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The emergence of coherent structures, large-scale flows and correlated dynamics in suspensions
of motile particles such as swimming micro-organisms or artificial microswimmers is studied
using direct particle simulations. A detailed model is proposed for a slender rod-like particle
that propels itself in a viscous fluid by exerting a prescribed tangential stress on its surface, and
a method is devised for the efficient calculation of hydrodynamic interactions in large-scale
suspensions of such particles using slender-body theory and a smooth particle-mesh Ewald algor-
ithm. Simulations are performed with periodic boundary conditions for various system sizes and
suspension volume fractions, and demonstrate a transition to large-scale correlated motions in
suspensions of rear-actuated swimmers, or Pushers, above a critical volume fraction or system
size. This transition, which is not observed in suspensions of head-actuated swimmers, or Pullers,
is seen most clearly in particle velocity and passive tracer statistics. These observations are
consistent with predictions from our previous mean-field kinetic theory, one of which states
that instabilities will arise in uniform isotropic suspensions of Pushers when the product of the
linear system size with the suspension volume fraction exceeds a given threshold. We also find
that the collective dynamics of Pushers result in giant number fluctuations, local alignment of
swimmers and strongly mixing flows. Suspensions of Pullers, which evince no large-scale
dynamics, nonetheless display interesting deviations from the random isotropic state.
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1. INTRODUCTION

Recent experiments on the dynamics of suspensions of
self-propelled micro-organisms have uncovered new
and fascinating hydrodynamic phenomena (e.g. [1–4]).
For example, dense suspensions of swimming bacteria,
such as Escherichia coli or Bacillus subtilis, exhibit
complex flows characterized by large-scale vortices and
jets [2,5–8]. These flows are a consequence of the activity
of the self-propelled particles and often take place on
length scales that greatly exceed the particle dimensions,
and involve velocities much higher than the single micro-
organism swimming speed [2]. Other peculiar phenom-
ena that have been observed include the formation of
spatial inhomogeneities [2,4], locally correlated motions
[8–10], enhanced particle diffusion, enhanced fluid
mixing and passive tracer diffusion [1,11–13]. Synthetic
non-biological microswimmers that move autonomously
[14–19] or semi-autonomously [20,21] have been fabri-
cated and studied, but as yet have not been deployed
(to our knowledge) to study collective hydrodynamic
interactions. Perhaps this is because of the difficulty of
manufacturing such devices in sufficient numbers,
though this ability appears to be improving (e.g. [22]).
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Attempts at understanding the mechanisms behind
these experimental observations have included various
types of particle simulations. Hernández-Ortiz et al.
[23] developed a ‘minimal’ swimmer model, in which
particles are represented as rigid dumbbells that exert
two equal and opposite localized forces on the fluid,
thus creating the far-field force dipole a swimming
particle induces as a result of self-propulsion. With
this model, they were able to reproduce features of the
experiments, including correlated motions at high
concentrations and enhanced tracer diffusion [23,24].
Pedley and coworkers developed detailed Stokesian
dynamics simulations of ‘squirmers’, which propel as a
result of a prescribed surface slip velocity, and also
reported motile particle and tracer diffusion [25,26]
and the development of coherent structures in their
suspensions [27,28]. Recently, we also developed a
detailed model, based on slender-body theory, in
which hydrodynamically interacting rod-like particles
propel themselves by exerting a prescribed tangential
stress on their surfaces [29]. We observed large-scale
flows taking place near the system size in semi-dilute
suspensions of rear-actuated particles, resulting in an
enhancement of the mean swimming speed and in
strong motile particle diffusion at long times.

While particle simulations are most easily compared
with experimental data, they do not easily provide
This journal is q 2011 The Royal Society
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analytical insight into the physical mechanisms at play.
To this end, continuum mean-field theories have also
been proposed, which couple conservation equations
for the distribution of particle conformations to the
governing equations for the fluid flow via an effec-
tive particle stress tensor modelling the effects of the
force dipoles exerted by the particles on the surround-
ing fluid. Such a model was proposed by Simha &
Ramaswamy [30], who extended phenomenological
equations for liquid crystals to account for active stres-
ses, and used them to investigate the stability of aligned
suspensions. Similar models were also more recently
developed by Aranson et al. [31], Wolgemuth [32],
Baskaran & Marchetti [33,34] and Mishra et al. [35].
Because these often included ad hoc terms account-
ing for near-field steric interactions, the precise role
played by hydrodynamic interactions in the dynamics
of these suspensions remained unclear.

