT-2004-005137, and MEC (Spain) and
FEDER (EU) through project FIS2007-60327. N.K. is
supported by a grant from the Govern Balear.
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