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Computational systems biology is concerned with the development of detailed mechanistic models
of biological processes. Such models are often stochastic and analytically intractable, containing
uncertain parameters that must be estimated from time course data. In this article, we consider
the task of inferring the parameters of a stochastic kinetic model defined as a Markov ( jump)
process. Inference for the parameters of complex nonlinear multivariate stochastic process
models is a challenging problem, but we find here that algorithms based on particle Markov
chain Monte Carlo turn out to be a very effective computationally intensive approach to the pro-
blem. Approximations to the inferential model based on stochastic differential equations (SDEs)
are considered, aswell as improvementsto the inference scheme that exploit the SDE structure.We
apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network.
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1. INTRODUCTION

Computational systems biology [1] is concerned with
developing dynamic simulation models of complex
biological processes. Such models are useful for develop-
ing a quantitative understanding of the process, for
testing current understanding of the mechanisms, and
to allow in silico experimentation that would be difficult
or time-consuming to carry out on the real system in the
laboratory. The dynamics of biochemical networks at the
level of the single cell are well known to exhibit stochastic
behaviour [2]. A major component of the stochasticity is
intrinsic to the system, arising from the discreteness of
molecular processes [3]. The theory of stochastic chemi-
cal kinetics allows the development of Markov process
models for network dynamics [4], but such models
typically contain rate parameters that must be estimated
from imperfect time course data [5]. Inference for such
partially observed nonlinear multivariate Markov
process models is an extremely challenging problem [6].
However, several strategies for rendering the inference
problems more tractable have been employed in recent
years, and new methodological approaches have recently
been developed that offer additional possibilities. This
paper will review these methods, and show how they
may be applied in practice to some low-dimensional but
nevertheless challenging problems.
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In §2, a review of the basic structure of the problem is
presented, showing how the Markov process represen-
tation of a biochemical network is constructed, and
introducing a diffusion approximation that greatly
improves computational tractability. In §3, a Bayesian
approach to the inferential problem is given, together
with an introduction to methods of solution that are
‘likelihood-free’ in the sense that they do not require
evaluation of the discrete time transition kernel of the
Markov process. Unfortunately, most obvious inferential
algorithms suffer from scalability problems as either the
number of parameters or time points increase. In §4, it is
shown how the recently proposed particle Markov chain
Monte Carlo (pMCMC) algorithms [7] may be applied
to this class of models, as these do not suffer from scalabil-
ity problems in the same way as more naive approaches. It
is also shown how the structure of stochastic differential
equation (SDE) models may be exploited in order to
adapt the basic pMCMC approach, departing from
the likelihood-free paradigm, but leading to algorithms
that are (relatively) computationally efficient, even in
low/no measurement error scenarios where likelihood-
free approaches tend to break down.
2. STOCHASTIC CHEMICAL KINETICS

For mass-action stochastic kinetic models (SKMs) [3], it
is assumed that the state of the system at a given time is
represented by the number of molecules of each reacting
chemical ‘species’ present in the system at that time,
This journal is q 2011 The Royal Society
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and that the state of the system is changed at discrete
times according to one or more reaction ‘channels’. So
consider a biochemical reaction network involving u
species X1,X2, . . . ,Xu and v reactions R1, R2, . . . ,Rv,
written using standard chemical reaction notation as

R1 : p11X1 þ p12X2 þ � � � þ p1uXu

! q11X 1 þ q12X2 þ � � � þ q1uXu;

R2 : p21X1 þ p22X2 þ � � � þ p2uXu

! q21X 1 þ q22X2 þ � � � þ q2uXu

..

. ..
. ..

.

Rv : pv1X1 þ pv2X2 þ � � � þ pvuXu

! qv1X1 þ qv2X2 þ � � � þ qvuXu:

Let Xj,t denote the number of molecules of species Xj at
time t, and let Xt be the u-vector Xt ¼ (X1,t, X2,t, . . . ,
Xu,t)

`. The v � u matrix P consists of the coefficients
pij, and Q is defined similarly. The u � v stoichiometry
matrix S is defined by

S ¼ ðQ � PÞ`:

The matrices P, Q and S will typically be sparse. On the
occurrence of a reaction of type i, the system state, Xt, is
updated by adding the ith column of S. Consequently, if
DR is a v-vector containing the number of reaction
events of each type in a given time interval, then the
system state should be updated by DX, where

DX ¼ SDR:

The stoichiometry matrix therefore encodes important
structural information about the reaction network. In
particular, vectors in the left null-space of S correspond
to conservation laws in the network. That is, any u-
vector a that satisfies a`S ¼ 0 has the property (clear
from the above equation) that a`Xt remains constant
for all t.

Under the standard assumption of mass-action sto-
chastic kinetics, each reaction Ri is assumed to have
an associated rate constant, ci, and a propensity func-
tion, hi(Xt, ci), giving the overall hazard of a type i
reaction occurring. That is, the system is a Markov
jump process (MJP), and for an infinitesimal time
increment dt, the probability of a type i reaction occur-
ring in the time interval (t,t þ dt] is hi(Xt, ci)dt. The
hazard function for a particular reaction of type i
takes the form of the rate constant multiplied by a pro-
duct of binomial coefficients expressing the number of
ways in which the reaction can occur, that is,

hiðXt ; ciÞ ¼ ci

Yu
j¼1

Xj;t

pij

� �
:

It should be noted that this hazard function differs
slightly from the standard mass action rate laws used
in continuous deterministic modelling, but is consistent
(up to a constant of proportionality in the rate con-
stant) asymptotically in the high concentration limit.
Let c ¼ (c1, c2, . . . , cv)

` and h(Xt,c) ¼ (h1(Xt, c1),
h2(Xt, c2), . . . , hv(Xt, cv))

`. Values for c and the initial
system state X0 ¼ x0 complete specification of the
Interface Focus (2011)
Markov process. Although this process is rarely
analytically tractable for interesting models, it is
straightforward to forward-simulate exact realizations
of this Markov process using a discrete event simulation
method. This is due to the fact that if the current time
and state of the system are t and Xt, respectively, then
the time to the next event will be exponential with rate
parameter

h0ðXt ; cÞ ¼
Xv

i¼1

hiðXt ; ciÞ;

and the event will be a reaction of type Ri with prob-
ability hi(Xt, ci)/h0(Xt, c) independently of the waiting
time. Forwards simulation of process realizations in
this way is typically referred to as Gillespie’s direct
method in the stochastic kinetics literature, after
Gillespie [4]. See Wilkinson [3] for further background
on stochastic kinetic modelling.

In fact, the assumptions of mass-action kinetics, as
well as the one-to-one correspondence between reactions
and rate constants may both be relaxed. All of what fol-
lows is applicable to essentially arbitrary v-dimensional
hazard functions h(Xt, c).