We recently developed a first-principles mean-field
kinetic theory to study hydrodynamic interactions
in these suspensions [36,37]. There, a conservation
equation for the distribution of particle positions and
orientations is coupled to the Stokes equations for the
fluid flow, itself driven by an effective ‘active stress’ cor-
responding to the individual force dipoles resulting from
particle self-propulsion. We performed linear stability
analyses and nonlinear simulations to investigate the
system’s dynamics. Linear stability analysis for a uni-
form and isotropic suspension of Pusher particles
predicts a long-wave spatial instability at a critical
wavenumber kc. This result was obtained independently
and using a similar theory by Subramanian & Koch
[38], who also included the effects of bacterial tumbling.
Further, this linear instability does not yield concen-
tration fluctuations, but rather growth of the effective
particle stress, which can be interpreted as a local
nematic order parameter. In other words, weak fluctu-
ations in the distribution of the particle configurations
will amplify and yield local alignment at short times.
Beyond the wavenumber kc, a more detailed analysis
of the linear problem by Hohenegger & Shelley [39]
revealed that both suspensions of Pushers and Pullers
are neutrally stable in the absence of rotational
diffusion, and stable otherwise.

A measure of the importance of hydrodynamic
interactions is the effective volume fraction of swimmers
n ¼Ml3/V where M is the total number of swimmers in
the system volume V and l is the particle half-length
[40]. A useful non-dimensionalization of the kinetic
theory uses the length and time scales lc ¼ l/n and
tc ¼ lc/U0 where U0 is the isolated swimmer speed.
After rescaling, the remaining system parameters are
an O(1) signed active stress coefficient, normalized
system size and two dimensionless diffusion coefficients.
In our discrete rod simulations [29], we found that into
the semi-dilute regime (n � 1), the rotational diffusivity
scaled linearly with n while translational diffusivity
scaled inversely as n21. In such a case, or in the absence
of diffusion, the above scaling leaves the dimension-
less diffusion coefficients in the kinetic theory
dependent only upon swimmer length and speed, and
n appears only in the rescaled system size. The instabil-
ity criterion on the critical wavenumber kc may then be
J. R. Soc. Interface (2012)
written succinctly in terms of system size L ¼ V1/3 and
n as [39]

L
l

� �
� n � 2p

kc
; ð1:1Þ

where the non-dimensional kc has no dependence on n

or L. Equation (1.1) shows that an instability will
occur in Pusher suspensions when, for a fixed system
size, the concentration exceeds a threshold value or,
conversely, for a fixed concentration, when the system
size exceeds a critical value. Note that because they
included a model for orientation relaxation as a result
of bacterial tumbling, Subramanian & Koch [38]
obtained a slightly different criterion on the concen-
tration that does not involve the system size.

In our previous work [37], we also derived an
equation of evolution for the system configurational
entropy, which is an energy-like quantity measuring
the size of fluctuations relative to the uniform, isotropic
state. It predicts that for suspensions of Pullers, fluctu-
ations will decay away monotonically. For Pushers,
entropy evolution is a balance of decay induced by dif-
fusive mechanisms and growth from power input to the
system by the swimmers. To investigate the long-time
dynamics in these suspensions, large-scale simulations
of the kinetic equations were performed [36,37,41]. For
Pushers, they confirmed the criterion for instability
predicted by the linear analysis, and that concentration
fluctuations do grow as a result of nonlinearities. In the
nonlinear regime, the dynamics were found to be
characterized by the quasi-periodic formation and
break-up of concentration patterns whose magnitude
is controlled by diffusion, accompanied by complex
unsteady flows qualitatively reminiscent of turbulence.
These flows, in turn, were shown to result in very effi-
cient fluid mixing achieved by large-scale stretching
and folding of fluid elements. These dynamics were
also reflected in the configurational entropy of the
system, which showed persistent fluctuations about a
long-time elevated mean. For Pullers, initial fluctu-
ations showed no persistence, even for large amplitude
data, and decayed monotonically.

The predictions of the kinetic model are qualitatively
consistent with experimental observations, which
suggest that large-scale flows and correlated motions
occur only above a critical particle concentration
[4,6–8]. However, they are yet to be tested quantitat-
ively against particle simulations, which are arguably
more controlled than biophysical experiments. In our
previous particle simulations [29], large-scale flows
and complex concentration patterns were reported in
suspensions of Pushers, though the onset for these
flows and patterns was not explicitly investigated. In
this paper, we perform additional simulations using
the same model (described in §2 and in the electronic
supplementary material) with the specific aims of deter-
mining the conditions for these effects to arise and of
testing the theoretical prediction of equation (1.1).
We also analyse more precisely the characteristics of
these flows, such as their effect on number density
fluctuations, particle velocities, fluid mixing and pas-
sive tracer diffusion (§3). These results confirm the
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instability criterion of equation (1.1), with reasonable
agreement with the numerical value of the critical
effective volume concentration predicted by the kinetic
model. We also find some interesting departures from
the kinetic model, such as signs of the approaching tran-
sition through small-scale correlated particle motions
even in the stable regime. Conclusions and directions
for future work are discussed in §4.
(b)
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Figure 1. Particle distributions at t ¼ 0 (initial random distri-
bution) and t ¼ 50, in suspensions of Pushers at (a) n ¼ 0.1,
(b) n ¼ 0.5, (c) n ¼ 1.0 and (d) in a suspension of Pullers at
n ¼ 1.0. The simulations were performed in a cubic cell of
linear dimension L ¼ 10, but the above figures only show a
section of dimensions 10 � 10 � 3. Also see the accompanying
online movie (electronic supplementary material). (Online
version in colour.)
2. SIMULATION METHOD

