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Phylogeographic methods have attracted a lot of attention in recent years, stressing the need
to provide a solid statistical framework for many existing methodologies so as to draw stat-
istically reliable inferences. Here, we take a flexible fully Bayesian approach by reducing
the problem to a clustering framework, whereby the population distribution can be explained
by a set of migrations, forming geographically stable population clusters. These clusters are
such that they are consistent with a fixed number of migrations on the corresponding
(unknown) subdivided coalescent tree. Our methods rely upon a clustered population distri-
bution, and allow for inclusion of various covariates (such as phenotype or climate
information) at little additional computational cost. We illustrate our methods with an
example from weevil mitochondrial DNA sequences from the Iberian peninsula.
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1. INTRODUCTION

Phylogeographic methods have attracted a lot of atten-
tion in recent years, stressing the need to provide a solid
statistical framework for many existing methodologies
so as to draw statistically reliable inferences. The var-
iety of available methods reflects both the numerous
different objectives at which each phylogeographic
analysis aims [1–6], as well as the disagreements and
misconceptions about the fundamental principles of
model-based inference [7–11]. Several different paths
may be taken in phylogeographic inference; some of
the key choices include the evolutionary model to use
for the taxa under study, which statistical frameworks
allow for efficient inferences and how population and
geographical distributions should be combined [12].

Here, we take a flexible fully Bayesian approach by
reducing the problem to a clustering framework,
whereby the population distribution can be explained
by a set of migrations that form geographically stable
population clusters. These clusters are such that they
are consistent with a fixed number of migrations on
the corresponding (unknown) subdivided coalescent
tree. In other words, a simplified island migration
model between geographically stable populations with
equal migration rates and no back-migration is con-
sidered, with an unknown number of migrations.
Although we consider a simplistic evolutionary model
orrespondence (im30@stat.duke.edu).
ess: 61 Henley Way, Ely, Cambridgeshire, CB7 4YH, UK.

ion of 9 to a Theme Issue ‘Inference in complex systems’.

ay 2011
eptember 2011 909
in which only a finite, but very large, number of coalesc-
ent trees have positive probability (details in appendix
A), the methods can easily be extended to include
more sophisticated models, also allowing for ancestral
inference [13]. Our methods rely upon a clustered, as
opposed to clinal, population distribution [14], and
allow for flexible inclusion of various covariates such
as phenotype or climate information at little additional
computational cost.

We illustrate our statistical model on a set of syn-
thetic datasets and one real dataset, and describe
algorithms for inferring the underlying parameters.
Owing to the unknown number of migrations and the
size of the discrete sample space of both the tree and
the clustering, an efficient reversible jump Markov
chain Monte Carlo (RJMCMC) [15] sampler is necess-
ary in order to obtain posterior samples for the
parameters. We implement our methods on an example
from weevil mitochondrial DNA sequences from the
Iberian peninsula.
2. UNCERTAINTY ABOUT THE
HAPLOTYPE TREE

One of the challenges of comparative approaches lies in
combining geographical and ancestral history infor-
mation. In this paper, we focus on haplotype trees,
which are known to be reliable only in situations with
little homoplasy and low mutation rate [16]; however,
our clustering methods are naturally applicable to
other ancestral representations such as coalescent
This journal is q 2011 The Royal Society
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Figure 1. A coalescent tree with subdivided populations: green
is the ancestral population, from which sequences sub-
sequently migrated to found the pink, yellow and light blue
populations.
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Figure 2. Example of a migration haplotype tree. The pink–
green haplotype (1) is shared between the pink and green
population clusters with half of its copies found in each,
whereas the green–blue–yellow (2) is shared between the
green, blue and yellow clusters with half of its copies found
in the green cluster, and a quarter in each of the remaining
two. In this case, the yellow cluster only contains copies of
haplotype 2. Black dots represent unsampled (but known)
haplotypes.
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trees. Many of the earlier approaches relied upon one, or
very few, fixed haplotype trees representing ancestral
histories [17,18]. However, there is often considerable
uncertainty about the haplotype tree, and the space
of such trees is discrete and infinite. At the same
time, as has been identified previously [17,19], valuable
information about the haplotype tree lies within the
geographical information, which may be lost if infer-
ences are drawn stepwise, by conditioning on a single
tree first, rather than on the joint tree-geography space.

In the presence of homoplasy, the haplotype tree is
unknown and the tree space is infinite. In order to
allow for computationally feasible inferences, we
describe how a finite set of ‘realistic’ (in terms of a
relaxed parsimony criterion) haplotype trees V may
be obtained from the sequence data S. Algorithm A,
which may be found in appendix A, uses a fixed muta-
tional step limit ds, and assumes that any pair of
disconnected sequences that are d SNPs apart will be
a maximum of d þ ds actual mutations apart. The set
of ‘realistic’ trees is constructed by cumulatively
adding intermediate sequences following the relaxed
parsimony assumption defined by ds. In general, larger
values of ds (up to a maximum value) yield more inclus-
ive (and hence realistic) sets V; the choice of ds is simply
chosen according to computational power. A more
sophisticated approach would allow ds to vary according
to a prior distribution, but implementation involves cal-
culating normalization constants over the vast space of
trees. For a fixed ds, algorithm A inputs the DNA
sequences at hand, and outputs a sequence network,
including loops. The true haplotype tree is then
assumed to be one of the subtrees of this network and
can be obtained through the breaking of loops.

In this paper, we assume a uniform model over the
space of such trees. This means that, in the absence of
geographical information, all possible trees have equal
probability. It can be shown [13] that there is a one-
to-one correspondence between trees and loop-breaking
edges, allowing for sampling and inferences on the space
of trees to be computationally efficient.
3. PHYLOGEOGRAPHIC CLUSTERING

The underlying assumption of our methods relies on a
simplified island migration model with equal migration
rates and no back-migration, resulting in a coalescent
model with subdivided populations. By projecting the
coalescent onto a haplotype tree (although this projec-
tion is not one-to-one) and defining the geographical
clusters conditional on this haplotype tree, the compu-
tational complexity of the algorithms is significantly
reduced. Specifically, we assume that we are given
a sample of N DNA sequences corresponding to Nh

haplotypes from a haplotype tree, along with the corre-
sponding geographical location where each sequence
was sampled. Combined with a haplotype tree model,
this provides a basis for simultaneous inferences on the
joint haplotype tree and population clustering space.

