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Electric stimulation has been investigated for several decades to treat, with various degrees of
success, a broad spectrum of neurological disorders. Historically, the development of these
methods has been largely empirical but has led to a remarkably efficient, yet invasive treat-
ment: deep brain stimulation (DBS). However, the efficiency of DBS is limited by our lack of
understanding of the underlying physiological mechanisms and by the complex relationship
existing between brain processing and behaviour. Biophysical modelling of brain activity,
describing multi-scale spatio-temporal patterns of neuronal activity using a mathematical
model and taking into account the physical properties of brain tissue, represents one way
to fill this gap. In this review, we illustrate how biophysical modelling is beginning to
emerge as a driving force orienting the development of innovative brain stimulation methods
that may move DBS forward. We present examples of modelling works that have provided
fruitful insights in regards to DBS underlying mechanisms, and others that also suggest
potential improvements for this neurosurgical procedure. The reviewed literature emphasizes
that biophysical modelling is a valuable tool to assist a rational development of electrical
and/or magnetic brain stimulation methods tailored to both the disease and the patient’s
characteristics.
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1. INTRODUCTION

Brain rhythms, also known as neuronal oscillations or
brain waves, occur at very different scales of space and
time. Indeed, single-cell oscillations range from
0.01 Hz to more than 600 Hz [1], corresponding to
firing periods between 1.6 ms and 100 s, a ratio of
about 6 � 104. Furthermore, some brain oscillations
are localized (millimetre scale), whereas others can
spread up to several centimetres [2], a ratio of approxi-
mately 103. Brain oscillations as measured by local field
potentials, electroencephalographic (EEG) or magne-
toencephalographic (MEG) recordings are usually
classified as d (1–4 Hz), Q (4–7 Hz), a (8–12 Hz),
b (13–30 Hz) and g (30–100 Hz) rhythms. These oscil-
lations are produced by large ensembles of synchronized
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neuronal activity and the resulting electrophysiological
signals in the different frequency bands are associated
with different functional states (e.g. sleep, wake and
perception).

It is difficult to bridge the gap between behavioural
and single-cell data. Similarly it is not obvious to deter-
mine which brain rhythms contribute to generating
behaviour (e.g. how motor cortex activity generates
movement execution), and which rhythms are the con-
sequences of behaviour (e.g. how cerebral activity is
induced by proprioceptive afferences). It has been
debated whether brain oscillations have a functional
role, or if they are an epiphenomenon of other infor-
mation processing mechanisms [3,4]. One additional
difficulty is that brain rhythms coexist and interact con-
tinuously with each other. In 1980, Gray et al. [5] used
recordings of spike trains in the visual cortex following
a visual stimulus (moving bar), and recorded oscil-
latory, synchronized activity between different regions
This journal is # 2010 The Royal Society

mailto:anne.beuter@ensc.fr


62 Review. Reshaping brain rhythms J. Modolo et al.
of the visual cortex. The authors hypothesized that the
role of the synchronized oscillations might represent
characteristics of the stimulus. Moreover, this might
express a general principle in cortical processing as
well as in unifying different components of a pattern
processed in spatially distributed circuits into a
unique representation. Later on, and based on these
previous experimental results, Varela [6] proposed that
cognitive processes are the result of transient synchroni-
zation between neuronal assemblies in common
frequency bands, therefore proposing a central role to
brain oscillations in behaviour. This putative role of
neuronal synchrony in cognitive processes has also
been highlighted by Fries [7], who emphasized more
specifically that neural synchronization at g frequencies
may play a crucial role in the coordination of cognitive
processes [8]. The potential functional role of brain
oscillations has been examined thoroughly by Buzsaki
in his book Rhythms of the brain [9], where he examines
the nature and the functional significance of brain
rhythms. He focuses on the principles linking structure
and function and argues that network complexity is
based on the geometry of recurrent clusters having a
small number of pivotal elements as the common
thread [10]. He also explores the importance of inhi-
bition and the significance of temporal coherence and
patterning as the ‘machine language for the brain’
[10]. These topics, according to Buzsaki’s words, ‘rep-
resent the middle grounds of brain activities between
the microscopic mindless neurons and the wise, per-
forming brain’. Therefore, establishing a relationship
between brain spatio-temporal patterns and behaviour
appears relevant to understanding information pro-
cessing by the brain both in physiological and
pathological conditions. Overall, understanding how
brain rhythms are generated in physiological con-
ditions, but also during the transition towards
pathological conditions where brain rhythms change
[11], is critical for the conception of innovative brain
stimulation methods. This issue of brain rhythms in
physiological and pathological conditions has been
extensively reviewed in a recent book [12].

Distorting brain rhythms can shift brain function
from a physiological to a pathological regime [13] and
produce a variety of neurological disorders (motor or
psychiatric). Several hypotheses have been proposed
on the functional role of neuronal oscillations. As
early as 1938, Gibbs et al. [14] proposed that ‘cortical
dysrhythmia’, a disruption in brain rhythms, was the
cause of neurological and neuropsychiatric disorders.
Furthermore, the concept of ‘thalamocortical dysrhyth-
mia’ introduced by Llinas et al. [15] suggests that
positive and negative symptoms can be explained by
intricate dynamics in thalamic and cortical neurons.
At the base of thalamocortical dysrhythmia lies dimin-
ished excitatory or increased inhibitory input at the
thalamic level, leading to a switch of thalamocortical
neurons from tonic to burst firing subsequently entraining
thalamic and cortical areas to pathological oscillations
around 5 Hz. Current clinical data tend to support this
view. Indeed, neurodegenerative disorders such as
Parkinson’s disease (PD) or Alzheimer’s disease appear
to be associated with disturbed modulation in brain
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rhythms with increased synchronized activity around
5 Hz and harmonics in PD [16–19], and increased d

activity (1 to 4 Hz) in Alzheimer’s disease [20].
Thus, the notion that abnormal brain rhythms

underlie a broad spectrum of neurological and psychia-
tric disorders is receiving growing experimental and
clinical support. Consequently, stimuli producing
appropriate neuromodulation normalizing brain
rhythms supposed to cause symptoms are likely to
result in positive clinical outcomes. In this paper, we
focus on a well-known form of therapeutic brain stimu-
lation, namely deep brain stimulation (DBS) in PD,
which is today an accepted, well documented and estab-
lished neuromodulation method. Moreover, this
treatment has revealed its therapeutic benefits over
the last 20 years by demonstrating a normalization of
brain rhythms. In this review, we present how biophysi-
cal modelling efforts are exploiting the functional role of
brain rhythms to explore underlying physiological
mechanisms of DBS in PD, and also models proposing
improvements of DBS as it is performed today. Chal-
lenges for experimental testing of these models are
discussed.
2. NEUROMODULATION INDUCED BY
DEEP BRAIN STIMULATION IN
PARKINSON’S DISEASE