The central problem considered in this paper is that
of inference for the stochastic rate constants, c, given
some time course data on the system state, Xt. It is
therefore most natural to first consider inference for
the earlier-mentioned MJP SKM. As demonstrated by
Boys et al. [6], exact Bayesian inference in this setting
is theoretically possible. However, the problem appears
to be computationally intractable for models of realistic
size and complexity, due primarily to the difficulty of
efficiently exploring large integer lattice state space tra-
jectories. It turns out to be more tractable (though by
no means straightforward) to conduct inference for a
continuous state Markov process approximation to the
MJP model. Construction of this diffusion approxi-
mation, known as the chemical Langevin equation
(CLE), is the subject of the next section.
2.1. The diffusion approximation

The diffusion approximation to the MJP can be con-
structed in a number of more or less formal ways. We
will present here an informal intuitive construction, and
then provide brief references to more rigorous approaches.

Consider an infinitesimal time interval, (t,t þ dt].
Over this time, the reaction hazards will remain con-
stant almost surely. The occurrence of reaction events
can therefore be regarded as the occurrence of events
of a Poisson process with independent realizations for
each reaction type. Therefore, if we write dRt for the
v-vector of the number of reaction events of each type
in the time increment, it is clear that the elements are
independent of one another and that the ith element
is a Po(hi(Xt, ci)dt) random quantity. From this, we
have that E(dRt) ¼ h(Xt, c)dt and Var(dRt) ¼
diagfh(Xt, c)g dt. It is therefore clear that

dRt ¼ hðXt ; cÞdt þ diagf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXt ; cÞ

p
gdWt

is the Itô SDE that has the same infinitesimal mean and
variance as the true MJP (where dWt is the increment of
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a v-dimensional Brownian motion). Now since dXt ¼

SdRt, we obtain

dXt ¼ ShðXt ; cÞ dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S diagfhðXt ; cÞgS`

p
dWt ; ð2:1Þ

where now Xt and Wt are both u-vectors. Equation (2.1)
is the SDE most commonly referred to as the CLE, and
represents the diffusion process that most closely
matches the dynamics of the associated MJP, and can
be shown to approximate the SKM increasingly well
in high concentration scenarios [8]. In particular,
while it relaxes the assumption of discrete states, it
keeps all of the stochasticity associated with the discre-
teness of state in its noise term. It also preserves many
of the important structural properties of the MJP. For
example, equation (2.1) has the same conservation
laws as the original SKM. However, it should be
noted that the approximation breaks down in low-con-
centration scenarios, and therefore should not be
expected to work well for models involving species
with very low copy-number. This is quite typical for
many SKMs; yet the approximation often turns out to
be adequate for inferential purposes in practice.

More formal approaches to the construction of the
CLE usually revolve around the Kolmogorov forward
equations for the Markov processes. The Kolmogorov
forward equation for the MJP is usually referred to in
this context as the chemical master equation. A second-
order Taylor approximation to this system of differential
equations can be constructed, and compared with the
corresponding forward equation for an SDE model
(known in this context as the Fokker–Planck equation).
Matching the second-order approximation to the
Fokker–Planck equation leads to the same CLE (2.1),
as presented earlier. See Gillespie [8,9] for further details.
3. BAYESIAN INFERENCE

Suppose that the MJP X ¼ fXtj1 � t � Tg is not
observed directly, but observations (on a regular grid)
y ¼ fytjt ¼ 1, 2, . . . ,Tg are available and assumed con-
ditionally independent (given X), with conditional
probability distribution obtained via the observation
equation

Yt ¼ F`Xt þ 1t ; 1t � N ð0;SÞ: ð3:1Þ

Here, we take Yt to be a length-p vector, F is a constant
matrix of dimension u � p and 1t is a length-p Gaussian
random vector. This flexible setup allows for observing
only a subset of components of Xt, and taking F to be
the u � u identity matrix corresponds to the case of
observing all components of Xt (subject to error).
Note that in the case of unknown measurement error
variance, the parameter vector c can be augmented to
include the elements of S. Bayesian inference may
then proceed through the posterior density

pðc;xjyÞ/ pðcÞpðxjcÞ
YT
t¼1

pðyt jxt ; cÞ; ð3:2Þ

where p(c) is the prior density ascribed to c, p(xjc) is
the probability of the MJP and p(ytjxt, c) is the
observation density constructed from equation (3.1),
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which we let depend explicitly on c for the purposes
of generality. Since the posterior in equation (3.2)
will typically be unavailable in closed form, samples are
usually generated from p(c,xjy) through a suitable
MCMC scheme.
3.1. Likelihood-free/plug-and-play methods

One of the problems with standard approaches to using
MCMC for inference in realistic data-poor scenarios is
the difficulty of developing algorithms to explore a huge
(often discrete) state space with a complex likelihood
structure that makes conditional simulation difficult.
Such problems arise frequently, and in recent years, inter-
est has increasingly turned to methods that avoid some of
the complexity of the problem by exploiting the fact that
we are easily able to forward-simulate realizations of
the process of interest. Methods such as likelihood-free
MCMC (LF-MCMC) [10] and approximate Bayesian
computation [11] are now commonly used to tackle
Bayesian inference problems, which would be extremely
difficult to solve otherwise. Although not the main focus
of this paper, it is of course possible todevelop similar com-
putationally intensive algorithms from a non-Bayesian
standpoint, where such likelihood-free approaches are
sometimes termed ‘plug-and-play’; see Ionides et al. [12],
He et al. [13] and Wood [14] for further details.

A likelihood-free approach to this problem can be
constructed as follows. Suppose that interest lies in the
posterior distribution p(c,xjy). A Metropolis–Hastings
(MH) scheme can be constructed by proposing a joint
update for c and x as follows. Supposing that the current
state of the Markov chain is (c,x), first sample a proposed
new value for c, cw, by sampling from some (essentially)
arbitrary proposal distribution q(cwjc). Then, conditional
on this newly proposed value, sample a proposed new
sample path, xw, by forwards simulation from the model
p(xwjcw). Together, the newly proposed pair (cw,xw) is
accepted with probability minf1,Ag, where

A ¼ pðcwÞ
pðcÞ �

qðcjcwÞ
qðcwjcÞ �

pðyjxw; cwÞ
pðyjx; cÞ :

Crucially, the potentially problematic likelihood term,
p(xjc), does not occur in the acceptance probability,
owing to the fact that a sample from it was used in
the construction of the proposal. Note that choosing
an independence proposal of the form q(cwjc) ¼ p(cw)
leads to the simpler acceptance ratio

A ¼ pðyjxw; cwÞ
pðyjx; cÞ :

This ‘canonical’ choice of proposal will not be ‘optimal’,
but lends itself to more elaborate schemes, as we will
consider shortly.
3.2. Sequential likelihood-free Markov chain
Monte Carlo

The basic LF-MCMC scheme discussed earlier might
perform reasonably well, provided that y is not high-
dimensional, and there is sufficient ‘noise’ in the
measurement process to make the probability of
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acceptance non-negligible. However, in practicey is often
of sufficiently large dimension that the overall accep-
tance rate of the scheme is intolerably low. In this case,
it is natural to try and ‘bridge’ between the prior and
the posterior with a sequence of intermediate distri-
butions. There are several ways to do this, but here it is
most natural to exploit the Markovian nature of the pro-
cess and consider the sequence of posterior distributions
obtained as each additional time point is observed.
Define the data up to time t as yt ¼ fy1, . . . , ytg. Also,
define sample paths xt ;fxsjt 2 1, s � tg, t ¼ 1, 2, . . . ,
so that x ¼ fx1, x2, . . . g. The posterior at time t can
then be computed inductively as follows.