We define population clusters that are consistent
with the geographic and genetic information available.
Our clustering model corresponds to a simplified island
Interface Focus (2011)
model with an unknown number of islands, such that sev-
eral sampling locations and haplotypes may be grouped
together into one homogeneous population; see Latter
[20]. Although this migration model is less flexible than
the model implemented in Sanmartı́n et al. [6], it allows
for inference on the number and structure of the popu-
lation clusters. The main assumption here is that each
sequence (rather than each haplotype) is assumed to
belong to a single geographical population cluster [21].
We thus aim to cluster individuals such that haplotypes
may be shared across clusters owing to moving individ-
uals following migration [18,19].

We develop a construction of phylogeographic clus-
ters on haplotype trees that are consistent with
migration island models, yielding shared haplotypes
between populations. Using the migration model in
De Iorio & Griffiths [21] consider a scenario where an
ancestral population (depicted as green in figure 1) is
the source for the colonization of another three popu-
lations, shown in yellow, pink and light blue. The
migration model may be projected onto a haplotype
tree. An example of (an extended version of) a haplo-
type tree consistent with the coalescent tree in
figure 1 is shown in figure 2.
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We introduce a general setting in which phylo-
geographic clusterings can be projected onto a
haplotype tree. The clusters are seeded by K migrat-
ing haplotypes denoted m1, . . . , mK (not necessarily
distinct), where K is fixed in this section, leading to
K þ 1 population clusters. Each of the migration
events between two populations results in the migrating
haplotype potentially being present in both populations
(at some point in time). We denote the clusters that
migrating haplotype mk is shared between as the set
C(mk) (for example, pink and green for the case of
haplotype 1 in figure 2), and use m to denote the set
of all migrating haplotypes. All sequences correspond-
ing to a migrating haplotype mk belong to one of the
jC(mk)j clusters.

Each migrating haplotype has a number of clades
adjacent to it, which end either at a leaf node or at
another migrating haplotype. All sequences contained
in each of those clades are clustered together in one of
the jC(mk)j clusters. Intuitively, every single descendant
will appear in exactly one of these populations unless
another migration occurs. This implies that sequences
(i.e. observations) corresponding to a haplotype that
did not migrate are forced to belong to the same cluster,
whereas sequences of a migrating haplotype may belong
to different clusters. All such phylogeographic cluster-
ings can be obtained using algorithm B, described in
detail in appendix B.1, which describes a step-by-step
method of constructing clusterings that are consistent
with K migrating haplotypes based on a fixed haplotype
tree of Nh haplotypes.

Once the complete clustering is determined, it is
possible to separate all the observations into hard clus-
ters. However, it is not possible directly to extract the
historical information of the geographical movements.
For example, in figure 2, we cannot distinguish whether
the yellow cluster was formed before or after the light
blue, and whether it was, for example, a migration
from the pink or green cluster. It is only possible to
make a (subjective) interpretation of the output, for
example using the fact that smaller populations are
more likely to be younger [22], or using external sources
of information, for example about past glaciation of the
area [23]. Devising a method that would directly infer
historical events requires modelling complex phylogeo-
graphic phenomena and would greatly increase the
complexity of the algorithms.

We denote the complete set of coordinates by Y, such
that yij refers to the coordinates (latitude–longitude)
of the jth observation of haplotype i. The distribu-
tion of those coordinates is assumed to be Gaussian
with mean mk and covariance Sk determined by each
population cluster k. The location and shape of indi-
vidual clusters is specified through independent
Gaussian-Inverse Wishart priors, departing from the
standard conjugate prior in order to decouple the
dependence between the location and spread of indi-
vidual clusters. The location coordinate data are
standardized so that the mean is zero and the total
(including both longitude and latitude) sample variance
is one, keeping the North–South and East–West ratio
fixed. We introduce the following priors for the cluster-
ing model, such that the phylogeographic clustering
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model in full amounts to

T � UfVg;
Yje;m;S � N pðmi;SiÞ;

mk � Uf1; . . . ; ng with replacement;

c;m � Mult

(YK
k¼1

minðjmk j; 1
NÞ

� jCðmkÞj�jmk j�degðmkÞ
)
;

mk jSk � N pð0;V Þ;
Sk � IWðg;CÞ;

and g � Ufpþ 1; . . . ; gg:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð3:1Þ

Here p is the dimensionality of the data (p ¼ 2 in the
case of purely geographical, p ¼ 3 with an additional cov-
ariate etc.), jmkj is the sample size of haplotype k and
deg(mk) is the degree of haplotype k, i.e. the number of
adjacent haplotypes. The parameter T represents the
haplotype tree (from the reduced setV), and g is a hyper-
parameter which allows our model to borrow information
about the spread of the population clusters from the data.
We use the notation cij to represent the cluster of the jth
data point corresponding to haplotype i, and c to rep-
resent the set of all cluster memberships. The allocation
parameter cij is forced to be the same for all j of haplotypes
which are not shared, but is allowed to take different
values for shared ones. The motivation for these priors
is described in detail in appendix B.3. The distributions
in model (3.1) give that

mk jY; e;Sk � N p
S
�1
k ny

V�1 þ nS�1
k

;
1

V�1 þ nS�1
k

 !
ð3:2Þ

and

Sk jY; e; g;m � IW

� N þ g;Cþ
X
j;l

fc jl¼kgðy jl � mkÞ
Tðy jl � mkÞ

 !

ð3:3Þ

The drawback of fixing the set V before the MCMC
algorithm is that V may not include the true tree.
Although it is generally true that evolution may follow
the minimal path [24], this is not always the case,
especially when data are deeply divergent or homoplasic.
The parsimony assumption can alternatively be avoided
by defining the clustering algorithms directly on coalesc-
ent trees, but that can be computationally intensive. In
a coalescent tree setting, each clustering of a single haplo-
type tree requires particular permutations of coalescence
events which allow for the order of migration events; in
the haplotype tree framework, exploration of those per-
mutations is decoupled from the inference about the
tree, allowing for efficiently tuned proposal distributions.

