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How to infer gene networks from
expression profiles, revisited

Christopher A. Penfold and David L. Wild*
Systems Biology Centre, University of Warwick, Coventry, CV4 TAL, UK

Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series
measurements of transcriptional change has proved useful for disentangling complex biologi-
cal processes. To address the challenges associated with this inference, a number of competing
approaches have previously been used, including examples from information theory, Bayesian
and dynamic Bayesian networks (DBNs), and ordinary differential equation (ODE) or sto-
chastic differential equation. The performance of these competing approaches have
previously been assessed using a variety of in silico and in vivo datasets. Here, we revisit
this work by assessing the performance of more recent network inference algorithms, includ-
ing a novel non-parametric learning approach based upon nonlinear dynamical systems.
For larger GRNs, containing hundreds of genes, these non-parametric approaches more accu-
rately infer network structures than do traditional approaches, but at significant
computational cost. For smaller systems, DBNs are competitive with the non-parametric
approaches with respect to computational time and accuracy, and both of these approaches
appear to be more accurate than Granger causality-based methods and those using simple
ODEs models.
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1. INTRODUCTION

The phenotypic expression of a genome, including an
organism’s response to its external environment, rep-
resents an emergent property of a complex, dynamical
system with multiple levels of regulation. This regu-
lation includes controls over the transcription of
messenger RNA (mRNA) and translation of mRNA
into protein via gene-regulatory networks (GRNS).
Within a GRN, specific genes encode for transcription
factors (TFs); proteins that can bind DNA (either inde-
pendently or as part of a complex), usually in the
upstream regions of target genes (promoter regions),
and so regulate their transcription. Since the targets
of a TF can include genes encoding for other TFs, as
well as those encoding for proteins of other function,
interactions arise between transcriptional and transla-
tional levels of the system to form a complex network
(figure 1). Additional influences may arise in the
protein and/or gene space including, for example,
post-translational and epigenetic effects, further
complicating matters.

Identifying the structure of GRNs, particularly,
with regards to the targets of TFs, has become a
major focus in the systems approach to biology. While
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the genome-wide targets of a particular TF can be
elucidated experimentally using ChIP-chip or ChIP-
sequencing (ChIP-seq) [2], generating a ChIP-chip/seq
dataset for the many thousands of TFs that may be
transcriptionally active in cellular function remains
technically and often financially prohibitive. Alterna-
tively, identifying the downstream promoter sequences
binding a TF can be achieved using the bacterial one-
hybrid system [3] and protein-binding microarrays [4],
while TFs that can bind a particular promoter sequence
in yeast can be identified via the yeast one-hybrid
system [5]. As with ChIP-chip/seq, one-hybrid systems
do not currently lend themselves to high throughput
experimentation, with the added caveat that binding
in vitro or in yeast/bacteria does not necessarily imply
that the TF can or does bind in its native environment
or under particular experimental conditions.

As an alternative (or complementary) approach to
the experimental identification of TF targets, measur-
ing the dynamic response of transcription and/or
translation can provide useful information about the
underlying GRN on a more global scale, provided
there is a way to infer the topology of the network
(often referred to as ‘reverse-engineering’ in the litera-
ture). While measuring the level of protein present in
biological systems remains difficult to do on a large
scale, measuring the relative abundance of mRNA
is comparatively straightforward. Consequently, the
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Figure 1. A schematic of a GRN adapted from Brazhnik et al. [1].
The GRN consists of four genes, three of which encode for TF's
(genes 1, 3 and 4) and one of which encodes for a protein that
catalyses the production of metabolite 2 from metabolite 1.
The physical interactions of components at the various levels
can be projected into the gene space (dashed lines) to illustrate
the complex GRN that we wish to recover.

generation of highly resolved time-series measurement
of transcript levels via multiple microarray experi-
ments has become an increasingly powerful tool for
investigating complex biological processes, including
developmental programmes [6] and response to abiotic
or biotic stress. The inference of GRNs from such
time course data has proven useful for disentangling
(suspected causal) relationships between genes [7,8],
identifying network components important to the
biological response, including highly connected genes
(so-called ‘hubs’) and capturing the behaviour of the
system under novel perturbations [9,10].

To address the various challenges associated with
inferring GRNs from transcriptional time series, a
number of theoretical approaches have been applied,
including ordinary and stochastic differential equa-
tions (ODEs/SDEs) [10-12], Bayesian and dynamic
Bayesian networks (BNs/DBNs) [7,8,11—-13] and infor-
mation theoretic or correlation-based methods [11,14].
While the relative merits of these competing approaches
have previously been discussed in the context of in silico
[11,13,15,16] and in vivo networks [8,12,13,15], there
remains disagreement as to the best approach. Previous
work by Bansal et al. [11], published in 2007, suggests
that while ‘further improvements are needed’, network
inference algorithms have become ‘practically useful.
Here, we revisit the work of Bansal et al. [11] by asses-
sing the performance of more recent examples of
network inference algorithms, using a range of in
silico and n vivo datasets.

2. INFERENCE OF GENE-REGULATORY
NETWORKS FROM TIME COURSE DATA

Inference of GRNs from transcriptomic datasets is
a notoriously difficult task, primarily because the
number of probes (genes) on modern microarrays can
be several orders of magnitude greater than the
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number of independent measurements, even for highly
resolved and replicated time course studies [6]. The
sheer number of genes, combined with the observation
that a significant proportion of expression profiles can
be correlated over time [6], means that inferring
GRNs from microarray data alone may be inherently
unidentifiable. To overcome this problem, the number
of genes to be modelled is often artificially reduced by
removing flat or uninteresting profiles [6] or by cluster-
ing together groups of genes that might be co-expressed
[17,18]. Alternatively, when investigating an organism’s
response to a particular stimulus, in which time series
are measured under both control and perturbed con-
ditions, the number of genes can be reduced by
including only those that are differentially expressed,
i.e. whose expression profiles are different in the control
and perturbed datasets [19]. Removing genes in this
way can greatly limit the number to be modelled, yield-
ing figures in the range of hundreds to tens of
thousands. In most cases, this number is still prohibi-
tively large, requiring prior knowledge or heuristic
approaches to reduce the pool further. Problems may
nevertheless arise when artificially reducing the
number of genes in this manner, for example, by erro-
neously labelling a particular gene as not differentially
expressed. Additionally, even modern microarrays
may be missing probes for important genes. In these
cases, the absence of an otherwise important gene
could have a negative impact on the accuracy of the
reconstructed network.

