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The fields of medical image analysis and computer-aided interventions deal with reducing the
large volume of digital images (X-ray, computed tomography, magnetic resonance imaging
(MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical infor-
mation using software algorithms. US is a core imaging modality employed in these areas, both
in its own right and used in conjunction with the other imaging modalities. It is receiving
increased interest owing to the recent introduction of three-dimensional US, significant
improvements in US image quality, and better understanding of how to design algorithms
which exploit the unique strengths and properties of this real-time imaging modality. This
article reviews the current state of art in US image analysis and its application in image-
guided interventions. The article concludes by giving a perspective from clinical cardiology
which is one of the most advanced areas of clinical application of US image analysis and
describing some probable future trends in this important area of ultrasonic imaging research.
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1. INTRODUCTION

Advances in ultrasonic hardware have transformed the
quality of information provided by a medical ultrasound
(US) scan today relative to 15–20 years ago. Most
hospitals in the Western World now have fully digital
two-dimensional US systems in radiology, cardiology
and obstetrics departments; many have US systems—
particularly for clinical diagnosis in cardiovascular
medicine and obstetrics; and portable systems are
becoming more widely used, with this trend towards
smaller systems likely to continue, particularly driven
by healthcare needs and the requirement for low-cost
imaging solutions in the developing world. As a result,
Zetabytes (1021 bytes) of ultrasonic data are acquired
every minute around the world and are used to make
clinical decisions. US is the first modality of choice in,
for instance, obstetrics, breast mass assessment and
biopsy guidance, and used extensively in assessment
of cardiovascular disease. However, and perhaps not
always appreciated by researchers from outside the ima-
ging field, clinicians use medical US to provide
information for diagnosis, guidance of treatments or
to assess the success of therapy, and not to generate
orrespondence (alison.noble@eng.ox.ac.uk).
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pretty pictures of anatomy. US cannot compete with
magnetic resonance imaging (MRI) and X-ray com-
puted tomography (CT) in this respect. However, US
is certainly not inferior to MRI and CT—it is just
different. For instance, it is the only imaging modality
capable of imaging soft tissue deformations quickly
enough for interventional procedure guidance—
information that fluoroscopy, CT or MRI cannot
provide. Further, its portability and low cost relative
to its expensive alternatives are significant positives
that mean US has a very exciting future ahead.

This review focuses on the impact of US on medical
image analysis and image-guided interventions. These
fields deal with reducing the large volume of digital
images (X-ray, CT, MRI, positron emission tomography
and US) to more meaningful clinical information using
software algorithms. Their role in clinical workflow and
decision making is increasing. These research fields are
also quite young—around 20 years old—with their ori-
gins in computer vision, video image processing and
robotics. The fields recently accelerated their clinical
relevance and acceptance due to increased compu-
tational power of desktop computers, and the
maturity of certain classes of method that delineate
anatomical boundaries (image segmentation), align
images of the same or different imaging modalities
(image registration), perform automated quantification
and provide real-time processing solutions suitable for
This journal is q 2011 The Royal Society
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Figure 1. Is speckle noise or a feature? (a) Original B-mode image of a breast mass. (b) Speckle reduction applied to the original
image. Note that the texture has been removed from the image but major structures remain well-defined. (c) Elastography image
of the same mass derived from RF data. Speckle tracking is an implicit or explicit part of elastography. (Results courtesy of
Aymeric Larrue and Andy di Battista, U Oxford UK).
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interventional use. This review article outlines the state
of the art in US image analysis and US-based image
interventions illustrated by some success stories and
on-going work by the authors and others. It concludes
by taking a forward look at possible future directions
in this field.
2. IMAGE ANALYSIS

Working with US imaging as an information source has
positives and negatives.