1. Assume at time t that we have a (large) sample from
p(c,xtjyt) (for t ¼ 0, initialize with sample from the
prior, p(c)p(x0jc)).

2. Run an MCMC algorithm that constructs a proposal
in two stages:
(a) First sample (cw, xt

w) � p(c,xtjyt) by picking at
random and perturbing cw slightly (sampling
fromakernel densityestimateof thedistribution).

(b) Next sample xtþ1
w by forward simulation from

p(xtþ1
w jcw, xt

w).
(c) Accept/reject (cw, xtþ1

w ) with probability min
f1,Ag, where

A ¼
pðytþ1jxw

tþ1; c
wÞ

pðytþ1jxtþ1; cÞ
:

3. Output the sample from p(c,xtþ1jytþ1), put t :¼ t þ 1,
return to step 2.

Consequently, for each observation yt, an MCMC algor-
ithm is run that takes as input the current posterior
distribution prior to observation of yt and outputs the
posterior distribution given all observations up to yt.
As yt is typically low-dimensional, this strategy usually
leads to good acceptance rates.

This algorithm has been applied successfully to bio-
chemical network inference [15], but suffers from two
different problems as the problem size increases. First, as
the number of parameters (the dimension of c) increases,
the algorithm suffers from the usual ‘curse of dimensional-
ity’ as it becomes increasingly difficult to effectively cover
the parameter space with a Monte Carlo sample. Second,
as the number of time points increases, the method
suffers from the ‘particle degeneracy’ problem that is
well known to affect sequential Monte Carlo (SMC) algor-
ithms targeting fixed model parameters [16]. The jittering
approach used in step 2(a) can alleviate the problem
somewhat [17] but does not completely overcome it.
Both of these problems can be addressed by using particle
MCMC methods [18], and by the particle marginal Metro-
polis–Hastings (PMMH) algorithm, in particular.
4. PARTICLE MARGINAL METROPOLIS–
HASTINGS

Suppose that interest is in the marginal parameter
posterior

pðcjyÞ ¼
ð

pðc;xjyÞdx;
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where p(c,xjy) is given in equation (3.2). If p(cjy) can
be evaluated (up to proportionality), then an MH
scheme with arbitrary proposal density q(cwjc) has an
acceptance ratio of the form

pðyjcwÞpðcwÞ
pðyjcÞpðcÞ �

qðcjcwÞ
qðcwjcÞ ;

where we have used the standard decomposition p(cjy)
/ p(yjc)p(c). Of course, in practice the marginal-likeli-
hood term p(yjc) is difficult to compute exactly. Some
progress can be made by considering the pseudo-mar-
ginal MH method described in Beaumont [19] and
Andrieu & Roberts [20]. Here, the intractable term
p(yjc) in the acceptance probability is replaced with a
Monte Carlo estimate p̂ðyjcÞ to become

p̂ðyjcwÞpðcwÞ
p̂ðyjcÞpðcÞ �

qðcjcwÞ
qðcwjcÞ : ð4:1Þ

Provided that the corresponding estimator is unbiased (or
has a constant bias that does not depend on c), it is possible
to verify that the method targets the marginal p(cjy). By
considering Z ¼ p̂ðyjcÞ=pðyjcÞ and augmenting the state
space of the chain to include Z, it is straightforward to
rewrite the acceptance ratio in equation (4.1) to find that
the chain targets the joint density

pðcjyÞzpðzjcÞ:

Marginalizing over Z then gives

ð
pðcjyÞzpðzjcÞdz ¼ pðcjyÞEðZ jcÞ:

Clearly, if E(Zjc) is a constant independent of c, then
the chain targets the required marginal.

A closely related approach is the PMMH scheme of
Andrieu et al. [7,18]. This method uses an SMC esti-
mate of marginal likelihood p̂ðyjcÞ in the acceptance
ratio (4.1). The PMMH scheme targets the correct mar-
ginal p(cjy) since the SMC scheme can be constructed
to give an unbiased estimate of the marginal likelihood
p(yjc) under some fairly mild conditions involving the
resampling scheme [21]. It should also be noted that
the PMMH scheme can be used to sample the joint pos-
terior p(c,xjy). Essentially, a proposal mechanism of
the form qðcwjcÞp̂ðxwjy; cwÞ, where p̂ðxwjy; cwÞ is an
SMC approximation of p(xwjy,cw), is used. The result-
ing MH acceptance ratio is given by equation (4.1). Full
details of the PMMH scheme including a proof estab-
lishing that the method leaves the target p(c,xjy)
invariant can be found in Andrieu et al. [18].

The general PMMH algorithm is described in
appendix A.1 and we use the special case in which
only samples from the marginal parameter posterior
are required, as the basis for our inference scheme. A
key ingredient of the PMMH algorithm is the construc-
tion of an SMC estimate of p(yjc). We therefore outline
this approach in detail for some specific models.
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4.1. Particle marginal Metropolis–Hastings for
discrete stochastic kinetic models

Implementation of the PMMH scheme requires an
SMC approximation of p(xjy,c) and the filter’s esti-
mate of the marginal likelihood p(yjc). Note that if
interest is only in the marginal posterior p(cjy), then
it suffices that we can calculate the SMC estimate of
p(yjc). We now give a brief account of the SMC
scheme and refer the reader to Doucet et al. [16] for
further details.

An SMC scheme targeting p(xjy,c) can be con-
structed in the following way. At time t þ 1, we
observe ytþ1 and our goal is to generate a sample from
p(xtþ1jytþ1, c) where, as before, we define xtþ1 ¼

fxsjt , s � t þ 1g and ytþ1 ¼ fysjs ¼ 1, 2, . . . , t þ 1g.
We have (up to proportionality),

pðxtþ1jytþ1;cÞ/pðytþ1jxtþ1;cÞ
ð
pðxtþ1jxt ;cÞpðxt jyt ;cÞdxt

/pðytþ1jxtþ1;cÞpðxtþ1jyt ;cÞ: ð4:2Þ

However, for general problems of interest, p(xtjyt, c)
does not have analytic form. The SMC scheme therefore
approximates p(xtjyt, c) by the cloud of points or
‘particles’ fxt