Other notable sources of error in the reconstruction
of networks arise when inferring networks from tran-
scriptional data alone. Such models tend to assume
protein behaviour to be correlated with transcription,
which often appears not to be the case [20], owing to
a variety of effects including protein degradation and
post-translational modifications.

In subsequent sections, we briefly outline a variety of
approaches used to infer networks from time course
data, including ODEs, BN and DBNs, non-parametric
approaches using Bayesian learning of nonlinear
dynamical systems (NDSs), and approaches based
upon statistical-hypothesis tests (e.g. ttests), such as
Granger causality.

2.1. Ordinary differential equations

Within the context of GRNSs, a coupled set of ODEs
represents a deterministic model relating the instan-
taneous change in mRNA concentration of a gene to
the mRNA concentration of all other genes in the
system:

Xi :ﬂ(le"'7XN7Y7 @>7

where  X;= {x1,...,2y} denotes the vector of
mRNA concentrations of the ith gene (of N) at times
{t;,..., ta}, with time-derivative X,= {dz/dt,...,
dxy,/dt}, Y represents additional time course variables
including, for example, protein and metabolite concen-
trations or other external perturbations, and f(-)
represents an appropriate function capturing the relation-
ship between all variables and their instantaneous
change, with @ the vector of model parameters.

(2.1)
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Figure 2. (a) An example system composed of three genes that each encode for a TF that regulates two other genes. The GRN to
be recovered from time-series data is projected into the gene space as dashed lines. The time-series observations represent the
mRNA levels of genes 1, 2 and 3 as X;, X, and Xs, respectively. (b) A graphical representation of the GRN we wish to recover.
(¢) BNs cannot represent feedback loops, including self-regulation. Consequently, a BN can, at best, only infer one of three linear
pathways. (d) A DBN can be unfolded in time to capture the essence of the GRN, including auto-regulation and feedback loops.
(e) In some cases, where observations are missing (in this case observation of gene 1) state-space models may be used to capture

the influence of the latent profile.

In the simplest ODE models, the rate of change in
transcription depends on all other transcripts via:

N
Xi = E ainj,
j=1

where a;; represents a real-valued parameter capturing
the influence of gene j upon gene 4, with positive
values indicating genes that promote transcription of i,
negative values indicating repressors of ¢ and zero-
entries representing non-parents. In these cases,
inference of network structure requires inference of the
parameters, a; from time-series data, potentially to
be accompanied by post-inference processing to ensure
a;; is sparse. Notable extensions to this basic model
include additional terms representing, for example,
effects arising from degradation of the mRNA or
protein [21], or the influence of external perturbations
including drug concentrations [22,23], which may
additionally be estimated from the data, or fixed
using prior knowledge or experimentation.

When the network structure is known a priori, the
functional form of f(-) can instead be chosen to reflect
more realistically the underlying assumptions about the
nature of GRNs by including, e.g. transcriptional delays
and rate-limiting effects designed to mimic the chemical
nature of interactions using Michaelis—Menten or Hill-
type kinetics. In these models, time-series data might be
used to infer a subset of the physically meaningful par-
ameters such as transcription and translation rates and
protein-binding rates and affinities. The number of par-
ameters in these physically motivated ODE systems can
be significantly large and solutions can be unidentifiable.
In these cases, a small subset of parameters might need to
be estimated, requiring time-series data from single cells.
Additionally, the computational cost of solving such sys-
tems of equations can be large, and while non-

(2.2)
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parametric methods can be employed to speed up
inference of parameters [24], these types of ODE systems
are more suited to small, well-characterized systems, such
as the Arabidopsis clock [25—27] or the NF-«B-signalling
pathway [28,29]. However, the realistic nature of such
models allow the user to make predictions about the be-
haviour of the system under new perturbations [10], an
approach that has previously been fruitful in identifying
novel components of the system [25].

2.2. Bayesian and dynamic Bayesian networks

BNs are directed acyclic graphs (DAGs) in which individ-
ual nodes represent random variables, with directed
connections (edges) between nodes representing prob-
abilistic conditional independencies. For a GRN, BNs
are used to relate the mRNA expression of a gene to the
mRNA expression of other genes. Since the network
structure of a BN is a DAG, the joint probability density
that a network G generated the observations, D, may be
factorized into a product of conditional distributions:

N
p(DIG,0={6,...,0n}) = H pi(Xi = Xi| Xpay(i)» 03)
i1

(2.3)

where Pag(i) denotes the parental set of node i, Xp,,
the mRNA /protein/metabolite concentrations of that
parental set and @ represents the free parameters of the
probability density function p;(-). A key limitation of
assuming a DAG is the inability to describe feedback
loops, an important constituent of GRNs [30,31]. The
importance of this is illustrated in figure 2, in which the
GRN represented in figure 2a,b may only be represented
in terms of a BN as indicated in figure 2¢. To overcome
these limitations, DBNs were suggested as a model of
time course observations [32,33]. For a DBN, an
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individual gene is no longer represented by a single node
but by a series of nodes by unfolding the DAG over
time (figure 2d). In the simplest implementation of a
DBN the observation at time ¢; depends only upon obser-
vations at time ¢;—; and equation (2.3) becomes:

»(DIG, 6) H P = a16)) -
(2.4)
tv
sz z' XPjagl)’@j)?

where G may now include cyclic structures, N represents
the number of genes and M the number of time points
in the time series.

2.2.1. Missing parameters and variables. A key advan-
tage of BNs and DBNs is the ability to incorporate
missing values, including missing time-point observations
and missing variables. The influence of a missing variable,
such as an unmeasured TF, may be incorporated into a BN
by noting the joint distribution is defined as:

p(D, X ={X],...., Xy }|G,®={61,...,0x})
N / , (2.5)
= [ P = xil Xpagiip: X7, 0)p( X))
=1

The influence of the missing variable X’ may either
be integrated out (marginalized), or inferred as part
of the algorithm (figure 2e). A notable example of a
DBN that infers missing variables is the Bayesian
state-space model (SSM) of Beal et al. [7], which uses
a variational approach to infer the hidden states and
free parameters of an SSM.