On the positive side, US is a relative cheap imaging
modality compared with MRI and CT, it is portable
and it offers a real-time acquisition capability. Principal
negatives are that acquisition is operator-dependent
and (often significant) training is required to acquire
good data. In addition, the presence of speckle—the
coherent interference pattern that gives US images
their characteristic granular-looking pattern—compli-
cates analysis (but can be a strength, see below).
Therefore, the challenge is to work with its strengths,
and to try to overcome its limitations by embedding
prior knowledge of image formation and the object of
interest (geometry, expected image appearance, etc.),
and to use carefully designed acquisition protocols
wherever possible to minimize operator-dependency.

US imaging does not share the high anatomical defi-
nition of CT and MRI. Image appearance is dependent
on factors including orientation of the probe with
respect to the object, signal attenuation and missing
information due to signal dropouts and acoustic sha-
dows. These offer unique challenges to US image
processing and analysis relative to CT and MRI analy-
sis. The large majority of the US image analysis
literature today is based on B-mode images (also some-
times called display images, or log-compressed US
images) in part because this is the most easily available
clinical US data offered by commercial systems. Unlike
the case of MRI research, which is heavily driven by
advances in MR pulse sequences developed by the aca-
demic community on MRI research systems, there are
few commercial US research machines which provide
access to the radio-frequency (RF) or post-processed
RF (in-phase quadrature) data. The number of articles
on methods that analyse the RF signal is increasing, in
part through the maturity of elastography (see separate
article) but also recognition of the limitation of B-mode
processing alone. Working with B-mode images is more
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challenging, because the image formation process is
nonlinear and difficult to model mathematically. This
means that you cannot invoke simple imaging physics
models to aid B-mode image processing. Sometimes
empirical models of B-model images have been assumed
but only for application-specific cases (e.g. [1]).

2.1. Speckle-reduction techniques

Given the variability of image quality a large amount of
research effort has gone into attempting to produce
images of standard appearance and to reduce speckle.
This is both to improve the appearance of images but
importantly for image analysis, both intensity inhomo-
geniety and speckle can challenge intensity-based
segmentation methods. Attenuation of US with depth
means that a deeper region of the same object or tissue
(e.g. a liver) can appear darker than a less deep region. In
our own work, for instance, we have used an
Expectation–Maximization approach to reduce the effects
of attenuation onbreastUS images [2] andan image surface
interpolation method to standardize two-dimensional
echocardiographic images while not distorting speckle [3].
Speckle-reduction is a well-studied problem. Here speckle
is treated as noise and something that needs to be removed
or reduced. At the RF signal level, speckle is often modelled
by a Rayleigh distribution but this is not suitable for log-
compressed US images. Recent work has shown that a
Gamma distribution [1] or a Fisher–Tippett distribution
[4] are good approximations for US images. Other work,
such as [5] has assumed a general multiplicative model.
Adaptive filters [6–8], partial differential equation-based
approaches [9,10] and wavelet-based approaches [11,12]
to US speckle reduction all appear in the literature for
speckle-reduction. Results from one recent approach that
adapted the non-local-means filter to speckle noise [13] is
shown in figure 1 to illustrate the general effect of a
speckle-reduction method. Note, however, that it is not
always desirable to remove speckle as it acts as a natural
tissue ‘tag’ and moves as tissue is deformed (cf. in many
respects to tagged MRI [14]). The presence of speckle is
critical to the success of techniques such as strain imaging
and speckle tracking [15], and also for many methods of US
tissue characterization [16].

2.2. Image segmentation

Image segmentation is the technical term used to mean
manually, semi-automatically or fully automatically
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delineating the boundaries of an object or tissue regions.
Using computer algorithms to assist in US image seg-
mentation is a well-studied problem and there are some
good software solutions available, including within com-
mercial packages, although primary use is still within the
research community. Readers are referred to the articles
in [17,18] for recent reviews of the general field of US seg-
mentation and the case of carotid plaque image
segmentation, respectively.