Parkinson’s disease is a neurological disorder resulting
in motor (tremor, rigidity, slowness of movements and
postural instability) and cognitive (speech difficulties
and depression) symptoms. The underlying neurological
substrate of these symptoms is the gradual destruction
of dopaminergic neurons in the substantia nigra pars
compacta. However, non-motor symptoms involve not
only the central dopaminergic system, but also the nor-
adrenergic, serotoninergic and cholinergic transmitter
systems. Decreased dopamine, normally present in
numerous brain regions under physiological condition,
leads to disrupted activity in both cortical (e.g. primary
motor cortex, supplementary motor area and pre-motor
cortex) and subcortical structures (e.g. subthalamic
nucleus, internal segment of the globus pallidus and
ventrointermediate nucleus of the thalamus). This
pathological activity is characterized by increased syn-
chrony (i.e. neurons tend to fire simultaneously) in
narrow frequency bands. For example, subthalamic
neuron firing activity occurs mainly at 5 Hz, which is
also a common frequency of Parkinsonian tremor (4–
6 Hz [21,22]), whereas primary motor cortex activity
is prominent at twice the tremor frequency according
to magnetoencephalography recordings (maximal
activity at 10 Hz [19]). Figure 1 presents an example
of coherence between central nervous system activity
(as measured by magnetoencephalography) and muscu-
lar activity (as measured by electromyography) at
tremor frequency (around 5 Hz), illustrating the
potential functional role of abnormal brain rhythms.

It is still unclear if pathological brain activity drives
PD peripheral tremor or if it is the reverse, but exper-
imental evidence suggests that Parkinsonian tremor
originates from low-frequency, synchronized activity of
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Figure 1. Localization, Fourier transform and coherence values between primary motor cortex activity (as measured by magne-
toencephalography) and peripheral rest tremor (as measured by electromyography) in a PD patient. (a) Indication of where the
magnetoencephalographic (MEG) signal is recorded (red area). (b) The power spectrum of MEG signal in the primary motor
cortex, which features a noticeable peak centred at 10 Hz. (c) The cerebro-muscular coherence between the MEG signal in the
primary motor cortex and the electromyographic signal measured at the extensor digitorum communis (EDC) level, with a
maximum value around 10 Hz. (Figure modified from Timmermann et al. [19], with permission.)
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a network of brain structures [19]. This issue has been
challenged in works examining motor cortex activity
and essential tremor, which suggested that the motor
cortex is the generator of essential tremor [19,23,24].
In 1987, Dr Alim-Louis Benabid discovered incidentally
that sending electrical pulses at high frequency (greater
than 100 Hz) in the thalamic ventrointermediate
nucleus of PD patients dramatically relieved tremor
[25]. Since then, between 40 000 and 50 000 PD patients
benefited from this technique [26] called DBS. DBS is
today an established neurosurgical technique, which
relieves efficiently motor and non-motor symptoms of
PD. Usual targets of DBS include the subthalamic
nucleus, the internal segment of the globus pallidus
and the thalamus. The paradox is that, even if DBS is
an effective therapy for many PD sufferers, the under-
lying mechanism of action is still unknown. Therefore,
clinicians must rely on a trial and error approach to pro-
vide appropriate device settings for each patient.
Consequently, advances in biophysical modelling
might provide innovative solutions based on rational
principles, thereby improving this empirical aspect of
DBS as it is performed today. One possible direction
is by tailoring therapy to the needs of patients and
updating stimulation patterns more frequently and
adequately.
3. MATHEMATICAL MODELS OF BRAIN
OSCILLATIONS

It is possible to use different mathematical models
to understand how oscillations can emerge in neural
networks. A simple illustration is to consider a two-
population network (one excitatory and one inhibitory)
[27], where each population is described by its firing rate
and corresponding evolution equation. By computing
the equilibrium point of the system (derivative of the
firing rate set to zero for both populations), and linear-
izing firing rate equations around this point, it is
possible to compute the Jacobian matrix and its eigen
values that determine the stability of the equilibrium
(see [28] for illustrated examples): if they are all nega-
tive, then the equilibrium point (corresponding to a
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steady firing rate for both populations) is stable; other-
wise if at least one eigen value is positive, then the
equilibrium point is unstable and oscillations appear.
Therefore, oscillations are the result of a dynamical
instability occurring when control parameters of the
system vary (such as connectivity parameters or
membrane time constants in this example).

Oscillations and stability of neural networks have
been extensively studied from a mathematical model-
ling perspective. In their pioneer work on neural field
theory, Wilson & Cowan showed that, in a neural
field model (spatio-temporal dynamics of continuous
cortical tissue), the oscillation frequency was directly
proportional to the stimulus intensity, in line with
increased neural firing rate caused by higher electric
stimulation amplitude [29]. Furthermore, under certain
conditions, these oscillations could propagate through
the network, giving rise to waves of electrical activity
propagating in cortical tissue [30]. Along the same
lines, Ermentrout & Cowan [31] provided a mathemat-
ical study on a network of excitatory and inhibitory
populations investigating the conditions (connectivity
parameters within and between populations) allowing
the emergence of oscillations in networks of excitatory
and inhibitory cortical neurons. Their results indicated
that strong recurrent inhibition and strong excitatory
projections towards excitatory neurons promote high-
frequency oscillations, while weak recurrent excitatory
and inhibitory projections give rise to low-frequency
oscillations, providing a link between network architec-
ture (structure) and activity (function). The influence
of time delays induced by finite conduction times of
action potentials has also been explored [32,33], and
provides evidence that time delays may affect the stab-
ility of neural networks. Hutt et al. [34] showed in a
neural field model that, with first- and second-order
synaptic kinetics, non-stationary patterns (oscillations)
could only occur in the presence of time delays above a
given value. This suggests that the presence of time
delays has a functional role, since it increases the diver-
sity of possible spatio-temporal patterns that can
emerge in a neural network. Further, the distribution
of delays in neural networks (since all axonal fibres do
not exactly have the same length, giving a different