2.2.2. Inference in Bayesian networks and dynamic
Bayesian networks and prior knowledge. Reverse-
engineering of a GRN using a BN or DBN typically
involves inferring the graph structure, G, the free par-
ameters of the probability density functions, @ or a
combination of both. In theory, the joint probability
of a particular network structure, G;, and model
parameters, @, may be calculated via Bayes’ rule:

p(D|Gi, ©)p(G:)p(6)
> g.eq* | P(DIGr, ©)p(Gi)p(@)d6O’
(2.6)

p(Gi, O|D) =

where G* denotes the set of all allowable graph structures,
p(0) represents the prior density of @ and p(G) the prior
probability of G. Enumerating all possible combinations
of network structures is often computationally unfeasible
while exact marginalization of free-parameters can be
analytically intractable. Rather than performing an
exact calculation of equation (2.6), quite often approxi-
mations are employed, including maximum-likelihood
and maximum a posteriori (MAP) approaches, approxi-
mations via expectation-maximization (EM) or sampling
via Monte Carlo techniques (for a concise introduction to
these methods see e.g. [34]).

A key feature of the Bayesian approach is the ability
to incorporate prior information. Within equation (2.6),
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prior information about known connections in a GRN is
encoded using the term p(Gy).

2.3. Non-parametric approaches to nonlinear
dynamical systems

In recent years, a novel class of non-parametric algorithms
have been suggested which combines the flexibility
and advantages of Bayesian learning with NDS [15,35].
A common class of NDS evolves in continuous time as:

X, =f(X1,..., Xy), (2.7)

where f(-) denotes an unknown, nonlinear function.
Rather than explicitly trying to choose a parametrized
form for f(-), as would be the case in an system of
ODEs, an alternative strategy is to use a non-parametric
approach to capture the effect of the function directly
from the data. When the parents of a particular gene,
Pag, are known a priori, the task becomes one of identi-
fying the potentially nonlinear relationship between a
series of outputs, X;, from a series of inputs Xp,;, which
may be achieved by assigning the function f(-) a Gaus-
sian process prior [36]. The conditional probability
density of the observation, X;, is then defined by a
multivariate normal distribution:

P(Xi| Xpog) = N (Xi|p, K).

where u represents the process mean and K the covari-
ance. A probability distribution over possible parental
sets for the ith gene can then be calculated via Bayes’
rule as:

(2.8)

where M;represents the jth possible parental set of gene 7
and 0; represents the hyperparameters of the Gaussian
process. This calculation requires a separate Gaussian
process model of the dynamics for each possible set of
parents, which scales super-exponentially with the
number of TFs. By limiting the maximum in-degree for
each node, i.e. limiting maximum number of parents,
this scaling becomes polynomial [15,35], and the denomi-
nator in equation (2.9) may be feasibly calculated.
Equation (2.9) may be applied node-by-node to all poss-
ible genes in a system, to evaluate the distribution over
network structures.

The behaviour of each of the separate Gaussian process
models depend upon the choice of hyperparameters 6.
Although it would be preferable to integrate out
these hyperparameters, the solution is not analyti-
cally tractable and Would require sampling based

P(Mj| X;, X, 0) = (2.9)

arate set of hyperparameters for each of models in the
denominator by maximizing the marginal likelihood:

0,|M; = argg max p(X; | Xy, @), Vj. (2.10)

Alternatively, studies by Klemm [35] suggest using
a common hyperparameter for all models in the denomi-
nator of equation (2.9), which can be inferred along
with the distribution over parental sets using an EM
approach.
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2.8.1. Deriwative estimation for continuous time systems.
Microarray time course datasets measure the mRNA
expression profiles, X; and consequently, the time-
derivative X; must first be estimated from the data in
order to apply the continuous non-parametric models

suggest using a discrete approximation:

Xi(tiy1) — Xi(t:)
At '

Alternatively, by assuming the mRNA expression
profile of the ith gene corresponds to a Gaussian process
(e.g. [19]), and noting that the derivative of a Gaussian
process is itself a Gaussian process [24,36,37], Klemm
[35] suggest that the derivative can be approximated as:

p(Xi|X;, ©) = N(Xi|p, K), (2.12)

where 6 is taken to be the MAP estimator, and pu and K
represent the mean and covariance, respectively.

Xi(t) = (2.11)

2.3.2. Discrete time monlinear dynamical systems. A
second class of NDSs outlined in Klemm [35] evolves
over discrete time as:

where, again, f(-) represents an appropriate nonlinear
function. Where the parental set is known, learning this
function essentially involves learning a relationship
between a vector of observations X; = { X;(%),Xi(t), . ..,
Xi(ty)}, and the matrix of observations composed of the
expression levels of the parental set at the preceding
time points, which may again be achieved by assigning
the function a Gaussian process prior. As with the con-
tinuous time NDS, a distribution over the parental sets
may be calculated via Bayes’ rule (see equation (2.9)).

(2.13)

2.4. Granger causality

The notion of Granger causality was first introduced
within the context of auto-regression models [38]. Infor-
mally, a random variable X; is said to Granger cause a
second variable, X5, if knowledge of the past behaviour
of X; improves prediction of X, compared with knowing
the past of X, alone. Typically, this involves calculating
the predictive error of X, with and without the variable
X, and performing a suitable statistical test to deter-
mine whether or not the more complex model (with
X;) has better explanatory power versus the simpler
case. Granger causality can readily be extended to
cases of multivariate datasets (e.g. [39]), allowing
their use in GRN inference [13].

2.5. Implemented algorithms

In order to evaluate the performance of simple ODEs on
time-series data, we use the time-series network identi-
fication (TSNI) algorithm of Bansal et al. [23], while
Granger causality analysis is implemented using the
Granger Causal Connectivity Analysis (GCCA) toolbox
[39]. An example of a linear DBN using first-order con-
ditional dependencies can be found in the G1DBN
package [40], while a DBN with hidden states is investi-
gated using the variational Bayesian SSM (VBSSM) of
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Beal et al. [7]. An example of inference using non-
parametric NDS can be found in the Matlab package
GP4GRN [15]. Additionally, we implement a Matlab ver-
sion of the algorithms proposed in Klemm [35], which
includes an EM implementation of a Gaussian process
model for NDS evolving over continuous time (causal
structure identification (CSI)°, §2.3), and one evolving
over discrete time (CSI%, §2.3.2).

3. NETWORK EVALUATION

Establishing the accuracy of an inferred GRN requires
knowledge of a ground-truth (or gold standard) network,
against which the inferred network can be ‘benchmarked’.
Benchmarking involves counting the number of links
correctly predicted by the algorithm (true positives,
TP), the number of incorrectly predicted links (false posi-
tives, FP), the number of true links missed in the inferred
network (false negatives, FN) and the number of correctly
identified non-links (true negatives, TN), as illustrated
in figure 3. Performance of the algorithm can then
be summarized by calculating the true positive rate
(TPR, TPR = TP/TP + FN) also known as recall, the
false positive rate (FPR = FP/FP + TN), and the posi-
tive predictive value (PPV = TP /TP + FP) also known
as the precision.