1, . . . , xt
Ng with each particle xt

i having
probability mass wt

i ¼ 1/N. Hence the predictive den-
sity p(xtþ1jyt, c) is approximated by

p̂ðxtþ1jyt ; cÞ ¼
XN
i¼1

1
N

pðxtþ1jxi
t ; cÞ ð4:3Þ

and equation (4.2) is replaced with

p̂ðxtþ1jytþ1; cÞ/ pðytþ1jxtþ1; cÞ

�
XN
i¼1

1
N

pðxtþ1jxi
t ; cÞ: ð4:4Þ

This approximation can be sampled for example via
MCMC, using an algorithm similar to the one described
in §3.2. We note, however, that the importance resam-
pling strategy described by Gordon et al. [22] is simple
to implement and permits straightforward calculation
of an unbiased estimate of marginal likelihood, p(yj c).
The basic idea is to use the (approximate) predictive
p̂ðxtþ1jyt ; cÞ as an importance density, and this task is
made easy by the ability to simulate from p(xtþ1jxt

i, c)
using the Gillespie algorithm with initial condition xt

i.
The weights required for the resampling step at time
t þ 1, wtþ1

i , are proportional to p(ytþ1jxtþ1
i , c), where

each xtþ1
i is the final component of xtþ1

i generated from
equation (4.3). We resample with replacement among
the new particle set fxtþ1

1 , . . . , xtþ1
N g using the corre-

sponding (normalized) weights as probabilities. Hence,
an approximate sample of size N can be generated from
(4.2) for each t ¼ 1, 2, . . . ,T, after initializing the
scheme with a sample from the initial density p(x1).
Once all T observations have been assimilated, the
filter’s estimate of p(xjy,c) can be sampled (if required)
by drawing uniformly from the set fx1, . . . , xNg. Note
that to this end, it is necessary to keep track of the geneal-
ogy of particles over time. The algorithmic form of this
simple SMC algorithm is given in appendix A.2.
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After assimilating the information in all T obser-
vations, the filter’s estimate of marginal likelihood
p(yjc) is obtained as

p̂ðyjcÞ¼ p̂ðy1jcÞ
YT�1

t¼1

p̂ðytþ1jyt ;cÞ¼
YT�1

t¼0

1
N

XN
i¼1

w�itþ1; ð4:5Þ

where w*i
t+1¼p(yt+1jxi

t+1,c). Perhaps surprisingly, it
turns out that this estimator of marginal likelihood
is exactly unbiased [23]. It is then straightforward to
implement the PMMH scheme, using the estimate of
marginal likelihood given by equation (4.5) in the
acceptance probability in equation (4.1). It should be
noted that unlike the sequential LF-MCMC scheme
described in §3.2, PMMH does not suffer from the par-
ticle degeneracy problem. As discussed by Andrieu
et al. [18], performance of the PMMH scheme should be
roughly constant even as T increases, provided that N
increases linearly with T. The mixing of the PMMH
scheme, however, is likely to depend on the number of
particles used in the SMC scheme. While the method
can be implemented using just N ¼ 1 particle (reducing
exactly to the simple LF-MCMC scheme given in §3.1),
the corresponding estimator of marginal likelihood will
be highly variable, and the impact of this on the
PMMH algorithm will be a poorly mixing chain. Using
a large value of N is therefore desirable but will come at
a greater computational cost, since every iteration of
the PMMH scheme requires a run of the SMC scheme.
A discussion of the relationship between the variability
of the estimator of marginal likelihood and the efficiency
of the pseudo-marginal approach can be found in
Andrieu & Roberts [20].

We therefore consider using the PMMH algorithm in
conjunction with an approximation to the SKM,
namely, the CLE. This is the subject of the next section.
Improvements to the efficiency of the SMC scheme (and
therefore the PMMH scheme in turn) are considered in
the context of the CLE in §4.3.
4.2. Particle marginal Metropolis–Hastings for
the chemical Langevin equation

Consider the CLE (2.1) and write it as

dXt ¼ aðXt ; cÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðXt ; cÞ

p
dWt ;

where

aðXt ; cÞ ¼ ShðXt ; cÞ; bðXt ; cÞ ¼ S diagfhðXt ; cÞgS`:

We refer to a(Xt, c) as the drift and b(Xt, c) as the
diffusion coefficient. Since the transition density associ-
ated with the process will typically be analytically
intractable, performing parameter inference in this set-
ting is non-trivial. Attempts to overcome this problem
have included the use of estimating functions [24], simu-
lated maximum-likelihood estimation [25,26] and
Bayesian imputation approaches [27–29]. These
methods are summarized by Sørensen [30]. A related
approach to the work considered here can be found in
Stramer & Bognar [31]. The latter use a pseudo-mar-
ginal approach to infer parameters in stochastic
volatility type models. Monte Carlo methods that are



812 Stochastic biochemical network models A. Golightly and D. J. Wilkinson
both exact (and avoid the error associated with imputa-
tion approaches) and computationally efficient have
been proposed by Beskos et al. [32]. A summary of
this work and some extensions can be found in Sermai-
dis et al. [33]. Such methods are attractive but at
present cannot be readily applied to the general CLE
described here.

We therefore follow a Bayesian imputation approach
by working with the Euler–Maruyama approximation
with density p(. jx,c) such that

ðXtþDt jXt ¼ xÞ � Nðx þ aðx; cÞDt;bðx; cÞDtÞ:

As before, suppose that we have observations on a regu-
lar grid, y ¼ fytjt ¼ 1, 2, . . . , Tg. To allow sufficient
accuracy of the Euler–Maruyama approximation, we
augment observed data by introducing m 2 1 latent
values between every pair of observations. At this
point, it is helpful to redefine X ¼ fXtjt ¼ 1, 1 þ Dt,
1 þ 2Dt, . . ., Tg where Dt ¼ 1/m. The joint posterior
density for parameters and latent states is then given
(up to proportionality) as

pðc;xjyÞ/ pðcÞpðx1Þ
YT�1

t¼1

pðxtþ1jxt ; cÞ

�
YT
t¼1

pðyt jxt ; cÞ; ð4:6Þ

where

pðxtþ1jxt ; cÞ ¼
Ym�1

j¼0

pðxtþð jþ1ÞDt jxtþjDt ; cÞ ð4:7Þ

and we redefine xtþ1 ¼ fxsjs ¼ t þ Dt,t þ 2Dt, . . . , t þ 1g
to be the skeleton path on (t,t þ 1]. The PMMH
scheme can be used to sample p(c, xjy) and requires
an SMC scheme targeting p(xjy, c). A simple SMC
strategy is to follow the approach described in §4.1—
that is, we recursively sample p̂ðxtþ1jytþ1; cÞ whose
form is given by equation (4.4), with p(xtþ1jxt

i, c)
replaced by equation (4.7). Essentially, the Euler
approximation is used to generate new values of the
latent path, X, inside an SMC scheme. An estimate
of marginal likelihood p̂ðyjcÞ can be calculated via
equation (4.5).

Note that the PMMH scheme permits a joint update
of the parameters c and latent path X. This is particu-
larly useful when working with the CLE owing to
dependence between X and parameters in the diffusion
coefficient b(Xt, c). This dependence is highlighted as a
problem in Roberts & Stramer [28] and can result in
poor mixing of Gibbs sampling strategies (such as
those considered in Eraker [29] and Golightly &
Wilkinson [34]) for large values of m corresponding to
fine discretizations. Updating both c and X in a single
block effectively side-steps this issue [31,35].