Given that US images do not necessarily define com-
plete object boundaries, the most successful automated
image segmentation methods have been those that use
prior knowledge of object shape, motion and image
appearance. A range of methodologies have thus been
developed to embed these constraints, a non-exhaustive
list of alternatives including Bayesian approaches
[19,20], active contours and active appearance models
[21–24], and level-sets [25,26]. An excellent example
of this is the work on applying active appearance
models applied to echocardiography by Leung et al.
[27]. In this approach, image training datasets are
used to define the expected shape variation of a typical
left ventricle. The shape model is then used to constrain
the segmentation solution as the model is fit to a new
image example. Figure 2 illustrates this approach.

Another way to embed prior knowledge is to take a
data-driven or learning-based approach in which
image intensity patterns are learned using a classifier
to distinguish an object of interest from its surroundings
where the classifier has been trained on a large database
of example images. This can be viewed as object detec-
tion rather than the classic image segmentation
problem of object boundary delineation, and used, for
instance, to quickly find an image region in which to
subsequently manually or automatically take an
image measurement. Advanced machine-learning
techniques such as AdaBoost, Probabilistic Boosting
Trees and Random Forests, and their application to
assist US image segmentation are being actively
researched [28–30], and we are likely to see more
applications of this class of method in the future.

In the case of four-dimensional US imaging (three
spatial dimensions and the fourth being time), the pro-
blem is that of detection, segmentation and tracking.
For instance, to perform fast and accurate tracking of
the left ventricle from four-dimensional transthoracic
echocardiography data, the algorithm in [31] learns a
cardiac motion model using ISOMAP and K-means
clustering. This is extended in [32] to automatically
quantify the three-dimensional myocardial motion
from high frame rate instantaneous US images using
learning-based information fusion.

In the case of US segmentation problems that are
very difficult to automate, or when a fast segmentation
is required, an alternative strategy is to use a semi-auto-
mated approach where user-initialization or interaction
is used to guide the process of segmentation. Indeed,
many of the methods described above in practice are
initialized manually (mathematically meaning that
the optimization method underpinning the algorithm
is sensitive to initialization conditions). Particularly
for intensity-based methods, it is a common practice
to ‘seed’ an algorithm with manually selected regions-
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of-interest defining ‘object’ and ‘background’ intensity
distributions. This is illustrated in figure 3, which
shows semi-automated segmentation of a placenta
from a three-dimensional US image using a variant of
the graph-based method known as the random walker
algorithm [33]. Figure 3a shows a slice from the original
three-dimensional US scan. Figure 3b shows the seeding
step, where the green areas indicate background voxels,
red areas indicate foreground voxels. Figure 3c shows
both the boundaries found by the random walker
algorithm, and the manually defined boundary inde-
pendently defined by a clinical expert. Note that in
the case shown here, only one object was seeded, but
the random walker can be seeded by multiple seeds in
general. It can also be automated but was chosen here
to illustrate its power as an interactive technique.
Related work includes [34] which used the NCut tech-
nique combined with anisotropic diffusion for
unsupervised US segmentation.
2.3. Ultrasound image registration

The field of image registration deals with the alignment of
two or more images of the same imaging modality or
different imaging modalities. The degree of difficulty in
solving a given image registration problem is princi-
pally determined by the complexity of the geometric
transformation between the two (or more) images (rigid,
affine, non-rigid, etc.) and defining the matching criteria
between the images, although other factors such as algor-
ithm speed, capture range (sensitivity to initialization)
and required accuracy of alignment are also key factors in
selecting a method, particularly for real-time diagnosis
and image-guided intervention applications. By far, the
most popular method to US-based image registration
uses the similarity-measure-based registration approach.
For US–US registration, as used for instance in motion-
tracking, free-hand US volume reconstruction and US
mosaicing [35–39], classic similarity-measures such as
normalized cross-correlation and normalized mutual
information work well, although US-specific similarity
measures based on a maximum likelihood framework
have also been proposed [40,41].