In most cases, however, inference does not identify a
single network, but a fully connected network with edges
weighted according to, for example, the strength or prob-
ability of that particular interaction (compare figure 4b
with figure 4a), which may interpreted in terms of a
ranked list of connections. A sparser network can be
extracted from the list by removing all links with strength
or probability below a certain threshold (figure 4¢), count-
ing the number of TP, FP, TN and FN and evaluating the
TPR/FPR/PPV. By evaluating the performance of the
algorithm over a range of such thresholds, the performance
can be summarized by: (i) the receiver operating character-
istic (ROC) curve, which plots the 1-FPR (equivalent to
the specificity) versus the TPR for all thresholds; (ii) the
precision-recall (PR) curve, which plots the TPR against
the PPV for all thresholds. In all subsequent benchmark-
ing, we evaluate both the ROC and PR curves.

4. RESULTS
4.1. In silico networks

While the targets of TFs may be experimentally ident-
ified using a variety of experimental techniques
including ChIP-chip/seq [2] and one-hybrid systems
[3,5], allowing the validity of individual connections to
be verified, establishing a complete gold-standard
GRN in biological systems remains technically and
financially difficult. This has lead to the emergence of
a diverse range of in silico networks from which obser-
vations can be generated for benchmarking purposes.
Foremost among the in silico networks are those
released as part of the dialogue on reverse engineering
assessment and methods (DREAM, see also the
DREAM homepage') [16,10].

"http://wiki.c2b2.columbia.edu/dream /index.php/The_ DREAM_
Project.
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Figure 3. Illustration of benchmarking recovered GRNs
against a known gold standard network. (a) The true gold
standard network consists of four genes with three edges, in
which genes 1 and 2 both regulate gene 3, which in turn regu-
lates gene 4. (b) The network recovered by inferring the
network from time-series data suggests a four gene network
in which gene 2 regulates gene 3, with genes 1 and 3 both reg-
ulating gene 4. (¢) The number of TPs, TNs, FPs or FNs are
counted. In this case, the recovered network contains two
TPs, one FP, one FN and 12 TNs.

(@)
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4.1.1. DREAMY 10-gene networks. As an example of a
small in silico network we make use of the 10-gene net-
works released as part of the DREAM4 challenge
[16,41,42], available for download at the DREAM pro-
ject homepage. The datasets consist of five separate
networks, whose topologies were extracted from
known GRNs in Escherichia coli and Saccharomyces
cerevisiae. Time-series observations were generated
using parametrized SDEs, with observations uniformly
sampled (21 time points, single replicate) under five
different perturbations, for a total of 105 observations
per gene. The datasets include additive measurement
noise, modelled upon existing microarray noise.
Depending upon the capability of the algorithms, net-
works were inferred using either a complete dataset (all
five perturbations simultaneously), or a separate network
was inferred for each perturbation, with a consensus
network evaluated as the average of the five inferred net-
works. Self-interactions were removed from all networks
and performance evaluated by calculating the area
under the ROC curve (AUROC) and area under the PR
curve (AUPR). For comparison, we evaluated the average
AUROC and AUPR scores obtained from 1000 randomly
generated adjacency matrices (again removing self-
interactions), which yielded scores of approximately
AUROC =0.55 and AUPPR =0.16-0.19. Additional
networks were inferred from steady-state measurements
following systematic knockouts or knockdowns of each of
the 10 genes using pipeline 1 of Greenfield et al. [10],

TP=5
FpP=7
TN=0
FN=0

inferred network (threshold > 0.5)

FN=2

gene 3 gene 4

Figure 4. (a) An example ‘gold standard’ network which consists of four genes with five edges. Gene 1 regulates genes 2 and 3, gene 2
regulates genes 3 and 4 and gene 4 regulates gene 1. (b) The inferred network is a fully connected graph in which particular edges are
ranked according to, e.g. the strength or probability of connection. (¢) A sparse network can be generated from the fully connected
network by removing all edges below a certain threshold. In this example, removing edges below a threshold of 0.1 removes six con-
nections, while a threshold of 0.5 removes nine connections. For threshold the number of TPs, FPs, TNs and FNs can be calculated
as in figure 3. A summary of the performance can be obtained using either: (i) the receiver operating characteristic (ROC) curve,
which plots 1-FPR versus TPR for all thresholds; or (ii) the precision-recall curve, which plots the TPR versus PPV.
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Table 1. Average area under the receiver operating characteristic curve (AUROC) and area under the precision-recall (AUPR)
curve (in brackets) for each of the 10-gene DREAM4 networks using various inference algorithms. The best overall performance
for each network in terms of AUROC/AUPR is indicated in italics, while the best time-series approach (non-steady state) is
shown in bold. Bold italics indicates that the best overall performance was a time-series method. CSI® evolves over continuous

time. CSIY evolves over discrete time.

method algorithm network 1 network 2 network 3 network 4 network 5
steady state knockout 0.90 (0.78) 0.73 (0.27) 0.91 (0.63) 0.84 (0.66) 0.75 (0.37)
knockdown 0.71 (0.34) 0.62 (0.25) 0.74 (0.46) 0.64 (0.30) 0.68 (0.23)
DBN G1DBN 0.73 (0.37) 0.64 (0.34) 0.68 (0.45) 0.85 (0.69) 0.92 (0.77)
VBSSM 0.73 (0.38) 0.66 (0.41) 0.77 (0.49) 0.80 (0.46) 0.84 (0.64)
ODE TSNI 0.62 (0.27) 0.63 (0.32) 0.58 (0.21) 0.63 (0.23) 0.68 (0.25)
NDS GP4GRN 0.66 (0.42) 0.69 (0.44) 0.70 (0.47) 0.62 (0.35) 0.86 (0.65)
csrd 0.72 (0. 64) 0.75 (0.54) 0.67 (0.45) 0.83 (0.67) 0.90 (0. 78)
CSI° 0.78 (0.42) 0.73 (0.40) 0.66 (0.29) 0.64 (0.26) 0.75 (0.27)
GC GCCA 0.67 (0.30) 0.70 (0.47) 0.62 (0.26) 0.80 (0.56) 0.80 (0.58)
random random 0.55 (0.18) 0.55 (0.19) 0.55 (0.17) 0.57 (0.17) 0.56 (0.16)

which yielded AUROC scores of between 0.73-0.9 and
AUPR scores in the range 0.27—-0.78.

The performance of each of the methods used is sum-
marized in table 1. In general, all methods appeared to
perform better than random, with DBNs, non-parametric
NDSs approaches, and networks recovered from steady-
state data each performing best in at least one of the five
datasets.