Table 1. Summary of the main modelling approaches that have been used to study the question of DBS effects in PD.
The main underlying assumptions and possibilities of these models are mentioned.

single-compartment
spiking neuron models phase oscillator models

multi-compartmental
spiking neuron models neural field models

assumptions neuron soma membrane is
considered a point
capacitor. The timing of
spikes is relevant to
understanding and
describing neuronal
activity

neuronal regular spiking
can be summarized by a
single variable: the
oscillation phase.
Oscillators are then
coupled typically using
a mean coupling
coefficient

neuronal geometry can be
decomposed into smaller
elements, each being
described by Hodgkin–
Huxley equations. Such
neurons are then
‘synaptically’ connected
by coupling together the
system of equations
describing individual
neurons, including
synaptic currents

cortical tissue is a
continuous medium
composed of
interconnected neural
masses (i.e. a cortical
column). The firing
rate is relevant to
understand and
describe neuronal
activity

possibilities describes the time course
of the membrane
potential in response to
synaptic currents, can
describe the effect of an
arbitrary number of
ionic channels with
specific properties

describes concisely large
neuronal networks, and
efficiently reproduces
synchronization
phenomena caused by
coupling between phase
oscillators

describes accurately how
the membrane potential
is affected in space and
time by external
stimulation and how
various parts of the
neuron are affected. The
effect of external electric
stimulation on axonal
fibres can be studied

predicts spatio-temporal
patterns of neuronal
activity (travelling
waves, spiral waves
and visual
hallucinations
patterns)

limitations unable to take into
account axonal
activation, become
rapidly computationally
extensive

unable to reproduce
specific (brain region-
dependent) or complex
spiking patterns
(bursting, post-
inhibitory spiking)

computationally extensive,
limiting the number of
neurons possibly
simulated

no access to single
neuron activity. The
effect of ionic channel
type and kinetics
cannot be investigated

examples [39,40] [41–44] [45] [30,31,34,46]
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spike conduction time) may modulate oscillation fre-
quency [35]. Other works have also intended to link
neuronal oscillations in these models in the context of
brain function. An interesting concept proposed by
Roopun et al. [36] is that two networks oscillating
each at its own frequency could cooperate by sharing
a common, new oscillation frequency that would add
to their own activity; which is possible to link with func-
tion emerging from the interaction between these two
networks. For example, g oscillations have been
suggested to play a role in stimulus competition [37],
while a modelling study simulating neural circuits’ hip-
pocampus showed that u oscillations may serve to
encode memory in terms of spatial and temporal infor-
mation [38]. Therefore, biophysical modelling has
already provided numerous insights on the conditions
in which neuronal oscillations occur, and at which fre-
quency, and may assist in unravelling the functional
role of brain oscillations since it allows variations of
any parameter and its consequences on neural networks
activity.
4. BIOPHYSICAL MODELS OF DEEP BRAIN
STIMULATION MECHANISMS

During the last decade, a growing number of models
have attempted to address the problem of DBS in PD
(table 1). A pioneering mathematical modelling study
with the objective of improving the understanding of
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DBS effects in PD has been initiated by Tass [41] who
used the concept of phase oscillator model to simulate
the abnormally synchronized activity measured exper-
imentally in deep brain regions of patients with PD
[18]. Indeed, Kuramoto showed in 1975 [42] that it
was possible to reproduce synchronization phenomena
using a model of the form

@

@t
wi ¼ �vþ

K
N

X
j

sinðwj � wiÞ; ð4:1Þ

where w is the oscillation phase and varies between
0 and 2p, i.e. the position of the neuron in its oscillation
cycle, K the global coupling factor and N the number of
oscillators. Phase oscillators represent a convenient way
of modelling neuronal oscillatory activity. If a neuron
is regularly spiking at an eigen frequency such that
v ¼ 2pf, there exists a limit cycle in the phase space,
i.e. a closed trajectory in the space of the neuron state
variables. By mapping this trajectory (figure 2a) on a
circle (figure 2b), then the neuron spiking activity can
be described using a single variable: its phase w. By
doing so, we assume that a neuron can be seen as an
oscillator of fixed frequency.

Therefore, the complexity of neuronal dynamics is
captured using a single variable, at the price of losing
all relevant information about ionic channel dynamics
and possible complex spiking patterns. However, these
models have proved useful in understanding the
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Figure 2. Illustration of the relationship between the oscillation phase and the polarization state of the neuron membrane (see
[47]). A neuron regularly spiking ((a) for a representation of neuron trajectory in the phase space) can be represented as a
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w (b). From (a), one can see that different parts of the limit cycle correspond to different neuronal excitability states.
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emergence of synchronization in coupled systems [42].
As a first attempt to understand the effects of DBS
on neural synchronization and to propose a closed-
loop stimulation method using biophysical modelling
as a tool, Tass developed several stimulation techniques
using networks of phase oscillators [41,43,44] investi-
gating the desynchronization of phase oscillators using
stimuli interacting minimally with neural tissue. To
do so, Tass used the same model structure as Kuramoto
[42], including a stimulation term that modulates not
only the phase of the target phase oscillators, but also
temporal fluctuations of the phase capturing the
noise present in the time course of neurons’ membrane
potential. In such a phase oscillator network,
the synchronization was quantified by the index

ZðtÞ ¼ RðtÞ � eiwðtÞ; ð4:2Þ

where R(t) is the real part of the time-dependent syn-
chronization, Z(t) its amplitude and w(t) its phase.
A convenient way to illustrate in a simple manner the syn-
chronization Z(t) of coupled phase oscillators is to
represent each oscillator on a circle, with its position
being its phase. If all phase oscillators are perfectly syn-
chronized, then all oscillators are located on the same
single point of the circle; conversely, if all phase oscillators
are completely incoherent, then all oscillators are regularly
located on the circle. This is illustrated in figure 3.