The simulation method is described in detail in the elec-
tronic supplementary material and is only summarized
here. We simulate periodic suspensions of M identical
rod-like particles of length 2l, centre of mass xi, and
director pi (i [ [1, . . . , M ]), using the method developed
in our previous work [29]. We assume that the particles
propel themselves by exerting a prescribed tangential
stress over half of their body, while the other half is
subject to the standard no-slip boundary condition.
This model may be considered a coarse-grained model
for ciliated micro-organisms, or organisms that propel
themselves by propagating shape deformations along
their body. We assume that the particles have a high
aspect ratio, and therefore use slender-body theory to
model their motion [42]. Particle motions are coupled
within the slender-body formulation via the incompressi-
ble disturbance velocity field u(x) induced by the other
swimmers in the fluid, which accounts for hydrodynamic
interactions and is calculated in the low-Reynolds-
number regime using the Green’s function for the Stokes
flow. This results in a large-scale coupled system of
integral equations which is solved with periodic boundary
conditions using a spectral expansion of the disturbance
velocities using Legendre polynomials [43], together with
a smooth particle-mesh Ewald algorithm [44] for the
efficient evaluation of hydrodynamic interactions. We con-
sider two types of swimming particles: Pushers, for which
the shear stress actuation occurs on the rear half of the
particle, with the no-slip boundary condition on the front
half; and Pullers, for which the actuation occurs at the
front, with no-slip at the rear. The reader is referred to
the electronic supplementary material for more details on
the single-particle models and simulation method.

In the discussion below, lengths, velocities and times
are made dimensionless using the particle length 2l, iso-
lated swimming velocity U0, and time-scale 2l/U0.
Unless otherwise noted, all the simulations described
were performed in a periodic cubic box of linear dimen-
sion L ¼ 10, with unit-length particles of aspect ratio
10. Volume concentrations are measured using the
effective volume fraction n ¼Ml3/V, for which n � 1
corresponds to a semi-dilute suspension [40].
3. RESULTS

3.1. Particle distributions

Figure 1 (see also the electronic supplementary
material, Movie) shows typical late-time particle distri-
butions in three simulations of Pusher suspensions, at
effective volume fractions n ¼ 0.1, 0.5 and 1.0, as well
as one simulation of a Puller suspension at n ¼ 1.0. In
J. R. Soc. Interface (2012)
all cases, the initial distribution at t ¼ 0 is taken to be
random and isotropic. At the low volume fraction of
n ¼ 0.1 (figure 1a), the Pusher particle distribution
still appears to be random at t ¼ 50, with no clear den-
sity fluctuations or correlated particle motions. The
situation changes slightly at n ¼ 0.5, where suspensions
of Pushers start exhibiting correlated motions, as
demonstrated for instance by the local alignment of
the particles, which was characterized in our previous
work [29] and further here. Weak density fluctua-
tions are also visible. At the yet higher concentration
of n ¼ 1.0 (figure 1c), correlated motions become very
clear, in particular in the accompanying movie (elec-
tronic supplementary material). The dynamics are
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Figure 2. Typical velocity fields in a plane in suspensions of Pushers at (a) n ¼ 0.1, (b) n ¼ 0.5, (c) n ¼ 1.0 and (d) in a suspension
of Pullers at n ¼ 1.0. The simulations were all performed in a cubic cell of linear dimension L ¼ 10.
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found to be characterized by the formation of large
rafts of particles—‘coherent structures’ of no fixed
membership—that swim with velocities significantly
larger than the isolated swimming speed. These rafts
are typically slightly denser than the mean, and are sur-
rounded by regions of clarified fluid. These effects are
not observed in the case of Pullers (figure 1d), where
the particle distribution remains apparently random
and isotropic, and particle motions seem only weakly
affected by interactions.

As we proceed to show below, this transition to col-
lective swimming, which appears to occur in
suspensions of Pushers at n � 0.5, is especially visible
in the particle velocity and passive tracer statistics.
We also demonstrate that this transition does not
occur in suspensions of Pullers, where the apparent
effects of hydrodynamic interactions remain weak
regardless of volume fraction.
3.2. Emergence of large-scale flows

Typical late-time fluid disturbance velocity fields from
the simulations of figure 1 are shown in figure 2. At low
volume fractions, the velocity fields only show small-
scale fluctuations corresponding to the disturbances
induced by individual particles. These fluctuations are
weak and only significant in the direct vicinity of the
particles owing to their fast decay as the inverse square
separation distance from the particle of interest. The
velocity fields significantly change in suspensions of Pull-
ers when n � 0.5, as they start exhibiting correlated jets
J. R. Soc. Interface (2012)
and vortices that occur on length scales significantly
larger than the particle size; these become especially
clear when n reaches 1 in figure 2c, when strong jets and
vortices are observed. These flow fields are qualitatively
very similar to those previously observed in dense
suspensions of the swimming bacterium B. subtilis,
which is indeed a Pusher (e.g. [2,4]), as well as in previous
simulations of Pusher suspensions [23,24,29]. Such large-
scale flows, however, are never observed in simulations of
Pullers regardless of volume fraction: the velocity fields
instead remain uncorrelated, with only small-scale
fluctuations corresponding to the disturbances induced
by individual particles (figure 2d).