DBNs were significantly better than random on all
five datasets, with DBNs that incorporate hidden-
states (VBSSM) outperforming those that do not
(G1DBN) in datasets 2 and 3, while GIDBN performed
better on datasets 4 and 5. The two methods performed
similarly on dataset 1. In contrast to previous studies of
Cantone et al. [12], DBNs were here found to consist-
ently outperform simple ODE-based approaches
(TSNI). DBNs also possessed better AUROC/AUPR
scores in general than those following reconstruction
using Granger causality (GCCA; four out of five
datasets), consistent with previous observations that
DBNs were better than GC when the number of
observations was low [13].

The non-parametric NDSs approaches were consi-
stently found to perform better than random, and
were the top-ranked time-series approach in three
out of five of the datasets. Interestingly, the EM algor-
ithm of Klemm [35], which used a Gaussian process to
estimate the time-derivative and jointly constrained
the hyperparameters performed better than the maxi—
[15], Wthh used a discrete approximation to the gradi-
ent, in three of five of the datasets. The discrete NDS
proposed in Klemm [35] performed better than
both approaches on four of the datasets. In general,
however, the non-parametric NDSs methods did not
greatly outperform other, linear methods such as the
dynamical BNs.

4.1.2. DREAM/ 100-gene networks. As an example of a
larger in silico network, we make use of the 100-gene
systems of the DREAMA challenge [16,41,42]. The data-
sets again consist of five networks whose topology is
taken from FE. coli or S. cerevisiae networks. Time
series consist of uniformly sampled measurements
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(21 time points, single replicate) simulated using a
parametrized set of SDEs under 10 different pertur-
bations. Additive noise modelled upon microarray
noise was included.

Recovered networks were inferred as for the 10-gene
networks, again removing all self-interactions. For com-
parison purposes, 100 random networks were generated
yielding scores of approximately AUROC = 0.50 and
AUROC = 0.002. Additional networks were again
inferred from steady-state measurements following sys-
tematic knockouts or knockdowns of each of the 100
genes using pipeline 1 of Greenfield et al. [10], which
yielded AUROC scores of between 0.74 and 0.88 and
AUPR scores in the range 0.15—-0.46. Performance of
the individual approaches are summarized in table 2.

The non-parametric NDS algorithms performed best
of all the time course methods, with scores significantly
greater than other approaches, including DBNs. The
performance of the discrete CSI algorithm (CSI?) was
superior to a previous parametrized ODE model,
which had been one of the top contenders in the pre-
vious DREAMS3 network inference challenge, and had
AUPR scores of (approx.) 0.23, 0.11, 0.21, 0.19 and
0.14, respectively, in the five DREAM4 100-gene data-
sets (see fig. 2 of Greenfield et al. [10]). In general, the
discrete CSI algorithm (CSI?) [35] was found to out-
perform the continuous CSI algorithm (CSI®) [35] and
the related maximum-likelihood approach of Aijo &
Léhdesmiki [15] (GPAGRN). While DBNs did not per-
form as well as the non-parametric approaches, they did
perform better than methods based upon Granger caus-
ality and simple ODE systems (TSNI). The latter has
previously been acknowledged to perform poorly on
larger datasets [23,11], and is not strictly designed for
inferring networks but rather the targets of pertur-
bations. Interestingly, while methods using time-series
data did not outcompete reconstruction using systema-
tic knockout, non-parametric and Bayesian methods
were competitive with networks reconstructed following
systematic knockdowns.

Network inference using systematic knockouts was
superior to all methods using time-series data tested
here. Indeed, networks constructed solely from the
knockout data produced the most accurate network
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Table 2. Average area under the receiver operating characteristic curve (AUROC) and area under the precision-recall (AUPR)
curve (in brackets) for each of the 100-gene DREAM4 networks using various inference algorithms. The best overall performance
for each network in terms of the AUROC/AUPR is indicated in italics, while the best time-series approach (non-steady state) is
shown in bold. Bold italics indicates that the best overall performance was by a time series method. CSI¢ evolves over continuous

time. CSI evolves over discrete time.

method algorithm network 1 network 2 network 3 network 4 network 5
steady state knockout 0.88 (0.46) 0.76 (0.33) 0.80 (0.33) 0.82 (0.33) 0.74 (0.15)
knockdown 0.68 (0.06) 0.61 (0.02) 0.63 (0.01) 0.66 (0.06) 0.62 (0.02)
DBN G1DBN 0.68 (0.11) 0.64 (0.10) 0.68 (0.13) 0.66 (0.10) 0.72 (0.11)
VBSSM* 0.59 (0.08) 0.56 (0.05) 0.59 (0.11) 0.67 (0.10) 0.71 (0.09)
VBSSM” 0.56 (0.09) 0.57 (0.06) 0.62 (0.12) 0.64 (0.12) 0.70 (0.09)
ODE TSNI 0.55 (0.02) 0.55 (0.03) 0.60 (0.03) 0.54 (0.02) 0.59 (0.03)
NDS GP4AGRN 0.72 (0.22) 0.62 (0.10) 0.70 (0.16) 0.70 (0.21) 0.69 (0.12)
cs1 0.71 (0.25) 0.67 (0.17) 0.71 (0.25) 0.74 (0.24) 0.73 (0.26)
CSI° 0.65 (0.13) 0.56 (0.03) 0.63 (0.07) 0.61 (0.07) 0.60 (0.05)
GC GCCA 0.60 (0.04) 0.57 (0.04) 0.60 (0.07) 0.58 (0.07) 0.57 (0.03)
random random 0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002) 0.50 (0.002)

*A single hidden-state.

"The hidden state dimension is selected to maximize the marginal likelihood.

topologies in the original DREAM4 challenge. Previous
studies have suggested that combining predictions from
different inference methods can result in a better, or at
least more robust, performance compared with the indi-
vidual methods alone [42]. In the DREAM4 challenge, a
simple combination of time course and knockout data
was achieved by the ranking of connections identified
from the two datasets and calculating an averaged
rank (see pipeline 3 in Greenfield et al. [10]), but this
did not appear to perform better than the networks
produced from systematic knockouts alone. Subsequent
analysis by Greenfield et al. [10] did, however, demon-
strate that the two datasets could be used together in
a mutually beneficial way. In table 3, we demonstrate
the effect of combining time-series data with knockout
data for each of the network inference algorithms pre-
viously described, wusing pipeline 3 approach of
Greenfield et al. [10]. For the DBNs, the combination
of time series with knockout data outperformed recon-
struction using knockout data alone in one out of five
cases. Simple ODE and Granger -causality-based
methods using time-series data did not appear to add
anything to the knockout data. Conversely, for the
NDSs-based approaches the performance using both
datasets appears to be better than the knockout
dataset alone in two of five cases, and comparable
in a third, suggesting that more recent methods
can be advantageously combined with knockout data.
Producing a knockout for each gene in the network is,
however, unrealistic in practice for many organisms,
requiring additional biological experiments and explicit
knowledge of the genes involved in the network prior
to inference.