Choosing the value of m to balance accuracy and
computational cost remains an open research problem.
The error due to discretization is of order 1/m and it
is therefore desirable to choose a sufficiently large
value of m to allow the Euler approximation to be accu-
rate. As discussed in Stramer & Bognar [31], one
method is to look at the marginal parameter posteriors
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for increasing m. The authors suggest choosing a value
m* such that (estimated) marginal posteriors are
approximately the same for m � m*.
4.3. Particle marginal Metropolis–Hastings
using diffusion bridges

The mixing of the PMMH scheme will depend on the
variability of the estimator of marginal likelihood,
which in turn depends on the efficiency of the SMC
scheme, which will in turn depend on the degree of
noise in the measurement process. Methods based on
blind forward simulation from the model will break
down as measurement error decreases to zero. Although
this is not a major problem in many practical appli-
cations, it is a matter of general concern. We therefore
consider an improved SMC strategy where we use a dis-
cretization of a conditioned diffusion in the weighted
resampling procedure. It should be noted that other
improvements to the SMC scheme that do not rely on
exploiting the structure of the CLE are possible. For
example, residual and stratified resampling methods
can reduce variance introduced by the resampling step
[36,37]. A review of these methods can be found in the
study of Doucet & Johansen [38].

Recall that the SMC approximation of p(xtþ1jyt, c) is
given (up to proportionality) as

p̂ðxtþ1jytþ1; cÞ/ pðytþ1jxtþ1; cÞ
XN
i¼1

1
N

pðxtþ1jxi
t ; cÞ;

where p(xtþ1jxt, c) is given in equation (4.7). Now note
that

pðytþ1jxtþ1;cÞpðxtþ1jxt ;cÞ¼pðytþ1jxt ;cÞpðxtþ1jxt ;ytþ1;cÞ:

Although p(ytþ1jxt, c) and p(xtþ1jxt, ytþ1, c) are typi-
cally intractable under the nonlinear structure of the
CLE, the above equation can be exploited to reduce
the variability of the unnormalized weights and in
turn improve the estimator of marginal likelihood
required in the PMMH scheme. A fully adapted auxili-
ary particle filter aims to sample xt

i with probability
proportional to p(ytþ1jxt

i, c) and simulate the latent
path via p(xtþ1jxt

i, ytþ1, c), giving a corresponding nor-
malized weight of wtþ1

i ¼ 1. This approach was
introduced by Pitt & Shephard [39] in the context of
(nonlinear) state space models. See Pitt et al. [23] for
a discussion of the use of an auxiliary particle filter
inside an MH scheme. Naturally, the aim is to get as
close to full adaption as possible. Here, we focus on
the task of approximating p(xtþ1jxt, ytþ1, c) by a tract-
able Gaussian density. Denote the approximation by
p̂ðxtþ1jxt ; ytþ1; cÞ, which can be factorized as

p̂ðxtþ1jxt ; ytþ1; cÞ ¼
Ym�1

j¼0

p̂ðxtþð jþ1ÞDt jxtþjDt ; ytþ1; cÞ:

The approximation we require is derived in
appendix A.3 and takes the form

p̂ðxtþðjþ1ÞDt jxtþjDt ;ytþ1;cÞ¼fðxtþðjþ1ÞDt jxtþjDt

þajDt;bjDtÞ; ð4:8Þ
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where f(.jm, S) denotes the Gaussian density with
mean m, variance S and aj, bj are given in
appendix A.3 by equations (A 1) and (A 2). We use
the density in equation (4.8) recursively to sample the
latent skeleton path xtþ1 conditional on xt and xtþ1.
We provide details of an SMC scheme that uses this
construct in appendix A.3.

The PMMH algorithm can then be implemented by
using the SMC scheme of appendix A.3 targeting
p(xjy,c). If p̂ðxtþ1jxt ; ytþ1; cÞ is close to p(xtþ1jxt,ytþ1, c),
then the variance of the weights (relative to the variance
of the weights obtained under the forward simulation
approach described in §4.2) should be reduced. In turn,
we would expect a reduction in the variance of the estima-
tor of the marginal likelihood p(yjc).

In the case of full observation and no error, aj and bj

reduce to

a0ðxtþjDtÞ ¼
xtþ1 � xtþjDt

1� jDt

and

b0ðxtþjDt ; cÞ ¼
1� ð j þ 1ÞDt

1� jDt

� �
bðxtþjDt ; cÞ

giving the form of the modified diffusion bridge (MDB)
construct, which was first derived explicitly by Durham
& Gallant [26]. Now consider the process fXt

0g satisfy-
ing the MDB discretization

X 0tþDt � X 0t ¼ a0ðX 0tÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0ðX 0t ; cÞ

p
fWtþDt �Wtg:

This can be regarded as a discrete-time approximation
of an SDE with limiting form [40]

dX 0t ¼ a0ðX 0tÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðX 0t ; cÞ

p
dWt ;

which has the same diffusion coefficient as the con-
ditioned SDE satisfied by fXtg. Consequently, the law
of one process is absolutely continuous with respect to
the other [41]. The MDB construct therefore provides
an efficient and appealing way of sampling the latent
values within the SMC scheme. In particular, in situ-
ations involving low or no measurement error, use of
the MDB as a proposal mechanism inside the SMC
scheme ensures that as Dt! 0, the (unnormalized)
weights approach a finite, non-zero limit. Sampling
the latent values via the Euler approximation cannot
be recommended in low noise situations. In this case,
using a proposal mechanism which fails to condition
on the observations results in an extremely inefficient
sampling scheme. Examples in which the measurement
error is varied are considered in §5. Finally, it should be
noted that we preclude an observation regime where the
dynamics of fX 0

tg between two consecutive measure-
ments are dominated by the drift term a(Xt, c). It is
likely that the MDB construct will perform poorly in
such scenarios, as a 0(Xt

0
) is independent of the drift

term a(Xt, c). In this case, a better approach might be
to use a mixture of the MDB construct and Euler for-
ward simulator. See, for example, Fearnhead [42] for
further details and a suggested approach.
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5. APPLICATIONS

In order to illustrate the inferential methods considered
in §4, we consider the stochastic Lotka–Volterra model
examined by Boys et al. [6] and a simple prokaryotic
auto-regulatory model introduced in Golightly & Wilk-
inson [34]. We examine parameter inference in data-
poor scenarios. Note that we eschew the sequential
MCMC scheme described in §3.2 in favour of the
numerically stable PMMH scheme.

5.1. Lotka–Volterra

We consider a simple model of predator and prey inter-
action comprising three reactions:

R1: X1 ! 2X1;

R2: X1 þ X2 ! 2X 2

and R3: X2 ! ;:

Denote the current state of the system by X ¼ (X1, X2)
`

where we have dropped dependence of the state on t for
notational simplicity. The stoichiometry matrix is given by

S ¼ 1 �1 0
0 1 �1

� �

and the associated hazard function is

hðX ; cÞ ¼ ðc1X1; c2X1X2; c3X2Þ`:

The diffusion approximation can be calculated by sub-
stituting equations (5.1) and (5.2) into the CLE (2.1)
to give respective drift and diffusion coefficients of

aðX ; cÞ ¼
c1X1 � c2X1X2

c2X1X2 � c3X2

� �

and

bðX ; cÞ ¼
c1X1 þ c2X1X2 �c2X1X2

�c2X1X2 c2X1X2 þ c3X2

� �
:

5.1.1. Results
We consider two synthetic datasets D1 and D2, consist-
ing of 50 observations at integer times on prey and
predator levels simulated from the SKM using the Gille-
spie algorithm and corrupted with zero mean Gaussian
noise. The observation equation (3.1) is therefore

Yt ¼ Xt þ 1t ;

where Xt ¼ (X1,t, X2,t)
`, 1t � N(0,s2). We took s2 ¼ 10

to construct the first dataset D1 and s2 ¼ 200 to con-
struct D2. In both cases, we assume s2 to be known.
True values of the rate constants (c1, c2, c3)

` were
taken to be 0.5, 0.0025 and 0.3 following Boys
et al. [6]. Initial latent states x1,0 and x2,0 were taken
to be 100.