In practice, we do not know the true number K of
migrating haplotypes, and the number of clusters also
needs to be inferred. We use a RJMCMC method simi-
lar to Richardson & Green [15], which allows moving
between parameter spaces of different sizes. The
model is augmented by adding a parameter K denoting
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Figure 3. Here, we represent the parameters of our model as a
directed acyclic graph (DAG). A DAG is interpreted as fol-
lows [25]: for any node v, conditioning on the value of its
parent nodes (i.e. the nodes that have an arrow directed
towards v), then no other nodes would be informative about
v except its descendants. We adhere to the convention of
representing fixed or observed quantities by squares, and cir-
cles for parameters that are estimated. The colours
correspond to different types of analysis: the black represents
the basic parameters of the Gaussian clustering model, the
green for phylogeographic analysis, the blue for analysis
with a variable number of clusters and the purple for the
underlying haplotype tree.
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the number of migration events, which is assumed to
have a parsimonious Poisson prior K � Po(K0) for
small K0. The hyperparameter g in the degrees of free-
dom of the prior for the covariance matrices S is
important because the number of clusters is heavily
dependent upon the spread of each cluster. Thus, a
prior for the covariance favouring small clusters will
tend to result in a large K, and vice versa. The variable
g allows for the joint posterior of the number of clusters
and their spread to be inferred. The hierarchical struc-
ture of the parameters is shown in figure 3.

The clustering of the observations is constrained by
the structure of the haplotype tree; this implies that
observations are not exchangeable given the haplotype
tree, and the parameters of the clustering model
cannot easily be sampled using, say, a Dirichlet process.
Instead, in order to obtain samples from the posterior
distribution, we construct a RJMCMC sampler with
target distribution

pðT ;K ;m; c; g;S;mjYÞ/ f ðYjK ;m; c;S;mÞpðKÞpðmÞ
pðgÞpðSjgÞpðm; cÞ:

For a detailed description of the Markov chain
Monte Carlo updates, see appendix C.
4. SYNTHETIC DATA ANALYSIS

In order to test the validity of our methods, we generate a
set of 10 replicate synthetic datasets and assess the
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performance of our algorithm. For each dataset, we ran-
domly draw an initial sequence of length l ¼ 500, at an
initial geographical location y00 ¼ (0,0) at the initial
population cluster with centre m0 ¼ (0,0). Subsequent
sequences are generated according to a time-reversible
Markov process, with possible events either splits or
mutations at any of the available sites. We use a fixed
rate of mutation equal to 1 and uniform across all possible
mutations and sites, and a fixed rate of splitting w ran-
domly drawn from w � N(l,5) for each dataset. Each
new sequence j of haplotype i then is assumed to belong
to one of three possible locations: with probability 0.9 it
stays in the geographical location of its ancestor aij such
that yij ¼ yaij

; otherwise, it either moves to a new location
yij ¼ N(mk,0.1) but within the same geographical cluster
k ¼ caij

with probability 0.95, or it migrates to a new geo-
graphical cluster mnew � N(mk,5) and creates a new
location yij � N(mnew,0.1). The new sequence is forced
to start a new location if the location of its ancestor con-
tains 15 or more sequences. These tuning generative
parameters were chosen in order for the synthetic datasets
to match the real datasets at hand as much as possible.
The iterative algorithm stops when it reaches 275 obser-
ved sequences (not including ones which are extinct
in the process), corresponding to a variable number of
haplotypes, locations and geographical clusters.

The RJMCMC sampler is then run on each dataset
excluding extinct sequences (so that the true tree is
unknown) for 10 seeds, each of 100 000 iterations. We
set V ¼ 100 ;C ¼ 0:1� ; g � Uð3; . . . ; 10Þ. For each
dataset, we compare the marginal maximum a poster-
iori cluster assignment to the true cluster assignment,
and calculate the proportion of observations which are
correctly assigned, yielding an average success rate
over the 100 datasets of 82 per cent.
5. IMPLEMENTATION

We apply our algorithms to a mitochondrial DNA data-
set of weevils in the Iberian peninsula. Rhinusa vestita is
a seed parasite weevil feeding and reproducing on snap-
dragons. It is believed to have been present in Portugal,
Spain, France and Italy. The complete nucleotide
sequence for the mitochondrial COII gene (722 bp)
was obtained for 275 Rhinusa vestita individuals. Pre-
vious studies investigating the association of weevils
with three host plant species, combined with knowledge
about the glaciation history of the Iberian peninsula
[23], led to the biological prediction that the species
originated from the Rhône valley to the east and west.

We implement our methods on the weevil dataset,
taking the maximum parsimony level at ds ¼ 3, yielding
28 loops. Referring back to model 3.1 for p ¼ 2, we set
V ¼ 100 ;C ¼ 0:1� ; g � Uð3; . . . ; 10Þ and K0 ¼ 3.
The prior bound g ¼ 10 was chosen so that large
values of g result in a prior for the covariance which is
very narrow compared with the typical distances
between any two locations; it should be re-calibrated
in cases where the posterior distribution of g shows sig-
nificant support at the higher range of values. The
posterior masses for the number of clusters from the
RJMCMC sampler are shown in table 1. Although the



Table 1. The posterior masses for the number of migrations
for the weevil dataset. The existence of four clusters is
suggested, showing the highest posterior mass of 0.71.

no. of migrations 0 1 2 3 4 5 6
post. model prob. 0 0 0.28 0.71 0 0 0
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data strongly inform the model about the posterior dis-
tribution of the phylogeographical clustering and the
number of clusters, all haplotype trees consistent with
each of those clusterings take equal posterior prob-
ability mass. The results of our method are shown
below through one of maximum a posteriori estimate
of the haplotype tree (figure 4) showing the unique
MAP haplotype clustering, and a geographical contour
plot of the clusters (figure 5). The results indicate that
there is one large population cluster, shown in pink,
which is geographically and genetically relatively homo-
geneous. Two clusters in the North-West are identified,
which are geographically isolated, and are direct rela-
tives of haplotype 2. Finally, the light blue cluster
indicates an additional larger scale migration in the
east-west direction. These findings agree with previous
biological studies; additional inferences incorporating
an evolutionary model can provide finer resolution
into the timeline of the migration events.