US-X registration, where X is another imaging
modality is more challenging. In this case, the similarity
measure needs to capture some functional relationship
between the intensities of the different imaging modal-
ities. Unless pre-processing is done, this needs to be as
insensitive as possible to US artefacts and insonification
angle effects. Some groups have used mutual information
[42], the generalized correlation-ratio [43], transformed an
US image into a ‘vesselness’ image prior to registration
[44] or proposed to define the similarity measure in
terms of local-phase representation of each image rather
than intensity [45,46]. Figure 4, for instance, shows an
example of the method of Zhang et al. [46] applied to
echocardiography-MR image registration. Here, the echo-
cardiography image is shown as a green overlay on the
corresponding MR image slice. Applications of US-X
registration will be considered further in §3.

Finally, US–US registration is the first step of fusion
three-dimensional echocardiography a technique initially
proposed in [47] for improving three-dimensional
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Figure 2. Three-dimensional active appearance model segmentation. (a) Average left ventricular object shape and image appear-
ance over a large training set of patients (centre) and the first three most important modes of variation of shape and appearance.
(b) Initialization of the model in a three-dimensional dataset; (c) final segmentation result. (Results courtesy of Hans Bosch and
Esther Leung, Erasmus MC, Rotterdam NL).
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echocardiographic image segmentation by using multiple
three-dimensional US scans, but which has been further
improved (e.g. [48–51]), and demonstrated in clinical
pilot studies to improve the field of view, anatomical defi-
nition and contrast-to-noise ratio relative to single scans
for diagnostic purposes [52]. Fusion echocardiography
(FE) is a software post-processing solution related to US
spatial compounding [53] but it does not involve electronic
beam steering of a transducer array (which has a
restricted field of view). Rather than compounding (aver-
aging) the intensity values the ‘best estimate of
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information content’ is taken by considering intensities
from all scans. For instance, in figure 5 the wavelet-
based fusion method described in [52] has been used.
3. IMAGE-GUIDED INTERVENTIONS

Image-guided interventions were traditionally mostly
performed under X-ray fluoroscopic imaging. The first
such procedures were in fact performed shortly after
the invention of X-ray at the end of nineteenth century.
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Figure 3. (a) Image slice through a three-dimensional ultra-
sound scan of a placenta; (b) seeding for random walker
algorithm. (c) Boundary found by automated algorithm
(blue) and manual segmentation (yellow). (Result courtesy
of Gordon Stevenson, University of Oxford, UK).
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With the introduction of US imaging into medicine in
the second half of twentieth century, gradually it was
also considered for its use in interventional procedures.
Because of its non-ionizing characteristic and its cost
effectiveness, its popularity has increased considerably
in the last decades. US is the modality of choice for
many clinical applications. US has also become a
common imaging tool to support pain management
during various interventional procedures. The large
number of applications in which US is regularly used
as the main modality for diagnosis and treatment is
too large to be reviewed within this article. Here, we
rather focus more on the recent medical imaging and
computer-assisted intervention techniques, which enable
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multimodal imaging and propose novel techniques for
integrating US into further clinical applications. In spite
of its many advantages over other imaging modalities
such as X-ray, CT and MRI in term of its real-time
nature, its small size and possibility of further miniaturi-
zation, its suitability for integration into interventional
procedures and its price, rapid increase of its interven-
tional use has been hampered by several characteristics
of this imaging modality. One of these is its high user
dependency. This property could be considered by
experts as an advantage and by trainees as a disadvan-
tage. This results in two issues. First, the training
becomes an important subject for interventional use of
US imaging. Second, the success of interventional US
imaging procedures is highly dependent on the experience
level of its user and therefore difficult to assess. In this
regard standard US procedures sometimes have difficul-
ties in establishing themselves as an alternative or a
replacement for traditional X-ray-, CT- or MRI-based
image-guided procedures. This has pushed the scientific
community towards many related research directions.
On one side, US simulation has become an active subject
of research with the clear objective of improving and
accelerating the training of practitioners. On the other
side, the registration of interventional US and other stan-
dard imaging modalities such as CT and MRI has been
another focus of research, in this case with the objective
of allowing the physician to transfer their diagnostic
information and intervention plans into an US-based pro-
cedure, which in turn reduces the user dependency on
interpretation of interventional US images and helps
improve and standardize the procedures. In addition to
these points which are the focus of our discussion, there
are two other directions of active research in interven-
tional US imaging. The first one is US mosaicing as
well as compounding into three-dimensional and four-
dimensional volumes. This allows for imaging and visual-
ization of larger areas and volume, once again reducing
the need for the physician to compound such dynamic
information mentally [54–58]. In the following, we also
emphasize the suitability of US as an enabling imaging
technology in medical robotics.