We ran the PMMH scheme for the SKM, CLE and
CLE using the bridging strategy for 5 � 105 iterations.
A Metropolis random walk update with variance
tuned from a short pilot run was used to propose
log(c). Independent proper Uniform U(27,2) priors
were taken for each log(ci). The SMC scheme employed
at each iteration of PMMH used N ¼ 100 particles.
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Figure 1. Marginal posterior distributions based on the output of the PMMH scheme for the SKM (solid), CLE (dashed) and
CLE with bridging strategy (dotted) using synthetic data generated from the Lotka–Volterra model with (a–c) s2 ¼ 10 and
(d– f ) s2 ¼ 200. Values of each log(ci) that produced the data are indicated.

Table 1. Marginal posterior means and standard deviations for log(ci) from the output of the PMMH scheme under three
different models using synthetic data generated from the Lotka–Volterra SKM. The ESS rows show effective sample size of
each chain per 1000 iterations. The adjusted effective sample size is shown in the ESSadj rows.

log(c1) log(c2) log(c3) log(c1) log(c2) log(c3)

SKM (s2 ¼ 10) SKM (s2 ¼ 200)
mean 20.746 25.970 21.195 20.723 25.958 21.210
s.d. 0.035 0.034 0.034 0.040 0.037 0.040
ESS 51.377 52.191 54.924 459.193 432.287 417.818
ESSadj 0.856 0.867 0.915 7.653 7.205 6.964

CLE (s2 ¼ 10) CLE (s2 ¼ 200)
mean 20.747 25.971 21.194 20.733 25.961 21.206
s.d. 0.035 0.034 0.035 0.040 0.037 0.041
ESS 50.453 47.200 47.917 611.758 585.064 604.966
ESSadj 3.604 3.371 3.423 43.687 41.790 43.212

CLE (bridge, s2 ¼ 10) CLE (bridge, s2 ¼ 200)
mean 20.750 25.973 21.198 20.728 25.960 21.210
s.d. 0.034 0.033 0.034 0.040 0.037 0.040
ESS 823.902 814.871 852.608 606.988 666.097 676.050
ESSadj 24.967 24.693 25.837 18.394 20.185 20.304
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After discarding a number of iterations as burn-in and
thinning the output, a sample of 10 000 draws with
low auto-correlations was obtained for each scheme.
When working with the CLE, we must specify a value
of m to determine the size of the Euler time step Dt.
We report results for m ¼ 5 only (and therefore
Dt ¼ 0.2) but note that these are not particularly
sensitive to m . 5.

Figure 1 and table 1 summarize the output of the
PMMH scheme when applied to the SKM, CLE and
CLE with the bridge proposal mechanism. Inspection
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of the kernel density estimates of the marginal densities
of each log(ci) given in figure 1 shows little difference in
posteriors obtained under the two inferential models
(SKM and CLE) for both synthetic datasets. Auto-
correlations are reported in figure 2. Not surprisingly,
for dataset D1, which represents high signal to noise
s2 ¼ 10, failure to condition on the observations in
the proposal mechanism when applying the PMMH
strategy to the SKM and CLE results in comparatively
poorly mixing chains. Mixing is much improved when
using the bridging strategy for the CLE. Of course, as
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Figure 2. Auto-correlations based on the output of the PMMH scheme for the SKM (solid), CLE (dashed) and CLE with bridging
strategy (dotted) using synthetic data generated from the Lotka–Volterra model with (a–c) s2 ¼ 10 and (d– f ) s2 ¼ 200.

Table 2. Marginal posterior means and standard deviations for log(ci) from the output of the PMMH scheme under three
different models using synthetic data generated from the prokaryotic auto-regulatory network. The ESS rows show effective
sample size of each chain per 1000 iterations. The adjusted effective sample size is shown in the ESSadj rows.

log(c1) log(c2) log(c3) log(c4) log(c7) log(c8)

SKM
mean 21.888 20.437 24.789 20.867 21.742 23.630
s.d. 1.000 0.767 0.933 0.630 0.725 0.368
ESS 16.501 27.31 25.599 29.321 28.862 55.148
ESSadj 0.220 0.364 0.341 0.390 0.384 0.734

CLE
mean 22.624 21.176 24.644 21.215 21.995 23.775
s.d. 0.695 0.610 1.158 0.962 0.780 0.755
ESS 17.842 37.450 20.531 16.941 25.547 24.209
ESSadj 0.317 0.666 0.513 0.301 0.454 0.430

CLE (bridge)
mean 22.574 21.214 24.718 21.102 21.982 23.812
s.d. 0.682 0.554 1.014 0.777 0.729 0.736
ESS 61.091 115.412 57.74 40.791 98.741 61.790
ESSadj 0.469 0.886 0.443 0.313 0.758 0.474
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the signal to noise is weakened, as in dataset D2 with
s2 ¼ 200, there is fairly little to be gained in terms of
mixing, by conditioning on the observations in the
proposal mechanism.

All algorithms are coded in C and implemented on a
desktop personal computer with a 2.83 GHz clock
speed. Computational cost of implementing the
PMMH scheme for the SKM, CLE and CLE (bridge)
scales roughly as 4.29 : 1 : 2.36 and it takes approxi-
mately 14 s to perform 1000 iterations of the CLE
scheme. Naturally, computational cost of the PMMH
scheme applied to the SKM depends on the values of
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the rate constants and latent states that are consistent
with the data, as these determine the number of reac-
tion events per simulation. To compare each scheme,
we report the effective sample size (ESS) [43] in
table 2. We see that when using D1 with s2 ¼ 10, the
CLE (bridge) algorithm clearly outperforms SKM and
CLE in terms of ESS. When using D2 with s2 ¼ 200,
the performance of the CLE approach is comparable
to that of the CLE (bridge) in terms of ESS. We also
provide an adjusted effective sample size ESSadj by
taking the ratio of ESS to CPU time. In terms of
ESSadj, the CLE (bridge) approach outperforms both
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the CLE and SKM methods when using dataset D1,
with typical ESSadj values 27 times larger than those
obtained under the SKM and around seven times
larger than those under the CLE approach. For the
low signal-to-noise case (D2), there is little to be
gained by conditioning on the observations in the pro-
posal mechanism, and the CLE approach is therefore
to be preferred.