These observations are quantified in figure 3, which
shows, for various volume fractions, sample spatial
autocorrelation functions and the extracted correlation
lengths, for the disturbance velocity field. At low
volume fractions, velocity fields are correlated on a
length scale of approximately 1, the length of one swim-
mer. For Pushers, this correlation length increases with
volume fraction, especially for n�0.5, reaching a value
of approximately 4, close to half the simulation box
size. This increase is not observed in suspensions of
Pullers, where the correlation lengths instead remain
close to 1 but decrease slightly with n.

Similar observations can be made for the time evol-
ution of the velocity fields. Figure 4a shows typical time
traces of the x component of the disturbance velocity
field, for both Pushers and Pullers, at an arbitrary fixed
location in the simulation box. At low volume fractions,
the velocity is found to rapidly fluctuate around a mean
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of zero. When n increases in suspensions of Pushers,
the magnitude and duration of the oscillations signifi-
cantly increases. Such is not the case in suspensions of
Pullers, where increasing n has no discernible effect on
the velocity time trace. These observations are also
reflected in figure 4b which shows correlation times for
the disturbance velocity field. At low volume fractions,
velocity fields are correlated on a time of �1, which is
the time it takes for a particle to swim a distance equal
to its length. When n increases, the correlation time
increases in suspensions of Pushers, reaching values
close to 5, which is the time for a particle to swim
half the box dimension; this increase does not occur in
suspensions of Pullers.

The disturbance velocity fields in the simulations are
further characterized in figure 5 by their spatial power
spectra, shown for Pushers andPullers at various concen-
trations. Interestingly, the high-wavenumber behaviour
is found to be universal in all simulations, particularly
after division by n, regardless of the swimming mechan-
ism or the volume fraction, and is characterized by an
apparent power-law decay (that said, the supporting
range in k is a decade at most). The same behaviour
was also found in synthetic isotropic suspensions. A
simple analysis predicts a k24 decay by describing a
rod-like swimmer as a zero-mean distribution of Stokes-
lets aligned along its axis. If the Stokeslet strength has
jumps along the rod or is not zero at the ends (i.e. if the
periodic extension has jumps; also, see figure 2a,b of
J. R. Soc. Interface (2012)
electronic supplementary material for the distributions
relevant here), this will produce a k26 decay in the
squared Fourier amplitude of the velocity field. When
spherically integrated over shells in k-space to produce
the energy spectrum, a k24 decay results. A set of M
randomly oriented and placed rods yields an energy
spectrum decaying again as k24 and with a prefactor
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scaling with M, as is consistent with collapse of the
spectra at high wavenumbers through division by n.

The behaviour at low wavenumbers is not universal,
and changes significantly with both swimming mechan-
ism and volume fraction. At low volume fractions (e.g.
n ¼ 0.1), the energy associated with low values of k is
somewhat flat and is approximately the same for both
Pushers and Pullers. For Pullers, as n is increased, the
spectrum more or less keeps its shape though it decreases
in magnitude. For Pushers, the lower k spectrum signifi-
cantly increases as n reaches 0.5, and then increases by up
to three orders of magnitude at n ¼ 1.0. In the latter case
there is noflatness of the spectrum, and the kinetic energy
is largest at the largest scale, showing what might be
another, albeit slower, power-law decay towards the
region of universal behaviour.

Figure 6a plots the probability distribution function
(PDF) of fluid velocities at various volume fractions
for both Pushers and Pullers. These show that fluid
velocities generally increase as n increases, but are
significantly weaker in suspensions of Pullers than
for Pushers. The distributions are also strongly non-
Gaussian. For dilute random suspensions of particles,
Rushkin et al. [45] argue that the tails of velocity
PDFs are governed by the divergence of an appropriate
Green’s function for the Stokes equations. They predict
and confirm that for a suspension of the alga Volvox
carteri the PDF tail decays as u24 due to V. carteri
having a gravitationally induced Stokeslet. For dilute
suspensions of either Pushers or Pullers we find a
range with u2a decay where a � 3.5, which is faster
than that predicted with a pure force dipole (u25/2).
We suspect that this difference arises from the far-field
dipole in our model being induced by a line of Stokeslets
distributed along the rods. Numerical artefacts in
producing the disturbance velocity field from the rod
positions and force distributions may also play a role.
At higher concentrations, the Pusher PDF is very flat
at its centre, reflecting the loss of disorder through
collective behaviour. Conversely, the Puller PDF
becomes more Gaussian at higher n as is consistent
with synthetic velocity fields produced from uniform
isotropic suspensions of either Pushers or Pullers. The
dependence on volume fraction is further illustrated in
figure 6b, showing the standard deviation of the distri-
butions versus n. This standard deviation increases
strongly with the onset of collective motion in suspen-
sions of Pushers, whereas the increase is weak for
Pullers. As we show in §3.6, the strong flows occurring
in concentrated Pusher suspensions will have a
significant impact on fluid mixing.
3.3. Active input power from swimming