In this case, the hyperparameter g became impor-
tant. Taking different values for C yielded quite
different clusterings for a fixed g, especially in regard
to the NW locations. Allowing g to vary ensured robust-
ness of the method, increasing the posterior mean of g
for larger values of C.
6. DISCUSSION

We have presented a joint model for identifying a clus-
tered geographical distribution consistent with an
island migration model. By considering the correspond-
ing subdivided population structure on the coalescent,
we defined phylogeographic clusters consistent with a
given haplotype tree. Introducing uncertainty about
the haplotype tree, we provided a basis for joint infer-
ence of both the clusters and the tree in a flexible
Bayesian framework. An interesting approach with
similar features is presented by Sanmartı́n et al. [6],
whereby the phylogeographic clusters are assumed
fixed a priori, but a flexible model on the migration
and evolutionary rates allows for a better representation
of underlying processes. A combination of the two
methods can simultaneously provide inferences on the
structure of the phylogeographic clusters as well as
evolutionary parameters.

Our methods can be improved and extended in several
ways. Firstly, more sophisticated evolutionary models
(such as a generalized time-reversible mutation model
combined with a coalescent model) may be considered,
taking into account individual population growth, popu-
lation stationarity, variable mutation rates, panmixia,
such as Huelsenbeck & Ronquist [26]. Some of those evol-
utionary model extensions have been implemented in
Manolopoulou [13], yielding a non-equiprobable set of
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trees; in practice, the posterior distribution is often domi-
nated by the geographical information, so that the
evolutionary dynamics only add to the computational
cost. Recent advances in parallel computing with
graphics processing units (GPUs) provide a powerful
tool for inference and calculation on phylogenetic and
coalescent trees [2]. Aside from providing more realistic
evolutionary histories, this also allows for ancestral
inference—although inference of individual ancestral
haplotypes can yield particularly high variance esti-
mates, inference of ancestral sampling locations can
provide more stable posterior estimates [13].

Furthermore, more sophisticated migration models
can be employed Sanmartı́n et al. [6], for example
taking into account geographical distance to guide
prior probabilities of individual migration events
between phylogeographic clusters. To account for his-
torical events such as population subdivision, the
sample space of permissible clusterings can be exten-
ded to include those (see appendix B.1). Many of
those extensions have been used in population genetics
approaches such as Hey [4]. Alternative approaches also
use a clinal rather than clustered geographical
distribution such as described in Handley et al. [27].

As with most methods relying upon tree inference
(whether phylogenetic, coalescent or haplotype), factors
such as homoplasy, deep divergence and extinction can
influence the reliability of the inferences. In such cases,
the evolutionary history becomes a nuisance parameter
without providing any additional information; other
methods which do not draw inferences about the history
may be more appropriate [3,28].

Finally, as is often the case with model-based
approaches, the algorithms presented are heavily compu-
tational. Sophisticated inference and computer
programming tools are necessary to ensure efficiency.
The methods described are implemented in C built in
an R-package that exports easily into Google Earth,
available through http://www.stat.duke.edu/�im30/
software.html.
APPENDIX A. UNCERTAINTY ABOUT
THE HAPLOTYPE TREE
We describe the algorithm yielding a set of ‘feasible’
haplotype trees in the form of a network given a set
of sequences.
ALGORITHM A

First, we pick a number of mutational steps ds, which
will be the number of mutations by which we relax
the parsimony assumption for missing intermediate
sequences. This means that we assume that if two
sequences are k nucleotides apart, then they are at
most k þ ds mutational steps apart.

(1) We connect any haplotypes that are one SNP
apart, and count the number of disconnected
groups of nodes. If the sequence data S form a con-
nected tree, then we assume that it is indeed the
true haplotype tree T so that V ¼ fT g and the
algorithm terminates. For every pair of groups,

http://www.stat.duke.edu/~im30/software.html
http://www.stat.duke.edu/~im30/software.html
http://www.stat.duke.edu/~im30/software.html
http://www.stat.duke.edu/~im30/software.html
http://www.stat.duke.edu/~im30/software.html
http://www.stat.duke.edu/~im30/software.html
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Figure 4. One of the non-unique MAP estimates of the haplotype tree using our approach, where colour corresponds to cluster and
size to the number of individuals sampled with each sequence.

Figure 5. Corresponding bivariate normal contour plots evaluated at the posterior means for the weevil dataset. The black dots
indicate sampling locations, and colours correspond to the clusters shown in figure 4.
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Figure 6. (a–c) The figure shows the three iterations for finding the two missing nodes. The letters on some of the edges represent
the nucleotide position of each mutation. Here there is a back-mutation either at position a or at position b.
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we find the closest distance between two nodes
belonging to each group. We will refer to these
pairs of nodes as the representatives between two
groups (not necessarily unique). When no homo-
plasy is present, these are unique for each pair of
groups. If the graph is connected (i.e. all sequences
belong to the same group), then the algorithm
terminates.

(2) We then find dmin, the minimum of these minimum
distances.

(3) We find all pairs of sequences (i,j) that belong
to different groups and have distance (in terms
of number of SNP mutations apart) d(i,j) �
dmin þ ds. If no such pair can be found, go to step
5 for the minimum pair of haplotypes.

(4) For each pair (i,j) we then check if i has an adja-
cent node k which has d(k,j) � d(i,j), and
similarly for j. If either of these is true, then we
repeat this step for the next pair of edges. Else we
go to the next step.

(5) We then find all the pairs of groups which have the
reference node as one of their two representatives.
We store the separating mutation positions
between each one of these representatives and the
reference node.

(6) Then we find the separating mutation(s) which
occurs most frequently between those pairs, and
we pick one of them, which we call the ‘reference
mutation’. This mutation has to be the one that
occurred closest to the reference node, and so we
create an extra node which is identical to the refer-
ence node except at the reference mutation
position. When the reference mutation is not
unique, without loss of generality we pick the first
such nucleotide site. If any of these new nodes
has already been created, we do not add the same
sequence twice. We then go back to step 3 and
repeat for the next pair of sequences.
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This algorithm results in a haplotype network, imply-
ing that loops may appear. A key assumption of our
approach is that the true haplotype tree is a subtree
of the haplotype network obtained through algorithm
A, which can be achieved by breaking the loops.
Increasing ds will generally result in disconnected
groups of nodes being connected in more paths when
homoplasy is present, implying that we can allow
more and more possible haplotype trees. However,
that does not imply that letting ds!1 will ensure
that the network formed will include any possible muta-
tional path. In fact, beyond a maximum value ds

max

increasing ds has no effect on the haplotype network.
A.1. Synthetic example

We use the haplotype tree shown in figure 6 and follow
the steps described above in algorithm A in order to
complete the missing nodes. Figure 6 shows a tree
where nodes 1–12 are known haplotypes. We describe
the algorithm for three cases: ds ¼ 0, ds ¼ 1 and ds . 1.