Many technical development ideas in image-guided
interventions have first been developed and tested for
brain surgery applications. It is no surprise that research-
ers are also looking at using US imaging to improve the
performance of image-guided intervention techniques
for brain surgical applications. A neuro-navigation
system based on a custom-built three-dimensional US
was proposed in [59,60]. They claimed that the use of
three-dimensional US improves the results by providing
real-time imaging feedback. Rasmussen et al. [61] used
a commercial three-dimensional US system provided by
the company SonoWand, for intra-operative recording
of multiple three-dimensional US volumes and navigation
through a co-registered pre-operative surgical plan. The
registration and data visualization was based on external
optical tracking and therefore did not include automatic
estimation of brain shift. They, however, presented a
post-operative study of a vessel-based co-registration of
three-dimensional Power Doppler and segmented vessel
trees from magnetic resonance angiography to evaluate
its potential for brain shift estimation. Recently,
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Figure 4. Two-dimensional non-rigid alignment of echocardiography and cardiac MRI. (a) Cardiac MRI image, (b) ultrasound
image with red, blue and yellow markers indicating points about which local alignment corrections are made at successive iter-
ations of the registration algorithm. (c) The green overlay is the echocardiography image superimposed on the cardiac MR image
slice. (Result courtesy of Weiwei Zhang, U. Oxford, UK).
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Rasmussen et al. [62] presented an image-based method
for registration of MRI to three-dimensional US acquired
before the opening of the dura and provided promising
results for four cases of brain tumour surgery. The real-
time estimation of brain shift using intra-operative two-
dimensional and three-dimensional US and its fusion
with pre-operative MRI and electrophysiological data
for surgical navigation is still an ongoing subject of
research and development. We expect to see many excit-
ing development in this domain in the following years.

US is probably one of the most suitable imaging mod-
alities for supporting medical robotics applications. A
visual servoing scheme, based on real-time two-dimen-
sional US imaging, was proposed in [63] to control the
insertion of a surgical forceps with four degrees of free-
dom into a beating heart within a minimally invasive
procedure. Real-time three-dimensional US was
employed in [64] to detect the instrument and track the
tissue in order to synchronize the motion of instrument
with the heart. Such work could enable advance robotics
solution to be deployed in minimally invasive cardiac sur-
gery simplifying the human control of the robot through
US-based compensation of fast cardiac motion.

US-assisted cardiac interventional guidance is con-
sidered in [65]. The proposed system co-registered
patient-specific models obtained from pre-operative
data with intra-operative real-time US images within
an advanced mixed reality visualization environment
also integrating the three-dimensional virtual models
of the tracked surgical instruments. The authors
demonstrate the high accuracy of the system and its
appropriateness for cardiac interventions.

Miniaturization of US sensors [66] has allowed their
integration into catheters, endoscopes and laparo-
scopes. For example, US is systematically used for
needle guidance in many procedures. Many systems
also offer the visualization of a needle within the US
B-mode plane by mechanical construction and pre-
calibration of the US detector array and the needle
insertion support. The use of such systems in transrectal
US (TRUS) as well as endoscopic US has entered into
routine practice in many clinical applications.

Since its introduction, intravascular imaging (IVUS)
has been considered and used by many interventional
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cardiologists not only for analysis and characterization
of plaques composition [67] but also for navigation
during stent placement [68]. This has incited many aca-
demic and industrial researchers to focus on many
different challenges required for the integration and
use of this technology within vascular interventions.
In general, IVUS catheters are navigated under X-ray
fluoroscopy guidance and the existence of pre-operative
CT angiography data in many cases encourages the
registration of these modalities. In addition, the inte-
gration of IVUS with other intra-vascular modalities
such as intravascular optical coherence tomography or
the recently introduced intra-vascular near-infrared
fluorescence imaging [69] could complement this ima-
ging and increase its successful use for image-guided
interventions.