As each swimmer traverses the system, it inputs power to
the fluid, which is offset by viscous dissipation. For a sus-
pension of slender rods the total input power is given by

PðtÞ ¼
XM
i¼1

ðl

�l
viðsÞ � f iðsÞds; ð3:1Þ

where v is the surface velocity of a rod, f the force per unit
length it exerts upon the fluid and s the arclength along
J. R. Soc. Interface (2012)
the rod centre-line. This quantity has contributions
from the single swimmer motility as well as collective
effects. Figure 7 shows the average power input per
swimmer, P(t)/M, over time. The solid line denotes the
base-state power input by a single swimmer moving in
the computational box and averaged over swimmer
orientation. Each initially isotropic suspension starts
with its average input power near the base-state value.
For Pullers, the dynamics leads to a decrement in P(t)
that increases with volume concentration. Nonetheless,
as we shall see in the next section, the long-time state
remains nearly indistinguishable from that of uniform
isotropy (at least by the statistical measures that we
use). For Pushers, there is instead an increment in
input power over the base value particularly with the
emergence of large-scale flows at higher concentrations.
The input power increment is particularly interesting as
it is this quantity that in the kinetic theory increases
the system’s configurational entropy [37]. The observed
dynamics in figure 7 are also consistent with those
observed from nonlinear simulations of the kinetic theory
for both Pushers and Pullers (see [37], figures 11–13).
Increases in configurational entropy reflect increased
fluctuations, either in concentrationororientation, relative
to the uniform isotropic state, which we now examine.
3.4. Density fluctuations and orientation
correlations

The transition to collective swimming and large-scale
flows described above is also associated with an increase
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in density fluctuations in the suspensions. This was pre-
viously predicted theoretically by Simha & Ramaswamy
[30], who suggested that the standard deviation of the
number of particles in a three-dimensional region contain-
ing kNl particles on average should growas kNl5/6. Density
fluctuations were also observed in the nonlinear kinetic
simulations of Saintillan & Shelley [36,37], where they
were explained as a consequence of the propulsion of
the particles, which swim toward and aggregate in regions
of negative divergence of the concentration-weighted
director field [37].

To quantify the density fluctuations observed in
figure 1, we consider particle occupancy statistics in
figure 8. Given a small cubic interrogation cell of fixed
volume ~V , the mean number of particles inside the
cell is expected to be kN l ¼ Mð ~V=V Þ. When such a
cell is placed at an arbitrary position inside the simu-
lation box, it will contain a number N of particles
that may differ from the expected value of kNl as a
result of fluctuations. The distribution P(N) of this
number of particles therefore characterizes the magni-
tude of density fluctuations at a given scale. In a
uniformly random suspension, the distribution is
expected to be given by the Poisson distribution

PðN Þ ¼ kN lNe�kN l

N !
; ð3:2Þ

with a standard deviation of sN ¼ kNl1/2. Figure 8a
shows steady-state distributions P(N) in suspensions
of Pushers and Pullers at two different concentrations,
for an interrogation cell containing kNl ¼ 50 particles
on average, and compares these distributions to the
Poisson distribution of equation (3.2). In the case of
Pushers (figure 8a(i)), the distributions are found to
depart from and be wider than the Poisson
distribution, suggesting that density fluctuations are
larger than in a random suspension, in agreement
with our previous observations in figure 1. The distri-
butions are also found to widen with increasing n,
suggesting that density fluctuations become more sig-
nificant at high volume fractions. These effects are not
observed in suspensions of Pullers (figure 8a(ii)),
J. R. Soc. Interface (2012)
where the distributions remain close to the Poisson
distribution even as n increases.

Figure 8b shows the dependence of the standard
deviation sN versus the mean kNl. A power-law depen-
dence sN ¼ kNla is found in all cases, with an exponent
a which is close to the expected value of 1/2 for a
Poisson distribution, but increases beyond this value
in concentrated suspensions of Pushers. This is con-
firmed in figure 8c, showing the exponent a versus n

for both Pushers and Pullers. In suspensions of Pullers,
a remains close to 1/2 regardless of volume fraction.
Such is not the case with Pushers, where a increases
to reach a value of approximately 0.60 at n ¼ 1.0.
This increase confirms the existence of large density
fluctuations in Pusher suspensions above the transition
to collective swimming. Yet, the measured exponent of
0.60 remains significantly lower than the exponent of
5=6 predicted by Simha & Ramaswamy [30]. While
this discrepancy may be a consequence of the small
system sizes or relatively low volume fractions con-
sidered here, their estimate follows from considering
the response of a linear phenomenological model to sto-
chastic forcing.