(1) Set ds ¼ 0. There are two disconnected groups of
haplotypes: (1, 2, 3, 4, 5, 6), and (7, 8, 9, 10, 11,
12), with closest distance between nodes 1 and 8,
which are two mutations apart at nucleotide
positions b and c (step 1). Since there is only one
pair of groups, immediately we obtain dmin ¼ 2
(step 2).

There are no other pairs of nodes from the two
groups which are dmin þ ds ¼ dmin nucleotides
apart (step 3), so we only need to connect the
two nodes 1 and 8. Since there are only two
groups available, they are the only ones involving
the two missing mutations (step 4), so we insert
the missing node 13 (referring to the original
tree) and terminate (step 5). This single addition
is shown in the left-hand panel of figure 6.



Figure 7. Example of a migrating haplotype shared between
two populations, here green and pink. As before, nodes rep-
resent haplotypes, with the size of the circle representing the
number of times that haplotype appears in the sample. The
colour of each node shows the population cluster to which it
belongs, with one haplotype being shared between the two
clusters. Two haplotypes are connected by an edge if they
are one mutation apart.
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(2) Set ds ¼ 1. There are two disconnected groups of
haplotypes: (1, 2, 3, 4, 5, 6), and (7, 8, 9, 10, 11,
12), with closest distance between nodes 1 and 8
which are two mutations apart (step 1). Since
there is only one pair of groups, immediately we
obtain dmin ¼ 2 (step 2).

In this case, (1, 8) is the closest pair, but (2, 8)
and (6, 8) are three nucleotides apart, which is
indeed less than �dmin þ ds apart (step 3). Node
2 is adjacent to 1, which is closer to 8, so consider-
ing (2, 8) is implicit in the pair (1, 8), and hence
redundant (step 4). On the other hand, no such
adjacent nodes exist for the pair (6, 8), which has
to be taken into account (step 4). For both pairs
(1, 8) and (6, 8), there are only two groups invol-
ving the nucleotide changes (step 5), so both
pairs are connected through their quickest route
(step 5). In the case of (1, 8) this yields the same
connection as before (figure 6a), but an extra
branch is added on the right through two missing
nodes, as shown figure 6b.

(3) Set ds . 1. In this case the exact network is
obtained as in the case ds ¼ 1. This is because
any extra pairs of sequences (i,j) which are
obtained in step 3 actually have an adjacent node
k which is closer to j, thus making the pair (i,j)
redundant. The only pairs of sequences that reach
step 5 are, as before, (1, 8) and (6, 8).

Lemma A.1. When no homoplasy is present, algor-
ithm A results in a unique haplotype tree (the true tree)
up to rearrangement of strands of missing intermediate
sequences for any value of ds.

Proof. In the absence of homoplasy, the following
facts can be checked:

— the effective representatives of two groups are
unique. This is true because in the absence of homo-
plasy, the mutational distance on the tree is always
equal to the distance of the two sequences in terms
of SNP mutations. If this were not the case, i.e.
there exist two haplotypes that are closer in terms
of their SNP distance than their tree distance, then
at least one mutation would have had to be reversed,
which contradicts the assumption of no homoplasy.
This implies that there is only one pair of haplotypes
which satisfies the condition in step 4 of the
algorithm;

— each SNP mutation uniquely dichotomizes the
sequences even in the absence of the tree. This
means that it is not possible for two different pairs
of groups which have the same minimum distance
to involve the same mutation;

— if two pairs of groups with different minimum dis-
tances involve a common mutation, then the
inferred mutations of both will coincide on the
shorter branch.

Now assume that the inferred tree is not unique. This
is possible in two ways: either two groups yield two
effective pairs of representatives, or two different pairs
of groups which involve a common mutation yield
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different intermediate sequences. None of these is poss-
ible, using the facts above, and hence the inferred tree
is unique.
APPENDIX B. PHYLOGEOGRAPHIC
CLUSTERING

B.1. The migration model

Consider the following example. Assume that haplotype
i belongs to population A. If one of the individuals car-
rying haplotype i migrates from population cluster A to
start a new population B, then haplotype i will be found
in both clusters A and B. Assuming that no more
migration (or other phylogeographic) events occurred,
all of the descendants of i will either belong to cluster
A (if their ancestral sequence belongs to cluster A) or
cluster B (if their ancestral sequence belongs to cluster
B). An example of the resulting haplotype tree is illus-
trated in figure 7, where as usual the colour indicates
the cluster to which each sequence belongs.

We introduce a general setting in which phylogeo-
graphic clusterings can be projected onto a haplotype
tree. The clusters are seeded by K migrating haplotypes
denoted m1, . . . , mK (not necessarily distinct), where K
is fixed in this section, leading to K þ 1 population clus-
ters. Each of the migration events between two
populations results in the migrating haplotype being
present in both populations (at some point in time).
We denote the clusters that haplotype mk is shared
between as the set C(mk). All sequences corresponding
to a migrating haplotype mk belong to one of the
jC(mk)j population clusters.

Based on the vector m1, . . . , mK, we describe how all
the sequences are allocated to clusters given the set of
migrating (and as a result shared) haplotypes m. The
main assumption of the clustering is that each sequence
is allocated to precisely one cluster. All sequences corre-
sponding to a migrating haplotype mk belong to one of
the jC(mk)j clusters.

Each migrating haplotype has a number of clades
starting from it, which end either at a leaf node or at
another migrating haplotype. For each of those clades,
all sequences within are clustered together in one of
the jC(mk)j clusters. Intuitively, a single mutation can
occur in only one of the populations where it is present,
so that every single descendant will appear in exactly
one of these populations. This implies that sequences
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Figure 8. Example of a migration haplotype tree. The pink–
green haplotype (1) is shared between the pink and green
population clusters with half of its copies found in each, whereas
the green–blue–yellow (2) is shared between the green, blue
and yellow clusters with half of its copies found in the green clus-
ter, and a quarter in each of the remaining two. In this case, the
yellow cluster only contains copies of haplotype 2. Black dots
represent unsampled (but known) haplotypes.