Transesophageal echocardiography (TEE) is routi-
nely used in operating rooms for pre-operative
analysis, intra-operative guidance and post-operative
assessment of various minimal invasive valve repair
and replacement procedures. A robust learning-based
framework was introduced in [70] to estimate patient-
specific models of the aortic and mitral valves
morphology and function from four-dimensional TEE
data. See figure 6. This work is extended in [71] by
incorporating models of the left ventricle and atrium,
to enable comprehensive hemodynamic analysis within
the left side of the heart.

The fusion of intra-cardiac three-dimensional echo-
cardiography with C-arm CT for treating atrial
fibrillation using catheter ablation is investigated in
[72]. In this work, an intracardiac real-time three-
dimensional US catheter is presented and used. The
authors develop methods for registration and visualiza-
tion of CT reconstruction obtained by an angiographic
C-arm and real-time three-dimensional US data
acquired with the proposed US catheter.

Tracked B-mode US has also been frequently used
for treatment of different cancers. For instance, differ-
ent properties of US imaging were used in [73] to
define a specific algorithm to co-register CT and US
for its use in radiation therapy of head and neck
cancer. A novel CT-US registration method was pro-
posed in [74] satisfying both requirements of full
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Figure 5. (a) Two-dimensional cut planes from a single three-
dimensional echocardiography dataset: top left 4-chamber view,
top right 2-chamber view, bottom left short axis view, bottom
right 4-chamber view. Note the noisy recording with insufficient
delineation of the endocardial borders. (b) Two-dimensional cut
planes from a three-dimensional dataset where the dataset in
figure 5(a) and three others of similar quality were combined
together using the image fusion algorithm: top left 4-chamber
view, top right 2-chamber view, bottom left short axis view,
bottom right 4-chamber view. All cut planes show a clear
delineation of the myocardium from the cavity in all segments.
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automation and real-time computation. The method
simultaneously optimized the linear combination of
different ultrasonic effects simulated from CT, and the
CT-US affine registration parameters. The method is
aimed at assisting treatment of cancer in both the
liver and kidney. Instead of a global rigid or affine regis-
tration of US with CT, Wein et al. [75] presented first
results for a full deformable registration using the simu-
lation-based approach on the graphics processing unit
to better represent the real situation. However, this
still does not achieve the real-time performance required
for image-guided applications and could be considered
as work in progress.
Interface Focus (2011)
A recent approach is based on creation of a statistical
model from CT or MR and its registration to two-dimen-
sional or three-dimensional US. A statistical deformation
model of the femur and pelvis was built in [76] and regis-
tered to a set of surface points obtained from intra-
operative three-dimensional US data. A statistical
shape model of a lumbar spine and interventional
three-dimensional US were registered in [77] for image
guidance in spinal needle injection. In [78], a patient-
specific statistical motion model of the prostate was
built from biomechanical simulations of a finite element
model of the prostate obtained from pre-operative MR
data. This was then registered to intra-operative three-
dimensional TRUS images for its use in guiding prostate
biopsy and interventions.

Another new trend is the use of tracked nuclear
probes to get functional intra-operative information.
Surgeons, however, wish to position such functional
information within the context of anatomical imaging.
The registration of intra-operative and dynamic func-
tional imaging to pre-operative CT or MRI data
requires the algorithms to compute complex defor-
mation in real-time. Another alternative offered by
two-dimensional and three-dimensional US imaging is
the fusion and visualization of co-registered US and
functional imaging data (see figure 7). A system for
systematic co-registration of tracked nuclear gamma
and B-mode US probes was proposed in [79]. The
ease of integration of real-time US imaging and differ-
ent functional imaging systems allows the development
of novel techniques [80] and even hardware [81] and
their integration into procedures in the near future.
The real-time co-registered acquisition of US and func-
tional data will also open the path for deformable
registration of interventional functional data to pre-
operative CT or MRI data, by taking advantages of
US-CT and US-MR registration methods discussed
earlier in this paper.
4. CLINICAL PERSPECTIVE