The situation depicted in figure 3c can roughly rep-
resent a network of abnormally synchronized neurons,
such as subthalamic nucleus neurons in PD [18],
whereas the physiological situation would be close to
the one depicted in figure 3a [43]. Therefore, in order
to reduce abnormal synchronization in a network of
phase oscillators in a closed-loop manner, the parameter
R(t) is suitable to monitor since a threshold can be
fixed, indicating when the level of synchronization is
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too high and stimulation should be triggered. Tass
[44] showed that the effect of a high-frequency pulse
train was to reset the phase of neuronal firing (i.e. pre-
venting the neuron from moving on the circle and to
cross the phase spiking value of 2p), thereby preventing
neurons from spiking. This explanation is consistent
with the clinical observation that DBS and lesion of
the subthalamic nucleus provide similar alleviation of
motor symptoms [48]. Consequently, this approach
provided the first evidence that mathematical models
could be complementary to experimental approaches
in order to uncover the mechanisms of action of DBS.

Even if the model presented by Tass provided prom-
ising insights in the physiological mechanisms of DBS,
it should be mentioned that this approach suffers
from a lack of biological realism. Indeed, all the com-
plexities of neuronal structure and dynamics are
summarized into a single variable without considering
complex spiking patterns in DBS targets (such as the
subthalamic nucleus; see [49]). In order to overcome
these caveats, a more physiologically detailed model
was proposed by Terman et al. [39] More specifically,
this model used a single-compartment Hodgkin–
Huxley model to describe neurons from the subthalamic
nucleus and the external segment of the globus pallidus.
The motivation of studying these two structures is
based on their supposed role in the pathophysiology of
PD [50]. Moreover, in vitro culture experiments includ-
ing synaptically connected subthalamic nucleus and
external globus pallidus neurons have exhibited spon-
taneous low-frequency bursts, similar to the low-
frequency oscillations observed in the subthalamic
nucleus of patients with PD [51]. Therefore, this net-
work of two subcortical structures has been proposed
as a ‘pacemaker’ forcing the motor network (cortex,
basal ganglia—that include the subthalamic nucleus
and the external globus pallidus—and thalamus) in
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low-frequency oscillations responsible for the motor
impairments of PD [51]. In the work of Terman et al.
[39], both nuclei were modelled by eight model neurons
of the Hodgkin–Huxley type:

Cm
d
dt

vðtÞ ¼ �ILðtÞ � IKðtÞ � INaðtÞ � ITðtÞ

� ICaðtÞ � IsynðtÞ; ð4:3Þ

where Cm is the membrane capacitance, IL the leak cur-
rent, IK the potassium current, INa the sodium current,
IT the low-threshold calcium current, ICa the high-
threshold calcium current and Isyn the sum of synaptic
currents. Also, excitatory and inhibitory projections
were established between and within these two struc-
tures according to neuroanatomical knowledge [39].
The level of inhibition from the striatum on the external
globus pallidus was the main control parameter to
simulate the transition from ‘physiological’ to ‘patho-
logical’ (Parkinsonian) dynamics. Ionic current
parameters were selected to fit to the firing patterns
observed in vivo for neurons from these two structures.
Importantly, the post-inhibitory bursting (burst occur-
ring after hyperpolarizing input) of subthalamic
neurons was included, which is important since it
cannot be captured using phase models. This specificity
pattern turns out to be of particular relevance accord-
ing to Terman et al. [39], since it can lead to
sustained low-frequency bursting activity. Conse-
quently, this modelling approach has contributed to
clarifying Plenz & Kitai’s [51] experimental results on
a potential pathophysiological mechanism for abnormal
brain oscillations in PD. This work has also emphasized
the relevance of using mathematical modelling to cap-
ture non-intuitive dynamical properties of neurons,
such as post-inhibitory bursting.

Later on, Rubin & Terman decided to expand this
model to a larger network not only including the
subthalamo-pallidal network, but also the internal
globus pallidus and the thalamus, with the objective
to investigate the effect of DBS of the subthalamic
nucleus in PD [40]. As a basis to simulate pathological
activity of the basal ganglia, the authors used their
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previously developed network of the subthalamo-palli-
dal network. The output of these two nuclei was sent
to internal globus pallidus neurons that regulate thal-
amic inhibition. More precisely, two thalamic relay
cells were modelled, conveying sensorimotor signal
inputs to the cortex. The authors illustrate that,
under a physiological situation, the subthalamo-pallidal
network has irregular, unsynchronized activity and that
thalamic relay cells are able to faithfully relay sensori-
motor inputs to the cortex; whereas when the
subthalamo-pallidal network has synchronized oscil-
latory activity, the ability of thalamic relay cells to
relay sensorimotor signals is compromised. The
capacity of thalamic relay cells to effectively relay
incoming signals was quantified using an error index,
i.e. the ratio of successfully conveyed signal over the
total number of incoming signals. Interestingly, when
a high-frequency pulse train simulating DBS is applied
to subthalamic nucleus neurons, the authors show two
major results: first, subthalamic neurons’ activity
increases and is phase-locked to DBS pulses; and
second, the thalamic relay cells recover their capacity
to transmit incoming sensorimotor signals to the
cortex. These results are illustrated in figure 4.

Consequently, the main conclusion of the authors
based on this physiologically detailed model was that
DBS is able to allow proper relay of motor signals by
the thalamus to the cortex. This represented a major
step in modelling DBS effects. It has been used to
develop on-demand stimulation methods (see below)
and has provided an original and plausible hypothesis
on the mechanisms of DBS. However, this model suffers
from several limitations [52]. First, this model assumes
that the thalamus is a simple relay, while it has been
shown to have a much more complex role [53]. Second,
the model indicates that phase-locked spiking is induced
by DBS, whereas DBS has been shown to decrease spik-
ing activity in the subthalamic nucleus [54]. Finally, the
authors use monophasic pulses, whereas biphasic,
charge-balanced pulses are used clinically for safety
and prevent any damage to neural tissue [55].