Figure 9 studies the local alignment of swimmers by
plotting the normalized distribution of angles u between
pairs of rods separated by a body length or less. Pullers
show a very slight departure from isotropy towards
orthogonality at all concentrations. Pushers at high
concentration show a pronounced tendency towards
polar alignment—swimming in the same direction—
with this peak diminishing but persisting even at low
concentrations. Similar observations had been made in
our previous work [29].
3.5. Particle velocities

The transition to coherent motions and large-scale flows
has a strong impact on particle velocity statistics, as
illustrated in figures 10 and 11, showing mean and
maximum particle velocities from the simulations. As
shown in figure 10, in suspensions of Pushers the
mean particle velocity increases well above the isolated
swimming speed of 1 as the volume fraction increases.
This increase is not observed for Pullers, where the
mean velocity in fact decreases slightly below 1. These
effects are clearest in figure 10b, showing the time-
averaged mean velocity versus volume fraction: the
mean velocity is seen to sharply increase in suspensions
of Pushers beyond n � 0.5, whereas it slightly decreases
in suspensions of Pullers. These observations are also
consistent with our previous study [29].

Similar trends are observed in the maximum particle
velocity, as shown in figure 11. In suspensions of
Pushers, this maximum velocity is again seen to
increase with the volume fraction, to reach a temporal
mean value of �4 above n � 0.5, while the increase in
suspensions of Pullers remains negligible. Occasionally,
the maximum velocity in concentrated suspensions of
Pushers reaches values as high as 6 or 7: these values
are to be compared with experimentally measured
velocities in suspensions of swimming bacteria, which
have been reported to increase by up to a factor of 10
with respect to the isolated bacterium velocity [2,6].
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The origin of these large particle velocities in the more
concentrated Pusher suspensions is made clearer in
figure 12, which examines their relation to the local par-
ticle density and alignment. Specifically, figure 12a
shows the local value of n, measured in a sphere of
radius 1 enclosing a particle, as a function of the velocity
of that particle. While the variations of the local density
remain weak (in agreement with the observations made
J. R. Soc. Interface (2012)
in figure 8), a trend is visible showing that high particle
velocities are associated with high local values of n. Simi-
larly, figure 12b shows the relation between the velocity
of a particle and the local polar order parameter, defined
as the mean value of cos u within a distance of 1 from
the particle centre. Again, high particle velocities are
strongly correlated with larger values of kcos ul, corre-
sponding to particles that are aligned with and pointing
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in the same direction as their neighbours. This local polar
alignment was characterized in our previous work [29],
where it was found that particle orientations and direc-
tions are strongly correlated in suspensions of Pushers,
with a correlation length scale that exceeds the particle
dimension. In other words, particles achieve high vel-
ocities through hydrodynamic interactions when they
have many neighbours and when they are aligned with
these neighbours: this effect is therefore directly
enhanced by the formation of coherent structures and
clusters described in §3.1 and 3.4.

One measure that shows little if any trace of the
emergence of large-scale flows is the long-time diffusive
behaviour of individual swimmers. In our previous
simulation study [29], we calculated both their transla-
tional and rotational effective diffusivities. We found
that up to n � 1, the rotational diffusion d increased
linearly with n. The translational diffusion D varied
inversely with d (and hence with n) following closely
the prediction D ¼ U0

2/6d obtained using Brenner’s gen-
eralized Taylor dispersion theory [46] (we note that
above n ¼ 1, we observe a saturation in diffusivities
while preserving consistency with Brenner’s predicted
relation). We find very similar results here (not shown
here; see figure 5 of Saintillan & Shelley [29]). While
this is consistent with pair interactions inducing shifts
in orientation, estimates of Subramanian & Koch [38]
suggest that this mechanism is too weak to yield the
diffusion coefficients that we measured. This suggests
instead that the relevant mechanism involves the
growth of the background velocity gradients which
induce particle rotation (say, via Jeffery’s equation in
J. R. Soc. Interface (2012)
the dilute regime). This expectation is supported by
figure 13 which shows the monotonic growth of
kruk2 (time-averaged) as a function of n. As with
the swimmers’ coefficients of effective diffusion, little
if any sign is apparent of a transition in flow behaviour.

3.6. Fluid mixing and diffusion of passive
particles

With the emergence of the large-scale time- and space-
correlated dynamics of collective swimming of Pushers,
we also observe the emergence of disturbance flows that
can be efficient fluid mixers. This is illustrated in
figure 14, and its electronic supplementary material
(movie), that shows the evolution of a scalar field
s(x,y,z,t) driven by the background velocity fields
such as those shown in figure 2. This coloured scalar
begins with a one-dimensional sinusoidal distribution
s(x,y,z,0) ¼ sin(2px/L) (with L ¼ 10 the linear system
size), and the figure and movie (electronic supplemen-
tary material) show its evolution on a planar slice set
at constant z. These simulations were performed by
advecting (coloured) passive Lagrangian particles with
the background fluid velocity, and then interpolating
their scalar field values back to a Cartesian grid for
analysis.