4.2. Synthetic and in vivo networks

While in silico datasets readily allow benchmarking of
algorithms on arbitrarily large systems, Werhli et al.
[8] note that the data used in such benchmarking rep-
resent a simplification of biological systems, suggesting
that conclusions based solely upon in silico
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benchmarking might lead to biased evaluations. While
the topology of large-scale, gold-standard biological
networks remain unknown, advances in experimental
techniques including ChIP-chip/seq and the one-
hybrid systems mean that the small-scale biological
networks, including the Arabidopsis clock, are now
well characterized [25,27]. Similarly, advances in
synthetic biology have allowed small networks to been
constructed in wvivo [12], providing opportunities for
testing of algorithms in real biological systems.

4.2.1. In-vivo reverse-engineering and modelling assess-
ment yeast network. A synthetic GRN has previously
been constructed in the budding yeast S. cerevisiae
[12]. This in-vivo reverse-engineering and modelling
assessment (IRMA) network consists of five genes,
each of which regulate at least one other gene in the
network, and whose expression is negligibly influenced
by endogenous genes. Expression within the network
is activated in the presence of galactose and inhibited
in the presence of glucose, allowing two time course
datasets to be generated by Cantone et al. [12]. In the
first of these cells were grown in a glucose medium
and switched to galactose (switch on) with gene
expression monitored over 16 time points using quanti-
tative RT-PCR. In the second dataset, cells were grown
in a galactose medium and switched to glucose (switch
off ) with expression monitored over 21 time points.
The performance of each of the inference algorithms
was evaluated in terms of AUROC and AUPR using
both the switch on and switch off datasets, again
removing self-interactions. For comparison purposes,
the performance of randomly generated networks, and
networks reconstructed from the steady-state data
following systematic knockouts are also included. A
summary of performance in terms of AUROC and
AUPR can be seen in table 4, with networks inferred
from the switch off dataset depicted in figure 5.
Previous studies by Cantone et al. [12] had suggested
that DBNs (BANJO [43]) performed better than
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Table 3. Average area under the receiver operating characteristic curve (AUROC) and area under the precision-recall (AUPR)
curve (in brackets) for each of the 100-gene DREAM4 networks using various inference algorithms combined with the
knockout data. The best overall performance for each network in terms of the AUROC/AUPR is indicated in italics, while
the best time-series approach (non-steady state) is shown in bold. Bold italics indicates that the best overall performance was
by a time series method. CSI® evolves over continuous time. CSI? evolves over discrete time.

method algorithm network 1 network 2 network 3 network 4 network 5

steady state knockout alone 0.88 (0.46) 0.76 (0.33) 0.80 (0.33) 0.82 (0.33) 0.74 (0.15)
knockdown + KO 0.83 (0.39) 0.72 (0.18) 0.76 (0.15) 0.78 (0.22) 0.71 (0.10)

DBN G1DBN + KO 0.84 (0.31) 0.75 (0.24) 0.79 (0.26) 0.80 (0.26) 0.79 (0.19)
VBSSM* + KO 0.80 (0.20) 0.70 (0.15) 0.75 (0.15) 0.80 (0.28) 0.79 (0.19)
VBSSM" 4 KO 0.78 (0.18) 0.71 (0.16) 0.75 (0.14) 0.78 (0.26) 0.77 (0.17)

ODE TSNI + KO 0.80 (0.16) 0.71 (0.11) 0.75 (0.13) 0.75 (0.14) 0.75 (0.08)

NDS GP4GRN + KO 0.84 (0.37) 0.73 (0.24) 0.79 (0.29) 0.80 (0.32) 0.76 (0.22)
CSI? + KO 0.84 (0.38) 0.76 (0.29) 0.80 (0.33) 0.83 (0.38) 0.78 (0.27)
CSI° + KO 0.81 (0.30) 0.71 (0.11) 0.77 (0.16) 0.77 (0.18) 0.71 (0.12)

GC GCCA + KO 0.80 (0.20) 0.71 (0.17) 0.76 (0.15) 0.76 (0.12) 0.70 (0.09)

*A single hidden-state.

"The hidden state dimension is selected to maximize the marginal likelihood.

random only on the switch off dataset, based upon cal- Table 4. Average area under the receiver operating

culation of sensitivity. In this study, we note that one of
the two DBNs (VBSSM) performed significantly better
than random on both datasets, and was the top perfor-
mer in the switch on dataset. The second DBN
performed better than random on the switch on dataset
only. Recent studies using non-stationary DBNs appear
to perform significantly better than random on the
switch on dataset, but not on the switch off [44]. In
both instances, however, the AUPR, curve for the non-
stationary DBN does not appear to be greater than
for the stationary DBNs evaluated in this paper
(AUPR =0.51 and 0.38, respectively). The non-
parametric methods all performed significantly better
than random on the switch off dataset, with CSI? the
top performer. In the switch on dataset only
GP4GRN was found to perform better than random,
with both CSI® and CSI? yielding low AUROC and
AUPR curves. Network recovery based upon Granger
causality possessed good AUROC and AUPR scores
that were competitive with Bayesian approaches on
both datasets, and superior to the performance of
simple ODE models (TSNI).

In general, methods based upon time-series data
appeared to be competitive with reconstruction based
upon systematic knockouts, with VBSSM, TSNI,
GP4GRN and GCCA all outperforming knockout net-
works in the switch on dataset, and CSI® outperforming
knockout networks in the switch off dataset.