Recently, a new model of subthalamo-pallidal
network activity during DBS has been proposed by
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Hahn & McIntyre [56]. In order to ground the model in
experimental data, the synaptic weights were set using
a least-square error optimization algorithm so that the
neural structures simulated (external and internal seg-
ments of the globus pallidus, subthalamic nucleus)
exhibited firing rates close to those recorded in MPTP
monkeys (MPTP, or 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine, is a substance that, once absorbed, induces
changes in neural activity similar to those observed in
PD). Cortical afferences in the b range (13–30 Hz)
were modelled as excitatory synaptic inputs to the sub-
thalamic nucleus. Finally, 500 cells were simulated,
extending by far the model of Rubin & Terman [40]
that included overall less than 30 cells. When DBS
was applied to subthalamic neurons at a frequency of
136 Hz, the axons were activated at high frequency as
observed experimentally by Hashimoto et al. [57]. The
authors observed that bursting in the internal globus
pallidus was reduced to values comparable to those
observed in experimental recordings in MPTP monkeys.
Furthermore, they suggest the existence of a threshold
in bursting reduction in internal globus pallidus
neurons in order to achieve therapeutic effects. Interest-
ingly, one result from Rubin & Terman’s model was also
showing that decreased bursting in the internal globus
pallidus improved thalamic relay of sensorimotor
inputs. Therefore, the modulation of bursting in the
internal globus pallidus might be one of the
physiological mechanisms of DBS in PD.

Overall, despite the excellent clinical results of DBS,
there is still room for improvement in terms of
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stimulation pattern, stimulation target, side effects or
parameter adjustments to name a few. In the following,
we present several biophysical modelling works that
suggest new ways to electrically stimulate the brain in
a more intelligent, real-time, closed-loop manner, as
opposed to the DBS pattern used today that remains
fixed over time and is not adaptive.

Consequently, from the models reviewed in this sec-
tion, the combination of experimental studies and the
contribution of DBS mathematical models have led to
an improved understanding of DBS mechanisms and
clinical settings (see [58–61] for reviews). One consist-
ent key concept both from the experimental and
biophysical modelling perspectives is that DBS appar-
ently normalizes the activity of a brain structure’s
network by suppressing tremor-related synchronized
activity. Interestingly, the effects of DBS in both exper-
imental settings and most of these biophysical models
appear to prevent low-frequency spiking, leading to
the following paradox: why does electric stimulation
inhibit neural firing, whereas it should intuitively
increase it? From the phase oscillators point of view,
DBS induces a phase resetting of neurons, preventing
them from spiking [41]. Similarly, one proposed expla-
nation based on resonant properties of subthalamic
neuron membranes [61] is that subthalamic neurons
have a considerably lower eigen frequency
than therapeutic DBS frequency. As a consequence,
subthalamic neuron membranes cannot respond effi-
ciently to each DBS pulse, resulting only in
subthreshold responses. Therefore, it appears that
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Figure 5. Principle of the linear delayed feedback method proposed by Rosenblum & Pikovsky [63,64]. The target neural popu-
lation is monitored using a recording electrode, and after a given delay, a rescaled value of the recorded signal (i.e. a given
multiplicative factor is applied) is computed and used as a stimulation signal applied to the target neural population.
(Figure adapted from Rosenblum et al. [65] with permission.)
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preventing neural oscillations at pathological frequen-
cies is a major mechanism of DBS. This may serve as
a starting point for the development of new methods
targeting narrow frequency bands of neural activity,
only where and when these frequencies are present,
thereby optimizing current DBS procedures. With this
objective in mind, several groups have proposed
methods that could achieve the normalization of patho-
logical brain oscillations using adaptive stimulation,
which are reviewed in §5.
5. BIOPHYSICAL MODELS OF POSSIBLE
IMPROVEMENTS OF DEEP BRAIN
STIMULATION

Despite its obvious success in relieving the incapacitat-
ing symptoms of PD, DBS also suffers from a few
drawbacks (e.g. battery replacement, or potential
side effects such as trouble of speech, depression or
weight gain [62]). Therefore, several groups have
been working in the last few years to elaborate more
sophisticated methods that could provide at least simi-
lar clinical benefits as with classical DBS while being
less invasive, less energy-demanding and able to
adapt in real time to the fluctuations of symptoms.
First of all, let us mention that the alternatives to
DBS proposed by these models face several difficulties.
Indeed, such methods need to be experimentally
tested, which is challenging since existing experimental
microrecording equipment has to be modified and
approved to be used in humans, or also because
recording artefacts caused by stimulation pulses must
be efficiently corrected online.

One of the simplest forms of adaptive or closed-loop
stimulation can be to stimulate the neuronal target with
a linear function of the recorded variable, typically the
mean membrane potential. This was proposed in several
papers [63–65] in which the modulation of neural syn-
chronization was studied in the presence of a linear
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feedback stimulus that was applied after a given
delay. The principle of this method is illustrated in
figure 5.

This method includes only two parameters: the delay
t after which the linear feedback is sent back to the net-
work, and the amplification factor e f. Therefore, the
stimulation term If(n) depending on the recorded
mean field X(n) at time n is expressed as [65]

IfðnÞ ¼ 1f ½Xðn � tÞ � XðnÞ�; ð5:1Þ

and is added directly as an input current through the
neuron membrane. Despite the apparent simplicity of
this method, efficient neural desynchronization was
obtained in networks based on different neuron
models (e.g. [66]). Strong assets of this method include
a good robustness with respect to the presence of
noise, or imperfections either in the measurement of
the mean field or in the effect of the stimulus on
target neurons [65]. However, one limitation high-
lighted by Popovych et al. [67] is that, with
inappropriate parameters, linear delayed feedback can
enhance neural synchronization and produce a
completely opposite effect.