Figure 14a is for Pushers at low volume concentra-
tion (n ¼ 0.1). What these images, and particularly the
movie (electronic supplementary material), show is the
rough preservation of the sinusoidal form of the scalar
field, and that the very slow fluid mixing observed there
is driven by individual, effectively uncorrelated swimmers
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dragging fluid across the box. This begins to change for
Pushers at n ¼ 0.5 (figure 14b). Large-scale fluid flows
are beginning to emerge and, through their mixing, are
destroying the sinusoidal form of the scalar colour
field. The final case of n ¼ 1.0 for Pushers, shown in
figure 14c, shows the early emergence of large-scale flows
and subsequent rapid and dramatic mixing across the
system. Figure 14d is the same high concentration
J. R. Soc. Interface (2012)
simulation with n ¼ 1.0, but for Pullers. As for the low
concentration simulation of Pushers, the sinusoidal form
is roughly preserved and the effect of individual swimmers
is seen in dragging fluid across the box. This mixing is
again very slow due to the lack of large-scale flows.

Strongly mixing flows were also observed by Saintil-
lan & Shelley [36,37] in their two-dimensional kinetic
theory simulations. We follow that work by quantifying
the rapidity and degree of mixing using the ‘multiscale
mixing norm’ W[s] defined by Mathew et al. [47] as

W ½s� ¼
X
k

j ŝk j2

ð1þ k2Þ1=2

" #1=2

; ð3:3Þ

where ŝk is the Fourier transform of the scalar field s at
wave vector k. Roughly, each quadrupling in the
number of interleaving folds of the scalar field by the
fluid velocity yields a halving of W.

The time evolution of W is shown in figure 15a for
both Pushers and Pullers. Figure 15a(i) for Pushers is
in accordance with figure 14a–c: at low volume concen-
tration, W decreases very little in time, indicating very
little mixing; at the intermediate concentration of n ¼
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0.5, W shows a more rapid decrease to about 1/2 of its
initial value over the course of the simulation. Again,
the high concentration case for Pushers is markedly
different. The norm W now shows an exponential
decrease in value once the instability from uniform iso-
tropy is fully developed, and it halves in value in
approximately five time units, or the time for a single
swimmer to traverse half the computational box. Con-
versely, suspensions of Pullers show extremely slow
decrease in W (figure 15a(ii)).

We define the rate of mixing b as the asymptotic rate
of decrease in W with time. That is, we assume W[s] �
exp(2bt), and determine b through a least-squares fit
of ln W. This is shown in figure 15b. As expected, b is
close to zero for suspensions of Pullers at all simulated
volume concentrations, and for Pushers at small
volume concentration. It shows a bifurcation to
growth for n � 0.5.

As a measure of global transport of fluid elements,
we calculate the diffusivities of the field of advected par-
ticles making up the scalar field. Figure 16a shows the
field-averaged mean-square displacement relative to
initial position, as a function of time. As expected, the
emergence of large-scale flows from isotropy for Pushers
leads, at the highest volume concentration n ¼ 1.0, to a
linear growth in time. For Pullers, an apparently linear
growth also emerges with increases in n, but with a
slope that is two orders of magnitude smaller. Again,
this difference arises from the differing mechanisms of
J. R. Soc. Interface (2012)
fluid mixing presented by the two systems. For Pushers,
the larger effective diffusivities are driven by large-scale
time-dependent flows, while for Pullers they are associ-
ated with the slow mixing due to fluid being dragged by
individual swimmers. From the mean-square displace-
ments, figure 16b shows the estimated particle
diffusivity. As expected, for Pullers the effective diffu-
sivity is very small for all values of volume
concentration, especially relative to Pushers at high
concentration. It also follows a linear increase with n

over the whole range of concentrations we investigated
(inset of figure 16b), which is consistent with previous
experimental [12], theoretical [48–50] and compu-
tational studies [23,26]. For Pushers, there is again an
evident bifurcation, at approximately n ¼ 0.5, from
small diffusivities to much larger values that show an
approximately linear increase in n.