4.2.2. The Arabidopsis thaliana clock network. The net-
work structure for the Arabidopsis thaliana clock was
inferred using time-series data consisting of 24 uni-
formly sampled microarrays, taken at 2h intervals,
with four biological replicates (three technical repli-
cates). The networks were inferred from time-series
information of seven clock-related genes, as used in pre-
viously published studies [13], and consist of LHY,
CCA1, PRR7, PRRY, TOC1, GI and ELF4. While a
gold-standard clock model is not known with absolute
certainty, here we use the model of Pokhilko et al. [27]
as a yardstick for evaluating performance.
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characteristic curve (AUROC) and area under the precision-
recall (AUPR) curve (in brackets) for switch on and switch off
yeast networks using various inference algorithms. The best
overall performance for each network is indicated in italics,
while the best time-series approach is shown in bold. Bold
italics indicates that the best overall performance was by a
time series method. CSIC evolves over continuous time. CSI¢
evolves over discrete time.

method algorithm switch on switch off
steady state knockout 0.68 (0.42) 0.81 (0.50)
DBN G1DBN 0.78 (0.64) 0.61 (0.34)
VBSSM 0.79 (0.70)  0.76 (0.60)
ODE TSNI 0.68 (0.51) 0.68 (0.42)
NDS GP4GRN 0.73 (0.61) 0.76 (0.57)
s 0.63 (0.46) 0.86 (0.72)
CSI¢ 0.64 (0.39) 0.73 (0.59)
GC GCCA 0.71 (0.55) 0.74 (0.65)
random random 0.65 (0.45) 0.65 (0.45)

Following inference of the fully connected network
structure, networks were identified by taking the top
10 interactions (neglecting self-interactions). While
the number of connections taken was arbitrary, it
ensured all algorithms could be compared on a level set-
ting. Within the Pokhilko et al. [27] model, LHY and
CCAL1 act as a single node, while in the original Locke
et al. [25] model so do PRR7 and PRR9, and indeed
most of the inferred networks capture a link between
LHY and CCA1 and between PRR7 and PRR9.

In figure 6, we summarize the inferred networks pro-
duced when treating LHY/CCA1 and PRR7/PRR9 as
single nodes. This step did not involve generating new
networks with a reduced gene list, but simply by
taking the union of all connections. Most of the inferred
networks, as well as networks inferred using non-
stationary DBNs [44], capture a loop that acts between
the morning elements LHY/CCA1 and the evening
elements TOC1/GI and vice versa. All methods
appeared to capture the link from TOC1 to PRR9
save CSI, where the link direction was reverted. All
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galactose steady state

Figure 5. Inferred networks from the IRMA synthetic yeast network [12] using the switch off dataset. Reconstructed networks
consist of the eight top-ranked links inferred by each method. TPs are indicated in solid black lines, with FPs indicated by
dashed red lines. Edges that are correct, but have their direction reversed are indicated in dotted red. For the switch off dataset,
the CSI algorithm performs best with one incorrect link and one link with reversed direction and one missing link. Networks
inferred using knockout data, have only one incorrect link, but with a greater number of links with reversed directions.

algorithms, again including networks identified using
non-stationary DBNs [44], capture or partially capture
a loop between LHY/CCA1 and PRR7/PRR9, with
GCCA and CSI capturing the loop in the direction
from LHY /CCA1 to PRR7/9, and all other algorithms
capturing the loop in the direction from PRR7/9 to
LHY/CCAL. Of the methods tested, only CSI? appears
to (partially) capture the loop between GI and TOCI,
although networks inferred using non-stationary DBNs
also appear to capture this loop [44].

Interestingly, ELF4, a clock-related gene that has
not yet been incorporated into the canonical clock net-
work, has several prominent interactions in the
recovered networks. Nearly, all algorithms identified
ELF4 as a target of LHY/CCAL1, consistent with pre-
vious modelling using ELF4 with the clock genes [13].
Although a few inferred networks had ELF4 feeding
back into the clock, several methods, including non-
stationary DBNs [44], suggest it was a terminal node
in the network. TSNI predicts that ELF4 modulates
TOC1, with both TSNI and G1DBN predicting ELF4
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interacting with PRR7/9, while CSI predicts ELF4
regulation of GI.

5. DISCUSSION AND OUTLOOK

A variety of approaches exist for inferring the structure
and dynamics of GRNs from time-series observations.
While the relative merits of these competing approaches
have previously been discussed [11-16], the pool of
available algorithms is constantly growing. With the
increasing prevalence of large computer clusters this
has lead to emergence of novel new approaches to infer-
ring GRNs, including non-parametric methods based
upon NDSs [15,35]. Here, we have revisited earlier
work evaluating the performance of available algor-
ithms, using more recent approaches. In general, the
non-parametric approaches outperform other methods,
demonstrating the advantages that can be achieved
when combining an NDSs formalism with Bayesian
learning strategies.
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Figure 6. Networks were inferred with the same Arabidopsis thaliana time course data used in Zou et al. [13] and Morrissey et al.
[45] on a set of clock genes LHY, CCA1l, PRR7, PRR9, TOC1, GI and ELF4 (used in [13]). Networks were identified by taking
the top 10 interaction, and subsequently merging LHY with CCA1 and PRR7 with PRR9. For comparison, we include the clock
model of Locke et al. [25] and Pokhilko et al. [27]. All algorithms capture the interactions between morning elements LHY /CCA1
and evening elements TOC1/GI and vice versa. Several methods additionally identify the partial loops between LHY /CCA1 and
PRR7/PRR9. Most algorithms additionally identify ELF4 as a terminal component of the network.

For smaller networks, including the 10-gene in silico
networks of the DREAM4 challenge [16,41,42], and the
5-gene synthetic yeast network of [12], the best performing
methods for inferring network structure from time-series
data were split between DBN methods and the non-
parametric NDSs, with VBSSM, G1DBN and CSI¢ each
performing best in terms of AUROC/AUPR on at least
one of dataset. Networks recovered using other methods,
including simple ODE models (TSNI) and networks
based upon Granger causality (GCCA), were nearly
always found to score higher than found on randomly gen-
erated networks. Crucially, the best networks recovered
using (in silico and synthetic) time-series data were, in
some cases, superior to those recovered following systema-
tic knockout. Furthermore, in the in silico systems,
recovery of networks from time course data nearly
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always outperformed recovery following systematic knock-
downs. This confirms earlier work by Bansal et al. [11] that
suggests inferring network structure from time-series
observations can be of practical use, and further suggests
that for small systems, i.e. when looking to disentangle the
relationship between relatively few genes, a few time series
collected under different perturbations, can be more
powerful than single measurements comprising complete,
systematic interventions.

The ability of these various approaches has been
demonstrated on the well-characterized Arabidopsis clock
network using replicated time course microarrays. Again,
as with the small in silico and synthetic networks, the
DBNs and non-parametric approaches appeared to
accurately recover known links, including the feedback
loop between morning and evening elements of the clock,
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as well as partially capturing loops between LHY /CCA1
and PRR7/9. Additionally, most methods appeared to
suggest that ELF4 was, in some way, regulated by LHY/
CCA1, consistent with previous models using the same
set of genes [13].