Based on his previously developed phase oscillator
network model, Tass developed several stimulation
methods effectively desynchronizing networks of
phase oscillators. These methods include the use of
a high-frequency pulse train followed by a silent
time period and finally a single stimulation pulse
[43]. This pattern is repeated when needed. It was
highlighted that the goal of these methods is not to
shut down neural activity, but only to modulate the
level of synchrony between neurons [44] following a
two-stage action: first, the population of neurons is
shifted to a desynchronized state, and then a second
stimulus is sent when the population re-synchronizes
to block re-synchronization. Interestingly, the power
consumption of these new techniques can be notably
lower as compared with classical high-frequency
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train of pulses such as DBS. Furthermore, this
method has been extended to the more realistic case
of a spatially distributed target in which the stimu-
lation was applied at different sites [68] providing
again robust neural desynchronization. Using the
same approach of phase oscillator network, Popovych
et al. [67] proposed a novel method of closed-loop
stimulation of neural networks, still with the objective
of desynchronizing abnormally synchronized phase
oscillators. The phase oscillator model for one single
oscillator j was of the form

_ZjðtÞ ¼ ½aj þ ivj � ZjðtÞ
�� ���ZjðtÞ þ C�ZðtÞ þ SjðtÞ; ð5:2Þ

where a is the radius of the oscillator’s limit cycle
(closed trajectory in its phase space), v its frequency,
C is the coupling coefficient, Zj(t) is the complex
phase, �ZðtÞ ¼ 1

N

P
j ZjðtÞ is the mean field (mean

phase of the network) and Sj(t) is the external stimu-
lus applied to the oscillator j. The authors proposed
one method in which the same stimulation signal
was applied to each neuron (which is obviously a sim-
plification of reality, where neurons are differently
affected depending on the orientation with respect
to the field, and their distance with respect to the
electrode; see [59]), and which was a function of the
delayed mean field (nonlinear, as opposed to the
method proposed by Rosenblum & Pikovsky):

SjðtÞ ¼ K�Z2ðtÞ�Z�ðt � tÞ; ð5:3Þ

where K is a parameter and t is the delay. Each of
the individual oscillators had a different intrinsic
oscillation (i.e. spiking in this approach) natural fre-
quency vj Gaussian-distributed, but when
sufficiently strong coupling was introduced, network
synchronization around a common frequency occurred.
Interestingly, when the nonlinear delayed feedback
was applied, the network’s synchronization decreased
drastically and oscillators returned to their natural
oscillation frequency [67]. In terms of application,
these results could theoretically be used to desynchro-
nize abnormally synchronized subcortical brain
regions such as the subthalamic nucleus in PD. It is
still debated whether abnormal synchrony may be a
cause or only a consequence of a symptom; nonethe-
less the possibility to provide ‘on-demand’
desynchronization of target structures to improve
symptoms is an appealing strategy. However, this
possibility remains to be experimentally tested.

Another recent work has investigated the possi-
bility to stimulate the primary motor cortex in PD
using a closed-loop stimulation method [46,69]. The
aim of this work was to control neural activity both
in time and space, while only impacting a targeted
frequency band (such as 10 Hz; figure 1) of neural
activity. In order to model an electric stimulation
applied at several spatial positions, the authors used
a continuous neural field model [30,70]. In this class
of models, cortical tissue is seen as a continuous
two-dimensional sheet of interacting basic units
called neural masses, which include of the order of
1000 excitatory and inhibitory neurons. By writing
the effective potential c(r,t) (i.e. the deviation from
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the rest potential) under the form of a wave packet,
the optimal stimulus to suppress neuronal activity
in the frequency band [v0, v00] is

aðr; tÞ ¼ �g

2

ð
V

dr0W ðr� r0ÞS 2z r0; t � jr� r0j
c

� �� �

� zI ðr; tÞ; ð5:4Þ

where

zðr; tÞ ¼ 1
2p

ð
dk
ðv00
v0

dv~cðk;vÞeiðvt�k†rÞ

and

zI ðr; tÞ ¼
1

2p

ð
dk
ðv00
v0

dv~I ðk;vÞeiðvt�k†rÞ

with c(r,t) the neural field value, W(r 2 r0) the
distance-dependent connectivity function (expressing
the type—excitatory or inhibitory—and the strength
of connections between neural masses), g the synaptic
coupling strength, c the propagation speed of spikes
along axons, I(r,t) the input, z(r,t) the noise, a(r,t)
the space- and time-dependent stimulus term, and
where S is a sigmoid function linking the effective
potential and the firing rate, taking into account
the variability of firing threshold among neurons.
Using this closed-loop stimulation scheme, neuronal
oscillations (induced by external bursting input) of
a spiking neuron network at the target frequency of
10 Hz (and also harmonics) were considerably dam-
pened while other physiological rhythms were
minimally affected [46,69]. Consequently, considering
that therapeutic brain stimulation in PD should
attenuate a narrow frequency band (say, 9–11 Hz
in the cortex, resulting in a decrease of peripheral
4–6 Hz tremor), it is possible to derive theoretically
effective stimulation signals able to adapt in real
time to recorded neuronal activity. One drawback is
that the causal relationship between primary motor
cortex activity and Parkinsonian tremor still remains
to be demonstrated. The next step is to validate
such an approach experimentally by stimulating the
cortex of patients with PD.

Models presented above propose new stimulation
methods able to normalize neuronal synchronization
around pre-determined frequencies by affecting the
membrane potential (or the phase in phase oscillator
model) in a closed-loop manner. However, one work
by Tass & Majtanik [71] aimed at a completely different
objective, namely modulating the weight (or efficiency)
of synapses. Indeed, since synaptic weights determine
the interaction strength between neurons’ activity and
the emergence of neuronal oscillations, impacting
synaptic weights might be an efficient way to modulate
neuronal activity. In their model [71], the authors
included a synaptic plasticity rule called spike-timing-
dependent plasticity in order to simulate the dynamic
regulation of synaptic weight depending on the timing
of pre- and post-synaptic times [72]. By contrast, the
models mentioned above did not include such rules,
and had fixed coupling (synaptic) coefficients. The
model used by Tass & Majtanik was similar to the
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Kuramoto model, with the difference that individual
couplings are considered instead of a single mean
coupling. The model was expressed as