5.2. Prokaryotic auto-regulation

Genetic regulation is a notoriously complex biochemical
process, especially in eukaryotic organisms [44]. Even in
prokaryotes, there are many mechanisms used, not all
of which are fully understood. However, one commonly
used mechanism for auto-regulation in prokaryotes that
has been well studied and modelled is a negative feed-
back mechanism whereby dimers of a protein repress
its own transcription. The classic example of this is
the l repressor protein cI of phage l in Escherichia
coli, originally modelled stochastically by Arkin
et al. [45]. Here we consider a simplified model for
such a prokaryotic auto-regulation, based on this mech-
anism of dimers of a protein coded for by a gene
repressing its own transcription. The full set of reactions
in this simplified model are as follows:

R1: DNAþP2!DNA �P2 R2: DNA �P2!DNAþP2

R3: DNA!DNAþRNA R4 : RNA!RNAþP
R5: 2P!P2 R6 : P2!2P
R7 : RNA!; R8 : P!;:

See Golightly & Wilkinson [34] for further explanation.
We order the variables as X ¼ (RNA, P, P2, DNA . P2,
DNA)`, giving the stoichiometry matrix for this system:

S ¼

0 0 1 0 0 0 �1 0
0 0 0 1 �2 2 0 �1
�1 1 0 0 1 �1 0 0

1 �1 0 0 0 0 0 0
�1 1 0 0 0 0 0 0

0
BBBB@

1
CCCCA:

The associated hazard function is given by

hðX ; cÞ ¼ c1DNA� P2; c2DNA � P2; c3DNA;ð

c4RNA;
c5PðP� 1Þ

2
; c6P2; c7RNA; c8P

�`

;

using an obvious notation.
Like many biochemical network models, this model

contains conservation laws leading to rank degeneracy
of the stoichiometry matrix, S. The diffusion bridge
method considered in §4.3 is the simplest to implement
in the case of models of full rank. This is without loss of
generality, as we can simply strip out redundant species
from the rank-deficient model. Here, there is just one
conservation law,

DNA � P2 þ DNA ¼ k;

where k is the number of copies of this gene in the
genome. We can use this relation to remove DNA . P2

from the model, replacing any occurrences of DNA .
P2 in rate laws with k 2 DNA. This leads to a reduced
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full-rank model with species X ¼ (RNA, P, P2,
DNA)`, stoichiometry matrix

S ¼

0 0 1 0 0 0 �1 0
0 0 0 1 �2 2 0 �1
�1 1 0 0 1 �1 0 0
�1 1 0 0 0 0 0 0

0
BB@

1
CCA; ð5:1Þ

and associated hazard function

hðX ; cÞ ¼ c1DNA� P2; c2ðk � DNAÞ; c3DNA; c4RNA;ð

c5PðP� 1Þ
2

; c6P2; c7RNA; c8P

�`

: ð5:2Þ

We can then obtain the diffusion approximation by
substituting equations (5.1) and (5.2) into the CLE
(2.1). Although greatly simplified relative to our cur-
rent understanding of the full biological process, this
model captures the key interactions and feedbacks
characteristic of the real system being modelled.

5.2.1. Results
We consider a challenging data-poor scenario by analys-
ing a synthetic dataset consisting of 100 observations at
integer times of total protein numbers simulated from
the SKM using the Gillespie algorithm. The obser-
vation equation (3.1) becomes

Yt ¼ ð0; 1; 2; 0ÞXt þ 1t ;

where Xt ¼ (RNAt, Pt, (P2)t, DNAt)
`, 1t � N(0,s2) and

we take s2 ¼ 4 to be known. Hence, we have obser-
vations on Pt þ 2(P2)t subject to error. Again, this is
a simplification of a real single-cell measurement scen-
ario, but captures many important features. First, it
captures the partial nature of the observation process;
this is a very data-poor scenario, typical of real
measurement systems. Second, it attempts to model a
reporter mechanism where the protein of interest is
tagged to form a fusion with a fluorescent reporter,
such as GFP, where it is not possible to distinguish
monomers from dimers in the measured signal. True
values of the rate constants (c1, . . . , c8)

` were taken
to be 0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3 and 0.1 with the
reversible dimerization rates c5 and c6 assumed
known. Note that we take the conservation constant
(that is, the number of copies of the gene on the
genome) and the initial latent state x1 to be known
with respective values of 10 and (8,8,8,5)`. Simulations
from the SKM with these settings give inherently dis-
crete time series of each species. This scenario should
therefore be challenging for the CLE when used as an
inferential model.

We ran the PMMH scheme for the SKM, CLE and
CLE using the bridging strategy for 3 � 106 iterations.
A Metropolis random walk update with variance
tuned from a short pilot run was used to propose
log(c) and independent proper Uniform U(27,2)
priors were taken for each log(ci). The SMC scheme
employed at each iteration of PMMH used N ¼ 100 par-
ticles. After discarding a number of iterations as burn-in
and thinning the output, a sample of 10 000 draws with
low auto-correlations was obtained for each scheme. As
before, we must specify a value of m to determine the
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size of the Euler time step Dt to use in the numerical
solution of the CLE. We took m ¼ 5 (and therefore
Dt ¼ 0.2) to limit computational cost.

Figure 3 and table 2 summarize the output of the
PMMH scheme for each inferential model. Kernel density
estimates of the marginal densities of each log(ci) are
given in figure 3. We see that sampled values of each par-
ameter are consistent with the true values used to produce
the synthetic data. In addition, it appears that little is lost
by ignoring the inherent discreteness in the data. The
output of the PMMH scheme when using the CLE is lar-
gely consistent with that obtained under the SKM (see
also marginal posterior means and standard deviations
in table 2). Not surprisingly, kernel densities obtained
under the CLE and CLE (bridge) methods match up
fairly well as both schemes are designed to sample the
same invariant distribution.

Computational cost of implementing the PMMH
scheme for the SKM, CLE and CLE (bridge) scales as
1 : 0.75 : 1.73 with 1000 iterations of the CLE approach
requiring approximately 56 s of CPU time. However, it
is clear from the auto-correlation plots in figure 4 that
the mixing of the chains under the CLE (bridge)
method is far better than that obtained under the
SKM and CLE. Table 2 gives the ESS for which the
CLE (bridge) algorithm clearly outperforms SKM and
CLE. Again, adjusted ESSs are provided. In terms of
computational performance, the CLE approach outper-
forms SKM for four out of six parameters and the CLE
(bridge) approach outperforms its vanilla counterpart
for five out of six.
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6. DISCUSSION AND CONCLUSIONS

This paper has considered the problem of inference for
the parameters of a very general class of Markov process
models using time course data, and the application of
such techniques to challenging parameter estimation pro-
blems in systems biology. We have seen how it is possible
to develop extremely general ‘likelihood-free’ pMCMC
algorithms based only on the ability to forward simulate
from the Markov process model. Although these methods
are extremely computationally intensive, they work very
reliably, provided that the process is observed with a
reasonable amount of measurement error. Exact likeli-
hood-free approaches break down in low/no
measurement error scenarios, but in this case it is poss-
ible to use established methods for sampling diffusion
bridges in order to carry out inference for the parameters
of a diffusion approximation to the true MJP model. Dif-
fusion approximations to SKMs are useful for at least
two reasons. The first reason is computational speed.
As the complexity of the true model increases, exact
simulation becomes intolerably slow, whereas (approxi-
mate, but accurate) simulation from the diffusion
approximation remains computationally efficient. The
second reason is tractability. There are well-established,
computationally intensive methods for simulating from
diffusion bridges, and these techniques allow the develop-
ment of much more efficient pMCMC algorithms,
especially in low/no measurement error scenarios. These
more efficient schemes work well even in very challenging
multivariate settings, and we expect that they will scale
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up to problems of relatively high dimension (i.e. 20 par-
ameters and 50 species) without encountering serious
problems.

