Skip to main content
. 2011 Sep 29;2(1):26–41. doi: 10.1098/rsfs.2011.0045

Table 1.

Examples of complementation experiments demonstrating the existence of functional equivalence classes in the genetic, metabolic and regulatory networks. The listed examples only represent a small subset of experiments of complementation or gene replacements. They were identified in PubMed with the key words: complementation, gene, function replacement (or displacement), orthologous, parallel, non-orthologous (or non-orthologous) and heterologous. The experiment by Wegscheid et al. [25] has been described in Auletta et al. [12]. Experiments referenced [2225,51] are described in the text.

function molecular systems type of complementation (evolutionary significance)
reference
recipient(s) donor(s)
genetic operating system network
tRNAlys aminoacylation class I (Bacillus subtilis) and class II (Borrelia burgdorferi) Lysyl-tRNA synthetases non-orthologous replacement (convergence) [22]
B. subtilis (Bact.) B. burgdorferi (Bact.)
tRNAgln aminoacylation Gln-tRNAgln direct (Escherichia coli) and indirect (B. subtilis) aminoacylation pathways pathway replacement (convergence) [23]
E. coli (Bact.) B. subtilis (Bact.)
tRNA processing type A RNase P RNA (E. coli) and MRORP1 protein (Arabidopsis) non-orthologous replacement (convergence) [24]
E. coli (Bact.) Arabidopsis (Euk.)
TMP synthesis ThyA (E. coli) and ThyX (Bo. burgdorferi) Thymidylate synthases non-orthologous replacement (convergence) [28]
E. coli (Bact.) Bo. burgdorferi (Bact.)
protein folding Rpl25 (Saccharomyces cerevisiae) and TF (E. coli) ribosomal protein chaperones non-orthologous replacement (convergence) [26]
E. coli (Bact.) S. cerevisiae (Euk.)
tRNA processing type A (E. coli) and type B (B. subtilis) RNase P RNAs orthologous replacement (divergence) [25]
E. coli (Bact.) B. subtilis (Bact.)
B. subtilis (Bact.) E. coli (Bact.)
ribosome assembly rRNA/r-protein operons orthologous replacement (divergence) [27]
E. coli (Bact.) Salmonella typhimurium (Bact.)
Proteus vulgaris (Bact.)
DNA recombination repair RAD54 (S. cerevisiae) and AtRAD54 (Arabipdopsis) repair proteins orthologous replacement (divergence) [29]
S. cerevisiae (Euk.) Arabidopsis (Euk.)
post-translational processing alg7 (S. cerevisiae) and mv1751 (Methanococcus voltae) N-glycosylation proteins orthologous replacement (divergence) [30]
S. cerevisiae (Euk.) M. voltae (Arch.)
metabolic network
lipid-linked oligosaccharides translocation ABC type Wzx (E. coli) and non-ABC-type WlaB (Campylobacter jejuni) flippases non-orthologous replacement (convergence) [52]
E. coli (Bact.) C. jejuni (Bact.)
inorganic pyrophosphate hydrolysis soluble (S. cerevisiae) and membrane-bound H+-translocating (Arabidopsis) inorganic pyrophosphatases non-orthologous replacement (convergence) [53]
S. cerevisiae (Euk.) Arabidopsis (Euk.)
Chloroflexus aurantiacus (Bact.)
antibiotic resistance low Mg2+ (Salmonella enterica) and high Mg2+ (E. coli) Polymyxin B resistance pathways pathway replacement (divergence) [48]
E. coli (Bact.) S. enterica (Bact.)
molecular transport YopB/YopD (Pseudomonas aeruginosai) and PopB/PopD (Yersinia pestis) proteins orthologous replacement (divergence) [54]
P. aeruginosai (Bact.) Y. pestis (Bact.)
regulatory network
bacteria motility pseudotaxis pathway (dependent on a theophylline-riboswitch) and natural chemotaxis pathway (E. coli) regulatory complementation (convergence) [51]
E. coli (Bact.) synthetic parts
cellular and hormonal regulation lower and higher eukaryote calmodulins orthologous replacement (divergence) [55]
S. cerevisiae (Euk.) Xenopus laevis (Euk.)
transcriptional regulation piD261/Bud32 (S. cerevisiae) and PRPK (human) kinase proteins partial orthologous replacement (divergence) [56]
S. cerevisiae (Euk.) Homo sapiens (Euk.)