More information on passive tracer dynamics is pro-
vided in figure 17, showing probability distribution
functions of tracer displacements. Figure 17a shows the
distribution functions for both Pushers and Pullers at
Dt ¼ 20 and at different volume fractions. As expected,
we find that the distributions widen as n increases, as a
result of the stronger disturbance flows driven by the
swimmers; we also find that displacements are signifi-
cantly larger for Pushers than for Pullers. Upon
rescaling of Dx with Dt1/2 in figure 17b, we find that the
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distributions for a given volume fraction all collapse at
late times (large Dt), which is consistent with a long-
time diffusive motion for the tracers. Note that the
distributions are very well captured by Gaussians in the
case of Pullers, though they tend to have faster-decaying
tails in the case of Pushers. This observation differs from
the experimental results of Leptos et al. [12], who looked
at tracer displacements in suspensions of Chlamydomo-
nas reinhardtii, a Puller micro-alga, and found that
the distributions of displacements exhibited strongly
non-Gaussian exponential tails. Such is not the case in
our simulations. A possible source of discrepancy is
the difference in the near-field velocities induced by the
swimmers, which are likely to play an important role in
the tracer diffusivities as argued by Leptos et al. [12]
and Lin et al. [50].
3.7. Effect of system size

All the simulations described so far were performed in a
cubic cell of fixed linear dimension L ¼ 10, in which the
number of particles was varied in order to vary the
effective volume fraction n. In these simulations, we
observed that increasing n at that fixed system size
results in a transition from uncorrelated to correlated
motions in suspensions of Pushers, at a critical
volume fraction of the order of 0.5. According to the cri-
terion of equation (1.1), a similar transition should
occur when the system size is varied at a fixed volume
fraction. To test this prediction, simulations were
J. R. Soc. Interface (2012)
performed at a fixed volume fraction of n ¼ 0.5, in simu-
lation cells of various sizes ranging from L ¼ 4 to 13.5.
A transition is again observed in suspensions of
Pushers, with correlated motions and large-scale flows
only occurring above a critical system size of order
L � 10. This transition is illustrated in figure 18,
which shows results on velocity correlation lengths
and times, and on passive tracer diffusivities. While
the correlation lengths and times show a gradual
increase with system size L with no clear transition at
a critical system size, tracer diffusivities are very
weak in small systems and sharply increase as L
exceeds � 10, which corresponds to the onset of large-
scale flows in the suspensions. Again, no such transition
is observed in suspensions of Pullers (not shown). These
observations, together with those of the previous
sections, are consistent with the instability criterion
(1.1) derived from the kinetic model of Saintillan &
Shelley [36,37] and Hohenegger & Shelley [39].
4. CONCLUDING REMARKS

Our main finding is identifying a transition from weakly
correlated to correlated dynamics in suspensions of
Pusher particles, which occurs when the product of
concentration and system size exceeds a fixed threshold.
No such transition was observed in suspensions of
Pullers. The transition, as we showed, is characterized
by a qualitative change in the dynamics of the system,
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with the emergence of strong large-scale chaotic flows
that correlate on the system size, giant number fluctu-
ations in the particle configurations, enhanced particle
velocities (by up to a factor of 5) and input power,
efficient fluid mixing, and enhanced passive tracer diffu-
sion. Similar transitions have been previously reported in
experiments on bacterial suspensions, where large-scale
flows and collective dynamics have been shown to occur
only above a critical concentration [4,7]. Curiously,
quantities associated with the background fluid velocity
fields show smoother variation with concentration or
system size. This includes velocity correlation lengths
and times, and the (time-averaged) L2 norm of the vel-
ocity gradient, which is associated with the long-time
diffusion of motile particles.

This transition is consistent with the prediction of
our previous kinetic theory [36,37,39], according to
which instabilities should arise in suspensions of
Pusher particles when the criterion of equation (1.1)
is met. In a system of fixed size L ¼ 10, Hohenegger &
Shelley [39] predict a somewhat higher value of
the threshold n, approximately 0.9, than the value of
0.5 that we find here. However, the kinetic theory is
derived under assumptions such as several invocations
J. R. Soc. Interface (2012)
of separation of scale, no direct rod–rod interactions
and no finite-number effects. All of these assumptions
were violated in the simulations given the compu-
tational constraints on system size and particle
number, and were particularly evident in the various
subthreshold correlations measured in Pusher
suspensions.

While Puller suspensions maintained near isotropy
and uniformity (as predicted by the kinetic theory) by
all of our statistical measures, they also showed some
departures such as in the power input and variation
of the velocity gradient L2 norm with concentration.
We point out that in our model, there is a form of
flow reversibility: by changing the sign of the motive
stress, Pushers become Pullers and will retrace their
paths backwards in time. This aspect also underlies
the change in suspension stability with swimmer type.

Finally, both the kinetic theory and the present simu-
lations clearly demonstrate that the emergence of
collective dynamics is primarily a hydrodynamic effect
due to interactions between the particles via their long-
range flow disturbances, as both studies focused on the
dilute to semi-dilute regimes and completely neglected
short-range steric interactions. This conclusion differs



584 Coherent structures in motile suspensions D. Saintillan and M. J. Shelley
from that of other previous studies (e.g. [4,31,33–35]),
which explained collective dynamics as a result of
excluded volume, causing particles to locally align at
high concentrations; this effect is however negligible in
the suspensions we considered in this work, which all
had volume fractions well below the critical value for
the isotropic-nematic transition for rod suspensions [40].
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