Despite the relative efficiency of the pMCMC algor-
ithms discussed here, the computational expense of
pMCMC algorithms for complex models remains a lim-
iting factor, and the development of software toolkits
that make it easy to fully exploit the speed of modern
processors and the parallelism of modern computing
architectures is a high priority [46].

The second author (D.J.W.) was supported by a fellowship
from the Biotechnology and Biological Sciences Research
Council (BBSRC), grant no. BBF0235451, and the Statistical
and Applied Mathematical Sciences Institute (SAMSI)
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APPENDIX A

A.1. Particle marginal Metropolis–Hastings
scheme

The PMMH scheme has the following algorithmic form.
1. Initialization, i ¼ 0,

(a) set c(0) arbitrarily and
(b) run an SMC scheme targeting p(xjy,c(0)),

sample Xð0Þ � p̂ðxjy; cð0ÞÞ from the SMC
approximation and let p̂ðyjcð0ÞÞ denote the
marginal likelihood estimate.
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2. For iteration i � 1,

(a) sample cw � q(. jc(i21)),
(b) run an SMC scheme targeting p(xjy,cw),

sample Xw � p̂ðxjy; cwÞ, let p̂ðyjcwÞ denote
the marginal-likelihood estimate, and

(c) with probability minf1,Ag where

A ¼ p̂ðyjcwÞpðcwÞ
p̂ðyjcði�1ÞÞpðcði�1ÞÞ �

qðcði�1ÞjcwÞ
qðcwjcði�1ÞÞ

accept a move to cw and Xw otherwise store
the current values.

If interest lies purely in the marginal posterior p(cjy)
then the scheme can be simplified by noting that in this
case there is no requirement to sample or store draws of
the latent states X.
A.2. Sequential Monte Carlo for the stochastic
kinetic model

An SMC scheme based on the bootstrap filter of
Gordon et al. [22] can be stated as follows.

1. Initialization.

(a) Generate a sample of size N, fx1
1, . . . , x1

Ng from
the initial density p(x1).

(b) Assign each x1
i a (normalized) weight given by

wi
1 ¼

w�i1PN
i¼1 w�i1

; where w�i1 ¼ pðy1jxi
1; cÞ:
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(c) Construct and store the currently available
estimate of marginal likelihood,

p̂ðy1jcÞ ¼
1
N

XN
i¼1

w�i1 :

(d) Resample N times with replacement from
fx1

1, . . . , x1
Ng with probabilities given

by fw1
1, . . . , w1

Ng.

2. For times t ¼ 1, 2, . . . , T 2 1.

(a) For i ¼ 1, . . . , N: draw Xtþ1
i � p(xtþ1jxt

i,c)
using the Gillespie algorithm.

(b) Assign each xtþ1
i a (normalized) weight given by

wi
tþ1¼

w�itþ1PN
i¼1 w�itþ1

; where w�itþ1¼pðytþ1jxi
tþ1;cÞ:

(c) Construct and store the currently available
estimate of marginal likelihood,

p̂ðytþ1jcÞ ¼ p̂ðyt jcÞp̂ðytþ1jyt ; cÞ

¼ p̂ðyt jcÞ
1
N

XN
i¼1

w�itþ1:

(d) Resample N times with replacement from
fxtþ1

1 , . . . , xtþ1
N g with probabilities given

by fwtþ1
1 , . . . , wtþ1

N g.

A.3. Sequential Monte Carlo using diffusion
bridges

We consider first the task of deriving the form of the
density p̂ðxtþð jþ1ÞDt jxtþjDt ; ytþ1; cÞ, which, when sampled
recursively, gives the skeleton of a diffusion bridge.
Following Wilkinson & Golightly [47], we derive the
required density by constructing a Gaussian approxi-
mation to the joint density of Xtþ( jþ1)Dt and Ytþ1

(conditional on XtþjDt and c). We have that

Xtþðjþ1ÞDt

Ytþ1

� �
�N

�
xtþjDtþajDt

F` xtþjDtþajDj
� �

 !
;

bjDt bjFDt

F`bjDt F`bjFDjþS

 !( )
;

where Dj ¼ 1 2 jDt and we use the short-hand notation
aj ¼ a (xtþjDt, c) and bj ¼ b (xtþjDt, c). Conditioning on
Ytþ1 ¼ ytþ1 yields

p̂ðxtþð jþ1ÞDt jxtþjDt ; ytþ1; cÞ ¼ fðxtþð jþ1ÞDt jxtþjDt

þ ajDt; bjDtÞ;

where

aj ; aðxtþjDt ; cÞ ¼ aj þ bjFðF`bjFDj þ SÞ�1

� ðytþ1 � F`½xtþjDt þ ajDj �Þ ðA 1Þ

and

bj ; bðxtþjDt ; cÞ
¼ bj � bjFðF`bjFDj þ SÞ�1F`bjDt: ðA 2Þ
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This density can be sampled recursively to produce a
latent skeleton path xtþ1 conditional on xt and xtþ1.
An SMC strategy that uses this construct can be
obtained by replacing step 2 of the SMC algorithm
described in appendix A.2 with the following.

2. For times t ¼ 1, 2, . . . , T 2 1.

(a) For i¼ 1, . . . , N: draw Xi
tþ1 � p̂ðxtþ1jxi

t ; ytþ1; cÞ
using equation (4.8) recursively.

(b) Assign each xtþ1
i a (normalized) weight given by

wi
tþ1 ¼

w�itþ1PN
i¼1 w�itþ1

; where

w�itþ1 ¼
pðytþ1jxi

tþ1; cÞpðxi
tþ1jxi

t ; cÞ
p̂ðxi

tþ1jxi
t ; ytþ1; cÞ

:

(c) Construct and store the currently available
estimate of marginal likelihood,

p̂ðytþ1jcÞ ¼ p̂ðyt jcÞp̂ðytþ1jyt ; cÞ

¼ p̂ðyt jcÞ
1
N

XN
i¼1

w�itþ1 :

(d) Resample N times with replacement from
fxtþ1

1 , . . . , xtþ1
N g with probabilities given

by fwtþ1
1 , . . . , wtþ1

N g.

Note that theorem 1 of Pitt et al. [23] establishes that
the auxiliary particle filter (of which the algorithm
presented above is a special case) gives an unbiased
estimator of marginal likelihood.
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