The driver for image analysis in clinical echocardiogra-
phy for many years has been the desire to have
automated quantification tools to compute measures
such as the left ventricular (LV) ejection fraction, and
local wall motion and myocardial thickening as indi-
cators of LV dysfunction and ischaemia (e.g. [82]).
Many of the advances described in §1 are motivated
by this. Although three-dimensional echocardiogra-
phy-based LV volumes are underestimated with
respect to cardiac MR [83] three-dimensional echocar-
diography still offers a very convenient and cheaper
way to assess LV function. Sophisticated commercial
software packages for visualizing and manipulating
three-dimensional echocardiography now exist, but
few semi or fully automated quantification methods
have been well-validated or commercialized [84,85]
and none are used in routine clinical practice in hospi-
tals. The limiting factor remains the wide variability
of quality of patient data with the literature citing
between 40 and 60 per cent of all routine clinical data
having a ‘good or intermediate acoustic window’
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Figure 6. (Top) Patient-specific model of the mitral valve with subvalvular apparatus out of four-dimensional transesophageal
echocardiography images. (Bottom) The morphological and functional quantification of the mitral valve, based on the model.
Courtesy of Razvan Ionasec, Siemens Corporate Research, Princeton, USA.
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meaning having a good enough quality for an image
analysis method to work reliably on it. From a clinical
perspective this means that it is not cost-effective to
introduce automated image analysis into clinical
workflow at the current time.

The technique of fusion three-dimensional echocar-
diography mentioned in §1 (see also figures 5 and 8)
provides one way to improve image quality and the
field of view, both limiting factors of current US tech-
nology. Here we briefly discuss some of the challenges
in clinical three-dimensional echocardiography today
from the clinical perspective and suggest how FE may
help to overcome some of them. In particular, several
aspects of fusion three-dimensional echocardiography
make it particularly attractive for clinical echocardio-
graphy: besides better image quality and
comprehensive datasets, three-dimensional FE has the
potential for a major improvement in workflow in the
clinical echo laboratory.
4.1. Improving three-dimensional
echocardiography image quality

Over the last 10 years there has been some improvement
of three-dimensional echocardiography image quality
but still a large proportion of three-dimensional studies
are not good enough to be used instead of standard two-
dimensional echocardiography. This means that there
are parts of the left ventricle and other heart chambers
in which the border between the heart muscle and the
blood pool cannot be tracked visually or by an
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automated contour finding system. In the first clinical
trial using three-dimensional FE only approximately
70 per cent of three-dimensional non-fused (i.e.
native) datasets were graded as having intermediate
or good image quality [51]. Note that this study
included a high number of healthy younger adult indi-
viduals—in a typical clinical echo laboratory one
would expect a higher number of patients with insuffi-
cient image quality for quantitative analysis. The
study went on to show that three-dimensional FE
increases the proportion of participants with general
image quality graded as good or intermediate quality
from 70 per cent with standard three-dimensional echo-
cardiography to 97 per cent with three-dimensional FE.
This difference should translate into improved diagnos-
tic potential for even small areas of wall motion
abnormality. The improvements in image quality seen
with three-dimensional FE are much more impressive
than the progress obtained from newer transducers.

Even for the fetal heart getting consistent, shadow
free, data remain problematic due to the uncontrollable
nature of foetal orientation. The utility of image fusion
has been demonstrated in a recent clinical study [86]
where it was shown that it reduced the variability of
volume estimates by about 50 per cent relative to
measurement on a single scan.