Figure 9. A subdivided population which is a result of past
fragmentation. Initially one population was present, to which
the three pink/green haplotypes belonged. The population
was subsequently fragmented, so that the three haplotypes
are found in both fragments. All their descendants after the
split belong exclusively to one of the two populations.
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(i.e. observations) corresponding to a haplotype which
did not migrate are forced to belong to the same cluster,
whereas sequences of a migrating haplotype may belong
to different clusters.

It is perhaps easier to think of clusterings seeded by
the vector m of migrating haplotypes in terms of
migrations of the corresponding individuals. Taking
the example in figure 8 and assuming the green cluster
is ancestral, the migrating haplotypes are m ¼ 1, 2, 2
and they are shared between two and three clusters
respectively, i.e. jC(m1)j ¼ 2, jC(m2)j ¼ 3. This corre-
sponds to the three migration events of an individual
migrating from the green cluster to a new population
(pink), and individuals with haplotype 2 migrating to
two new populations (yellow and light blue). It is
thus clear that the number of times a specific haplotype
occurs in m is equal to the number of clusters it is
shared between minus one.

Introducing K migrating haplotypes leads to the
existence of K þ 1 clusters. Each migrating haplotype
represents a migration which introduces a new popula-
tion cluster, thus K shared haplotypes result in K þ 1
population clusters.

All such phylogeographic clusterings can be achieved
by algorithm B, which describes a step-by-step method
of constructing clusterings which are consistent with K
migrating haplotypes based on a fixed haplotype tree of
Nh haplotypes.

ALGORITHM B

(1) Pick K of the Nh haplotypes with replacement,
and denote them by m1, . . . , mK.

(2) Pick one of the K migrating haplotypes mk. The
number of clusters that mk is shared between is
equal to the number of times it appears in the
vector m, plus 1. If the selected haplotype is
shared between jC(mk)j clusters, introduce clusters
1, . . . ,jC(mk)j associated with that haplotype.
Then iterate the following steps.

(3a) Select one of the K haplotypes mk that has at least
one population cluster associated with it. If the clus-
ters associated with it are fewer in number than the
clusters it is shared by, introduce new clusters
associated with this haplotype to complete the set.
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(3b) Allocate each of the data points of the chosen
haplotypemk to one of the associated clusters C(mk).

(3c) Allocate each of its adjacent nodes along with their
branches (until either a leaf or another migrating
haplotype is reached) to one of the associated clus-
ters. If a migrating haplotype is reached, associate
it with that cluster. Go back to step 3 until all
haplotypes have been fully assigned to clusters.

Algorithm B is formed by following the properties of
a phylogeographic clustering described in the current
subsection, and as a result, any consistent clustering
may be obtained.

B.2. Synthetic example

Using algorithm B we demonstrate how the clustering
of figure 8 may be obtained from the haplotype tree
in one of several ways.

— Start with step 1. The three migrating haplotypes
are picked to be 1, 2, 2.

— Continue with step 2. Pick haplotype 1, which is
shared between two clusters, and assume that the
two clusters are 1 and 2 (in this case pink and green).

— Move on to step 3. Haplotype 1 is the only one
which has any clusters associated with it, so pick
haplotype 1.

— In step 4, allocate each of the data points of 1 to the
pink or the green cluster one by one. In this case half
of them are allocated to the pink and half to the
green cluster, as indicated by the proportions of
pink and green on the haplotype node.

— In step 5, allocate each of its adjacent branches to a
cluster. All apart from one branch reach a leaf before
reaching the other migrating haplotype. Those leaf
branches are allocated to the pink or green clusters
(in the figure the tree has been re-arranged so that
all the pink ones lie on the left and all the green
on the right; this need not be the case).

We allocate the branch connecting haplotype 1
and haplotype 2 to the green cluster, and thus
assign one of the three clusters in which haplotype
2 is found to be the green one.

— Return to step 3 and select haplotype 2, which now
has the green cluster assigned to it. We assign yellow
and light blue for the remaining two.
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— Continue with step 4 and assign each of the
sequences of haplotype 2 into one of the three avail-
able clusters. In this case half of the sequences are
allocated to the green cluster, a quarter to the
light blue and a quarter to the yellow.

— Continue with step 5 and assign each of the adjacent
branches which have not yet been allocated to a cluster
into green, light blue or yellow. Note here that none of
the adjacent branches is allocated to theyellow cluster.

The same clustering may be obtained for a number of
different choices for the steps of algorithm B (e.g. if we
select haplotype 2 in step 2).

We remark that the phylogeographic clustering does
not explicitly account for past fragmentation events.
Notice that if a population undergoes fragmentation, a
number of haplotypes which originally belonged to the
same population will subsequently belong to the two
fragment populations. As a result, all their descendants
will belong to only one of the two. The resulting haplo-
type tree may look like figure 9. The haplotype sharing
construction described here does not allow for such a
clustering, but would instead only identify the three
migrating haplotypes as being shared between four clus-
ters. The clustering construction could be extended to
allow explicitly for such clusterings.

B.3. The clustering model

We use algorithm B to motivate a prior distribution for
clustering constructions. Here we are assuming that a
priori, any sequence is equally likely to correspond to
a migrating haplotype. Referring back to the simplified
migration setting described on page 8, this is equivalent
to any individual being equally likely to migrate. This
means that the probability of a haplotype being
shared is proportional to the number of times it appears
in the sample, yielding

pðm0Þ ¼
YK
k¼1

minðjmk j; 1Þ
n

;

where jmkj is the sample size of haplotype mk. Note that
here we correct jmkj by min(jmkj, 1) to account for the
fact that some haplotypes are extinct or unsampled, but
may still have a non-zero probability of having migrated.