@

@t
wi ¼ �vi þ

Kij

N

X
j

sinðwj � wiÞ þ IiðtÞ; ð5:5Þ

where Ii(t) is the total input received by oscillator i,
and with a spike-timing-dependent plasticity rule
expressed as [71]

DK ¼ ape�Dt=tp þ ade�Dt=td ; ð5:6Þ

where DK is the variation of synaptic weight, ap/ad

are the amplitude of potentiation and depression (i.e.
increase and decrease in synaptic weight, respectively),
tp/td are the time scales of potentiation and
depression and Dt is the time interval between pre-
and post-synaptic spikes. When the input was chosen
under the form of a high-frequency train of biphasic
pulses (i.e. the pattern used in DBS), neuronal firing
was drastically reduced, consistent with in vivo record-
ings during DBS [54]. The authors tested the effect of
the previously developed multi-site stimulation [68],
which resulted in a durable modulation of synaptic
weights with the effect of decreasing firing activity.
Though promising, this method also lacks of any
experimental validation that would open the way to
clinical applications.

In addition to the aforementioned models, other
models are based on an alternative philosophy consist-
ing of monitoring the target brain structure and
developing a method affecting the observed variable
and resulting in optimized control. Among these
studies, Santaniello et al. [73] used an original approach
based on control theory, and more specifically on an
ARX model (autoregressive model with external
inputs). In this approach, a system is considered as a
black box, and it is assumed that only the inputs and
the outputs are known. Then, in order to control the
system towards a targeted state, an algorithm optimizes
control so that the state of the system minimally differs
from the desired state. Such an approach is valuable to
model brain regions, since it avoids taking into account
their complexity in terms of geometry and physiology.
The ARX model designed to control activity in the
target population of neurons (the ventrointermediate
nucleus of the thalamus in their study, which is another
effective DBS target to alleviate tremor; see [25]) was
written as

AðzÞyðkÞ ¼ BðzÞ � uðk � 1Þ þ 1ðkÞ; ð5:7Þ

with y(k) being the filtered output of the recorded
neural population and u(k) its input, k being related
to the time at which the recording takes places (t ¼
kT, where T is the time between two recordings). The
stimulation (control) term modulates the system’s
transfer function so that the system will finally reach
the targeted state, i.e. network activity exempt
from low-frequency oscillations. This method was
tested on a neural population simulated by 100 multi-
compartmental thalamocortical model neurons.
Applying this stimulation method to the target neuron
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population drastically reduced tremor-related bursting
activity, providing appealing evidence that sophisticated
models of brain activity might not be necessary to
achieve proper control of target neural population. How-
ever, physiologically detailed models of neural circuits
will probably remain the gold standard to capture non-
linear responses of neural networks and provide an
accurate ‘input–output’ function of neural structures.

The model proposed by Feng et al. [74] constitutes
another interesting example of closed-loop stimulation
paradigm that does not involve a detailed knowledge
of the underlying physiological processes taking place
in the target brain structure. Indeed, this work is
based on the idea that the main condition for an effi-
cient alleviation of Parkinsonian tremor is to decrease
the level of synchrony between neurons of the target
brain region, in the vein of Tass [41]. This objective is
consistent with experimental evidences showing that
several brain regions exhibit a high level of synchrony
in PD and not in a physiological situation [18]. To
achieve this objective, the authors propose to quantify
the level of synchrony among the recorded neurons,
and to use this quantity to provide appropriate control:
if the level of synchrony is high, then stimulation should
be applied, and if the level of synchrony is back to phys-
iological levels, stimulation should not be applied. In
order to optimize stimulation parameters towards the
objective of normalizing neural synchrony, the authors
used a genetic algorithm. In brief, this algorithm retains
efficient and inefficient stimulation parameter values,
and combines together efficient sets of parameters in
order to evaluate the efficiency of new stimulation par-
ameter values. To investigate the capabilities of such a
stimulation algorithm, the authors used the model of
Rubin & Terman [40] (presented above) as a model of
the brain structures involved in the generation of Par-
kinsonian tremor. By doing so, the authors put
forward interesting conclusions such as the possibility
that stochastic (as opposed to regular) stimulation
waveforms are able to induce neuronal firing desynchro-
nization, and thus presumably alleviate symptoms.
Such stochastic stimulation patterns would constitute
an innovative alternative to the regular DBS pattern
clinically used today. However, this outcome conflicts
with experimental results found in humans while the
regularity of DBS pulses was varied [75], where it was
shown that clinical efficiency decreased with increased
variability in the inter-pulse period.

Schiff & Sauer [76] proposed another model assum-
ing that detailed knowledge of the neuronal target’s
physiology might not be needed to achieve efficient con-
trol leading to symptoms improvement. The authors
use the concept of a Kalman filter, consisting of estimat-
ing the state variables of a nonlinear system to predict
its state at a later time, based on past measures. The
authors used a neural field model [29,30] to describe cor-
tical activity in space and time. The model parameters
were selected so that the simulated cortical tissue was
exhibiting spiral waves, a phenomenon experimentally
observed [77]. To achieve appropriate feedback to the
network, the monitored variable was the mean poten-
tial of local neural assemblies (termed as neural mass
in the formalism of Wilson & Cowan), which was then
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used by the Kalman filter to predict future mean poten-
tial values. Based on this approach and using
proportional feedback, the authors show the efficiency
of this method to suppress spiral wave activity while
consuming little energy. Consequently, this work con-
firms that methods from control theory might provide
appropriate solutions to identify effective and adaptive
brain stimulation methods in PD, without the need to
develop a sophisticated model of the underlying struc-
tures. However, an optimal closed-loop stimulation
method based on control theory is yet to be discovered,
and again should be experimentally tested to evaluate
its relevance and predictive value.
6. DISCUSSION