The few clinical studies validating fusion three-dimen-
sional echocardiography to-date have focused on the left
ventricle. However, there is also a need to improve the
border definition of the other heart chambers. In particu-
lar, there is a need to improve the display of the right
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Figure 7. (a) Augmented reality visualization of tracked US
and gamma probe acquisition on a liver phantom with
implanted malignant and benign tumours. (b) US imaging dis-
play augmented by the gamma information presented as a red
circle where the probe is sensing high activity. The count rate of
detected activity is provided by the gamma probe and is
displayed within the upper right part of the display.

(a)

(b)

Figure 8. (a) Two-dimensional orthogonal cut planes from a
single three-dimensional transoesophageal echocardiography
dataset with 9 short-axis cross-sections shown in the lower right
quadrant. (b) Equivalent for a fused three-dimensional echo-
cardiography reconstruction clearly indicating superior image
quality. (Result courtesy of Daniel Augustine, University of
Oxford, UK).
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ventricle. Because of the geometry of the right ventricle
two-dimensional echocardiography for assessment of
volumes and function is challenging and three-dimen-
sional echocardiography has been shown to provide
good agreement with cardiac MRI. We hypothesize
that three-dimensional FE of the right ventricle will
result in a similar improvement as observed in three-
dimensional fusion of the left ventricle and are currently
performing a study with MRI as the gold standard.
4.2. Three-dimensional datasets including the
entire organ

At present abnormally large hearts cannot be displayed
in a single three-dimensional echocardiography dataset.
Three-dimensional FE provides a comprehensive data-
set, in which the sonographer can navigate and follow
structures without reviewing different loops which are
not aligned. With three-dimensional FE it is possible
to maintain the highest volume rate and line density.
In particular, three-dimensional TEE suffers from lim-
ited field of view due to the limited size of the
transducer. The image quality is less an issue because
of the proximity of the transducer to the heart.
Although three-dimensional TEE has become a valu-
able tool for guiding cardiac surgery and interventions
Interface Focus (2011)
such as transcutaneous closure of shunts and paraval-
vular leaks, it is often difficult to assess the exact
topography of pathology in separate three-dimensional
datasets. The availability of a comprehensive dataset
displaying the entire heart would facilitate planning
and guiding interventional procedures. Early results
on three-dimensional FE applied to TEE are reported
in [87], see figure 8.
4.3. Simplified image acquisition: a vision

Echocardiographic imaging requires the skills of an
experienced sonographer to find the optimal acoustic
window and adjustment of the probe. Unfortunately,
often the optimal acoustic window is missed. With
three-dimensional FE there is the potential to become
less dependent on the sonographer’s experience: a first
step is using a simple protocol of consecutive acqui-
sitions in the vicinity of where a single dataset is
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normally acquired and then the fusion process is
started. The optimal cut-planes can then be found in
the high quality three-dimensional FE reconstruction
and analysed by using already available programs
such as Qlab (Philips) or four-dimensional LV analysis
(TomTec) [88]. With faster implementations of three-
dimensional FE, it might be possible to scan and fuse
consecutive heart beats in near real-time. Recently,
transducers have become available that can acquire
datasets within a single heart beat and do not require
breath holding. Eventually the image acquisition may
only need the simple placement of a new type of
probe comparable to putting electrocardiogram patches
and then further acquisition is automatic. That would
have major financial implications as the cost of a sono-
grapher and the scan time per patient would be greatly
diminished.
5. CONCLUSION

In this article, we have outlined how US has evolved in
the fields of medical image analysis and image-guided
interventions over the past 15–20 years. In spite of
strong competition from MRI and CT in particular,
there is no question that US will continue to play a
key role in multi-modality clinical decision making in
the future and if anything its role will increase as
three-dimensional US imaging becomes more widely
available as a cost-effective three-dimensional imaging
modality. A key barrier to more widespread use of
automated analysis methods remains the high level of
expertise required to acquire good quality data but as
we have seen, providing solutions to this is an active
area of research at the current time. Today, US acqui-
sition and image analysis are generally seen as two
separate tasks but in the future we can expect to see
the boundaries between the two blurred with the
‘intelligence’ of image analysis software driving the
advanced capabilities of US machines.
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