We use the notation cij to represent the cluster of
the jth data point corresponding to haplotype i. In this
case the allocation parameter cij is forced to be the
same for all j for haplotypes which are not shared, but
is allowed to take different values for shared ones. Assum-
ing that the clusters chosen for each of the data points
and branches of haplotype mk in steps 3b and 3c of algor-
ithm B are selected randomly from the jC(mk)j clusters,
the priors for the clustering c can be written as

pðcÞ ¼ pðc;mÞ ¼ pðmÞpðcjmÞ

¼
YK
k¼1

minðjmk j; 1Þ
N

jCðmkÞj�jmk j�degðmkÞ;

ðB 1Þ

where deg(mi) is the degree of haplotype mk, i.e. the
number of adjacent haplotypes. In other words, each of
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the migrations (mk for each migrating haplotype) is
into one of the jC(mk)j available clusters, resulting in
jC(mk)j2jmkj2deg(mk). This implies that, for large numbers
of migrations and/or haplotypes, the number of combi-
nations increases rapidly, requiring significantly larger
computation times.
APPENDIX C. MARKOV CHAIN MONTE
CARLO SAMPLER

We construct an MCMC sampler with target distribution

pðT ;K ;m; c; g;S;mjYÞ/ f ðYjK ;m; c;S;mÞ
pðKÞpðmÞpðgÞpðSjgÞpðm; cÞ:

ðC 1Þ

In order to achieve a computationally feasible
sampler, devising efficient proposal kernels to move
around the space of clusterings is key.

The nature of the phylogeographic clustering setting
we are assuming implies a vast allocation parameter
space. We develop a proposal kernel exploring the
space of possible clusterings efficiently. Algorithm B
describes a method by which phylogeographic cluster-
ings can be achieved. In an MCMC setting, it can be
modified so that the choices are made efficiently and
allow mixing of the chains. To this end, we discuss
some technical properties of the clustering algorithm.

Note that it is not easily possible to construct a local
version of algorithm B; unless the algorithm is com-
pleted, the clustering cannot be updated, because the
resulting clustering may be physically nonsensical and
contradict the migrating haplotype structure. Hence,
for each MCMC iteration, all clusters are initially
empty, data points are gradually added using a variant
of algorithm B until complete, and only then can the
proposed move be accepted or rejected.

Here clusters are constrained by the phylogeographic
clustering structure on the haplotype tree, which dic-
tates that allocating an adjacent node to one of the
clusters implies allocating a whole branch of the tree
to that cluster. Algorithm C described below is a var-
iant of algorithm B, using specific proposal
distributions for each step which take into account
the clustering of the previous iteration by allowing the
proposal to extract information about the clusters
using the allocation values which have been proposed
so far within the same MCMC iteration. Population
clusters are iteratively ‘filled’ with observations starting
with initial local estimates and allowing those estimates
to be updated depending on data point additions.
ALGORITHM C

During burn-in, for each iteration initially we set all clus-
ters to be empty, with sample mean and covariances �m; �S
equal to their prior estimates. After burn-in, initially
set all clusters involved with migrating haplotypes
which have not been changed since the previous itera-
tion to have mean, variance and sample size as in the
previous iteration ð�mi;

�Si; �niÞ ¼ ðmðt�1Þ
i ;S

ðt�1Þ
i ; nðt�1Þ

i Þ
respectively.
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Then carry out the following steps:

(1) Select one of the migrating haplotypes of mðt�1Þ

uniformly at random from the previous iteration
and change it to m0k, proposing the new haplotype
randomly.

(2) For each of the migrating haplotypes m0k sha-
red by jC(m0k)j clusters, if it was shared by
jCðmkÞjðt�1Þ � jCðm0kÞj clusters at the previous
iteration too, assign this migrating haplotype to
be shared between the first jCðmkÞjðt�1Þ � 1 clusters
of the set CðmkÞðt�1Þ, leaving the last cluster of
C(m0k) null.

(3) Select at random one of the migrating haplotypes
m0k which has not been allocated to clusters; if
none such exist, the algorithm has completed. If
it was previously a migrating haplotype with at
least jC(m 0

k)j available clusters, then the last cluster
of C(mk)

0
is set to same one as the previous iter-

ation. Otherwise the next available cluster from
the list of all clusters is chosen.

(4) Select at random one of the observations j of the
migrating haplotype mk which has not been
assigned to a cluster, and assign it to one of the
available clusters m [ C(mk) with probability

/pðcmkj ¼mjY; �S; �m;mÞ

/ j�Smj�1=2 exp �1
2
ðymkj� �mmÞ

T �S
�1
m ðymkj � �mmÞ

� �
:

Update the sample means and covariances
�mcmk j

; �Scmk j . If all data points of mk have been
assigned to a cluster, move on to the next step,
else repeat this step.

(5) Select one of the adjacent nodes l of mk which has
not been assigned to a cluster yet. Each adjacent
node defines a branch, which starts at the adjacent
node and ends either at a leaf node, or at another
migrating haplotype. Assign all data points j of
all the haplotypes i along the branch to one of
the clusters m [ C f(mk), with probability

/pð<i;j[branchcij ¼mjY; �S; �m;mÞ

/
Y
i;j

j �Sm j�1=2exp �1
2
ðyij� �mmÞ

T �S
�1
m ðyij� �mmÞ

� �
;

where the product is taken over all data points of all
haplotypes along the branch. If the branch ends at
a migrating haplotype, then assign one of its associ-
ated clusters to be m. If all adjacent branches have
been allocated to clusters, go back to step 3. Else
repeat this step.

Using algorithm C, we adapt the MCMC algorithm
described in previous sections for the phylogeographic
data. The chain is initialized by generating m (0), c (0),
g(0), m(0), S(0) from the prior distributions. Sub-
sequently iterate the following steps:

(C1a) Split sequences into clusters using algorithm C.
(C1b) Propose a new value g

0
from its prior Ufp þ 1,gg.

(C1c) Propose new covariance matrices S
0

k from the
conjugate approximation of SkjY, m0, c0, g0
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given by

qðSk jY; e; gÞ � IWðnk þ g;C

þ
X
j;l

fc jl¼kgy jly
T
jl

� nk ȳk ȳT
k Þ: ðC1Þ

(C1d) Propose m0k from mkjY, S
0

k, m0, c0 given in
equation (3.2).