During more than 20 years, several mechanisms of
action have been proposed to explain the efficiency
of DBS, such as inhibition of the stimulated structure
or normalization of network activity in the cortico-
basal ganglia–thalamo-cortical network. Although a
quite complete picture of the advantages and draw-
backs of DBS is available in the literature, these
mechanisms are still debated. Previous biophysical
modelling work [43,61] suggests that subthalamic
neuron membranes have resonant properties with a
resonance frequency notably lower than DBS, and
that neuron membranes could not respond to each
DBS pulse, but rather respond by a weak transient
depolarization. This is compatible with experimental
recordings showing that somatic activity is inhibited
by DBS [54]. Therefore, both experimental and model-
ling evidence suggests that DBS in PD has a rapid
effect on subthalamic neuron membrane dynamics.
Now that DBS mechanisms are partially understood,
the time has come to move forward towards intelligent
neuromodulation techniques that are able to adapt the
stimulation signal in both space and time according to
ongoing neuronal activity and to provide optimal
symptom improvement. It is becoming obvious that
empirical methods of neuromodulation have reached
a limit, and that biophysical modelling may overcome
these limitations. Several closed-loop therapeutic
stimulation models have been published so far
[46,71,73,76,78], but none of them have been verified
clinically to date. This may be in part caused by
scepticism of most clinicians towards biophysical
modelling approaches.

Future therapeutic brain stimulation methods
should minimally interfere with physiological brain
rhythms to prevent potential side effects, but also
stimulate with lower levels of current and only when
needed, in order to minimize interaction with neuronal
tissue and decrease the number of interventions needed
for battery replacement. Modelling-driven designs of
stimulation waveforms (not necessarily stationary
signals, but complex, non-stationary signals with
time-varying frequency components and ‘pulse’
period) should also investigate the capability to modu-
late synaptic plasticity on the long run (of the order of
hours) in order to achieve pre-determined objectives
of synchronization or desynchronization of neural
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assemblies in narrow frequency ranges. Also, it might
be useful to envision not only alternative stimulation
patterns to the high-frequency pulse train used in
DBS, but also to use less invasive stimulation methods
to deliver therapeutic stimuli. Among these methods,
let us cite transcranial magnetic stimulation (TMS),
consisting of approaching a coil from the skull, inducing
non-invasively a strong magnetic field in brain tissue,
currently using either a single pulse or a train of
pulses at variable frequencies, typically between 1 and
100 Hz. Promising results have been obtained for the
symptomatic treatment of neurological disorders such
as PD [79,80] or drug-resistant depression [81,82]. One
limiting factor for the clinical use of TMS is that bio-
logical mechanisms underlying the response of brain
tissue have not been fully elucidated. Another method
used recently by the group of Buzsaki [83] is non-inva-
sive transcranial electric stimulation, which entrains
cortical neurons in rats, based on the well-known fact
that extracellular fields generated around neurons
affect their excitability. The authors show that rela-
tively weak electric fields applied through the skull
activate neurons either antidromically (through their
axons) or anterogradely (via mono- or multi-synaptic
connections) in widespread cortical areas. Since cortical
neurons are ‘embedded in perpetually active networks
transcranial electric stimulation inevitably interacts
with network-induced effects’ [83], this technique might
be used to produce amplification or interference of
brain tissue activity. Therefore, these results imply that
therapeutic effects using chronic transcranial electric
stimulation can be expected and should be explored.

One critical test for all the modelling approaches pre-
sented in this review will be their experimental testing.
If it is experimentally shown that some models success-
fully predict the outcome of new brain stimulation
methods, it will give biophysical modelling a strong
asset in the development of new therapeutic stimulation
techniques. Moreover, it will also provide evidence sup-
porting that mechanisms assumed by these models are
likely to occur in the brain. This will also be a unique
opportunity to evaluate which models are most appro-
priate to describe the effect of therapeutic brain
stimulation, and which ones fail to predict correct
brain response to electrical stimulation. Therefore, sub-
sequent modelling works could focus on the most
relevant models, those accurately describing and pre-
dicting the response of brain tissue to therapeutic
stimulation. For these reasons, the experimental testing
of closed-loop stimulation techniques derived from mod-
elling should be an important focus of research in
neuroscience.
7. CONCLUDING REMARKS

Our review of various models of DBS effects, but also
models of potential alternatives to DBS, shows that
modulation of brain rhythms by specific and innovative
stimuli becomes gradually better understood using com-
putational modelling. However, in order to optimally
normalize in the long term brain rhythms associated
with the symptoms of neurological disorders, a global
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theory linking neural dynamics, synaptic plasticity and
rhythms would be required, which appears to be a tre-
mendous task. Consequently, the use of simplified
models of spatio-temporal cortical dynamics and corre-
sponding numerical simulations may be insightful
towards the understanding the complex interplay
between firing patterns, firing activity, synaptic weights
and neural oscillations. Such models should also be
helpful to discriminate, among the very large number
of possible combinations of stimulation parameters,
which ones should be clinically useful.

Also, we have shown that model-driven approaches
represent an alternative and a new perspective for treat-
ment development based on rational biophysics
principles that may assist usual empirical experimental
method based on scientific ‘best-guess’. It is likely that
progress in biophysical modelling will undoubtedly lead
to significant advances in medicine with the develop-
ment of efficient neuromodulation stimuli especially
designed to produce the desired outcome, i.e. normal-
ized brain activity in pre-determined frequency bands.
However, challenges complicate this task, and explain
why model-based closed-loop stimulation methods
have not been tested experimentally so far. Biophysical
models are, like animal models, imperfect in that they
represent a simplification of ‘reality’, i.e. the disease
and how it affects the patient. An additional difficulty
is that PD may take different forms (e.g. tremor-
dominant). Therefore, there is a risk that model
predictions are inconsistent with experimental or clini-
cal results. This is why biophysical modelling should
be based on solid foundations to be a reliable tool pro-
viding clinically meaningful predictions. Also, in order
to achieve an experimental validation of model-based
closed-loop stimulation, it will probably be necessary
to make technical compromises. Such project execution
will require multi-disciplinary expertise and funding,
but also smooth interaction between different disci-
plines and a good relationship with reliable industrial
partners. Another non-scientific issue is that biophysi-
cal modelling is sometimes welcomed with scepticism
by scientists specialized in experimental studies. The
fact that biophysical models regularly prove their use-
fulness in reproducing, understanding and predicting
data should gradually ease the dialogue between experi-
mentalists and theoreticians, but also inspire confidence
in investors.
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