In larger systems, i.e. the 100-gene in silico networks of
DREAM4, the non-parametric NDSs approaches were
found to outperform all other methods based upon
time-series data, with AUROC/AUPR scores in keeping
with previously published results using parametrized
ODE systems [10]. While DBNs did not perform as well
as these non-parametric models, they did outperform
methods based upon Granger causality, consistent with
observations in Zou et al. [13], and were more accurate
at recovering network structure than TSNI. In contrast
to the 10-gene networks, recovery of networks following
systematic knockout in the 100-gene systems consistently
outperformed reconstruction based upon time-series
data. Indeed, recovery based solely upon knockout data
was the top scorer in the DREAM4 in silico network chal-
lenge [10,16]. This is perhaps not surprising considering
that time course datasets contained only 10 pertur-
bations, while recovery from knockouts relied upon 100
separate interventions. By comparison, the 10-gene sys-
tems contained five time series each under separate
perturbations versus 10 interventions in the knockout
datasets. While previous studies [10] along with work pre-
sented here have demonstrated that recovery of networks
based upon systematic interventions and on time-series
observations can be combined in ways that are beneficial
to the accuracy of the recovered network, this approach
appears to be unfeasible in practice for larger networks.
In particular, an Affymetrix microarray time series con-
sisting of 25 time points with three replicates currently
costs in the region of £30000. Assuming an identical
number of replicates, a similar figure would allow single
time point microarray analysis of just 25 knockouts,
requiring extensive knowledge of the genes most probably
to be involved in the network prior to inference. Further-
more, the generation and validation of knockouts requires
additional time and resources. The combined use of time-
series and genetic datasets should, however, prove useful
in more accurately identifying smaller networks.

Interestingly, and despite the obvious similarity of the
two approaches, the EM algorithm outlined by Klemm
[35], which employs just one set of hyperparameters
Léhdesméki [15], which employs one set of hyperpara-
meters per parental set. This appears to be true
regardless of the size of the network, suggesting that
the increased number of hyperparameters in the latter
approach might negatively impact upon accuracy of the
algorithm. One possible explanation for this observation
is that allowing for the increased number of hyperpara-
over-fitting in the Bayesian identification of parental
sets and indeed, further studies in Klemm [46] using a fra-

suggest that the method incorrectly favours parental
sets with larger cardinality. The approach of Klemm
[35] additionally appears to perform better when
assuming discrete observations, rather than using a sep-
arate Gaussian process to estimate the time derivative.
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A possible explanation for this is that using an independent,
Gaussian process to first estimate the time derivative
may lead to over-fitting, smoothing out genuine biological
signals and in some cases leading to an inaccurate
reconstruction of the phase-space.

5.1.1. Outlook. The studies in this paper using a variety
of network inference techniques with the DREAMA4
100-gene datasets suggest that time-series data col-
lected under 10 perturbations allow for relatively
accurate reconstruction of networks in large systems,
with non-parametric approximations of ODEs provid-
ing the best overall performance. The relatively low
cost of microarray experiments means that highly
resolved, highly replicated, time course datasets are
being increasingly generated under a variety of exper-
imental perturbations [6], making network inference
algorithms of great use in systems approaches to
biology. The usefulness of such time-series data none-
theless depends upon both the quality of the data and
precisely how dynamic the time-series profiles are. In
particular, time-series profiles that spend significant
times in stationary phases are evidently going to be
less informative than profiles that are changing over
the full range of the experimental time course.

Over the next few years, it seems likely that such
microarray datasets will be increasingly augmented
with more sophisticated experimental datasets, includ-
ing protein and metabolite time series, protein—
protein interactions via yeast two-hybrid, and infor-
mation about protein-DNA interactions derived from
ChIP-chip/seq or one-hybrid systems, as well as tar-
geted knockout and knockdowns. Indeed, several
current consortia, including the encyclopedia of DNA
elements® (ENCODE), the immunological genome pro-
ject? (ImmGen) and plant response to environmental
stress in Arabidopsis thaliana® (PRESTA) will provide
multiple datasets using a variety of experimental tech-
niques. To take advantage of these increasingly rich
datasets, network inference algorithms must be able
to learn (in a principled way) from large varieties of
diverse data. Approaches modelling such diverse data-
sets in an integrated fashion are already underway,
including work by Savage et al. [47] which combines
gene expression data with TF binding information
(ChIP-chip) to identify transcriptional modules in a
Bayesian framework. Likewise, previous studies by
Greenfield et al. [10], as well as work in this paper,
have demonstrated that, in some cases, knockout data
can be advantageously combined with time-series
measurement of gene expression by calculating an aver-
age ranking of connections over multiple network
predictions. The non-parametric learning strategies pre-
sented in this paper represent ideal candidates for
addressing future challenges of combining datasets.
Such algorithms readily incorporate underlying assump-
tions about GRNs by adopting an NDS formalism,
benefit from the flexibility of the Gaussian process frame-
work, and can readily deal with multiple time course

rzhttp://genome‘ucsc.edu/ENCODE/.
*http:/ /www.immgen.org/index_content.html.
*http://www2.warwick.ac.uk/fac/sci/lifesci/research/presta/project /.
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perturbations, with the Bayesian treatment of network
structure inference allowing for the leveraging of prior
information.

These non-parametric approaches do, however,
suffer form scaling issues. In particular, the reliance
upon Gaussian processes to recover the unknown func-
tions of the NDS requires calculations that scale with
n, the number of observations, as O(n®), rendering
the method impractical in cases where very many
time courses are generated. The explicit permutation
over all possible parental sets of limited in-degree rep-
resents a deeper problem, however, as even limiting
the maximum cardinality of the parents, the number
of parental sets scales polynomially with the number
of prospective TFs. This makes computation in the
algorithms of O(N**'/(p — 1)!) complexity, where N
is the number of genes and p the maximum number of
parents per gene. For the 100-gene system containing
210 observations per gene, the computational time for
most methods tended to lie in the range of minutes to
hours. For the non-parametric models, however, com-
putational time could take upwards of 48 h per gene.
While the approach is embarrassingly parallel, allowing
fast calculations provided the user has access to large
clusters, it is currently able to deal with networks con-
taining hundreds, rather than thousands of TFs. The
increasing use of ChIP-chip/seq and one-hybrid systems
might, however, play a role here, by increasingly allow-
ing hard constraints to be placed over which TFs can
bind particular genes. In such cases, non-parametric
methods could allow for accurate reconstruction of
very large networks.
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