(C1e) Calculate

AC¼
f ðYjm0;c0;m0;S0Þ
f ðYjm;c0;m;SÞ

pðm0;c0Þ
pðm;cÞ

pðS0Þ
pðSÞ

pðm0Þ
pðmÞ

�qðm0;c0!m;cÞ
qðm;c!m0;c0Þ

pðmjm;c;SÞ
pðm0jm0;c0;S0Þ

qðSjY;m;cÞ
qðS0jY;m0;c0Þ

Accept the move with probability min(1, AC) and
set

ðmðtþ1Þ; cðtþ1Þ; gðtþ1Þ;m00;S00Þ
¼ ðm0; c0; g0;m0;S0Þ;

otherwise set (m (tþ1), c (tþ1), g(tþ1), m00, S00) ¼
(m (t), c (t), g(t), m(t), S(t))

(C2) Generate S(tþ1) directly from the posterior con-
ditional

SjY;mðtþ1Þ; cðtþ1Þ; gðtþ1Þ;m00

given in equation (3.3).
(C3) Generate m (tþ1) directly from the posterior con-

ditional distribution

mjY; mðtþ1Þ; cðtþ1Þ; Sðtþ1Þ

of equation (3.2). Go back to step C1.
(C4a) Propose to add or subtract a migrating haplotype

mk with probabilities psplit and pmerge.
(a) For a merging move, select two of the clusters

C(mk) between which mk is shared, say k1 and
k2, and merge them into one cluster k0. The
probability of this move becomes

qðm; c!m0; c0Þ

¼ 1

K ðtÞ � jCðmkÞj
2

� � : ðC 2Þ

(b) For a splitting move, add one of the Nh

haplotypes to the vector m. All of the data
points and adjacent haplotypes of the
added node then have to be inserted to one
of the available clusters. We start with m0

and reallocate all the data points of all the
haplotypes to clusters according to Algor-
ithm C. The probability of this move is
equal to

qðm; c!m0; c0Þ ¼ 1
Nh

qðc0jm0Þ; ðC 3Þ

where q(c0jm0) is calculated iteratively
through algorithm C.
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(C4b) We propose values for m and S for the new
Þ

clusters formed.
(a) If we decide to merge two clusters k1 and k2

into k0, then we propose S
0
k0 jY; e0; g

(see equation (3.2)), and m0k0 jY ; e;Sk0 (see
equation (2.2)). The remaining covariances
of clusters which are not affected by the
move are left unchanged.

(b) Similarly, if we decide to split one of the
existing K ðtÞ þ 1 clusters, then we propose
S
0
k1 ;S

0
k2 ;m

0
k1
;m0k2

from the distributions
given in equations (C1), (3.2). The remain-
ing covariances of clusters which are not
affected by the move are left unchanged.

(C4c) The acceptance probability of a merging move
becomes a ¼ minð1;AEÞ where

AE ¼
f ðYjm0; c0;m0;S0Þ
f ðYjm; c;m;SÞ

pðm0; c0Þ
pðm; cÞ

pðm0k0 Þ
pðm0k1

Þpðm0k2
Þ

� pðS0k0 Þ
pðsS0k1ÞpðS

0
k2Þ

� qðm0; c0 ! m; cÞ
qðm; c!m0; c0Þ

qðmk1
Þqðmk2

Þ
qðm0k0 Þ

qðSk1ÞqðSk2

qðS0k0 Þ

� psplit

pmerge
jJ j;

using equations (C1), (3.2), (C2) and (C3). As
before, jJ j ¼ 1.

Similarly, the acceptance probability of a split-
ting move becomes a ¼ minð1;A�1

E Þ. We decide
to accept or reject the proposed move, with
some terms replaced appropriately.

(C4d) If we accept, then we set ðK ðtþ1Þ;mðtþ1Þ; cðtþ1Þ;
mðtþ1Þ;Sðtþ1ÞÞ¼ ðK 0;m0; c0;m0;S0Þ; otherwise
ðK ðtþ1Þ;mðtþ1Þ; cðtþ1Þ;mðtþ1Þ;Sðtþ1ÞÞ ¼ ðK ðtÞ;
mðtÞ; cðtÞ;mðtÞ;SðtÞÞ.

Cycling through steps C1–C4 produces an irreduci-
ble chain with stationary distribution (C 1).

Lemma C.1. Algorithm C preserves irreducibility
and aperiodicity of the chain.

Proof. Clearly, it is always possible to change one of
the migrating haplotypes to be haplotype 1, without
loss of generality. Similarly, we may repeat the same,
until haplotype 1 is the only migrating haplotype.
Hence, we can get to this clustering from any other clus-
tering, so the chain is irreducible. Aperiodicity is
guaranteed because there is always a positive prob-
ability of staying in the same state during steps C1–C3.

Lemma C.2. Randomizing the order in which data
points and branches are clustered in steps 3 and 4 of
algorithm C described above preserves time-reversibility
of the chain.

Proof. Notice first that the move cðt�1Þ ! cðtÞ may be
achieved in a number of different combinations of steps
in the algorithm, depending on the order in which we
choose to propose the migrating haplotypes and their
data points; remember that the move can only be
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accepted or rejected once they have all been proposed.
Randomizing the order in which the migrating haplo-
types are proposed is equivalent to having a pool of
proposals qi and randomly selecting one [29,30].

In the standard MCMC setting, the ratio of the
proposal distributions would then be equal to:

qðcðtÞ ! cðt�1ÞÞ
qðcðt�1Þ ! cðtÞÞ ¼

P
i qiðcðtÞ ! cðt�1ÞÞP
i qiðcðt�1Þ ! cðtÞÞ ;

where the sum is taken over all the possible step combi-
nations which may lead to the same clustering.

However, in this setting we use the order of the
update as an extra parameter, say zc, and assume that
all step combinations have equal probability a priori.
At each iteration we propose a step combination
and then update the clustering using the proposal
distribution

qðcðt�1Þ ! cðtÞÞ ¼
X

i
i¼zc qiðcðt�1Þ ! cðtÞÞ:

Clearly, q is a distribution, since all but one term will
be zero, and qi is a distribution. This means that the
overall proposal ratio becomes simply

qðzðtÞc ! zðt�1Þ
c Þ

qðzðt�1Þ
c ! zðtÞc Þ

qðcðtÞ ! cðt�1ÞÞ
qðcðt�1Þ ! cðtÞÞ

¼ qðzðtÞc ! zðt�1Þ
c Þ

qðzðt�1Þ
c ! zðtÞc Þ

qzðt�1Þ ðcðtÞ ! cðt�1ÞÞ
qzðtÞ ðcðt�1Þ ! cðtÞÞ ;

and this can be treated as a standard time-reversible
MCMC sampler.
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