JOURNAL

— OF

THE ROYAL

Inter

J. R. Soc. Interface (2012) 9, 456-469
doi:10.1098 /rsif.2011.0379
Published online 10 August 2011

Methods to infer transmission risk
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Data collected during outbreaks are essential to better understand infectious disease trans-
mission and design effective control strategies. But analysis of such data is challenging
owing to the dependency between observations that is typically observed in an outbreak
and to missing data. In this paper, we discuss strategies to tackle some of the ongoing chal-
lenges in the analysis of outbreak data. We present a relatively generic statistical model for
the estimation of transmission risk factors, and discuss algorithms to estimate its parameters
for different levels of missing data. We look at the problem of computational times for rela-
tively large datasets and show how they can be reduced by appropriate use of discretization,
sufficient statistics and some simple assumptions on the natural history of the disease. We
also discuss approaches to integrate parametric model fitting and tree reconstruction methods
in coherent statistical analyses. The methods are tested on both real and simulated datasets

of large outbreaks in structured populations.
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1. INTRODUCTION

Data collected during field outbreak investigations are
essential to better understand the clinical and epi-
demiological features of an infectious disease. They
can also provide useful insights for outbreak manage-
ment and control. For example, evaluating the risk
factors governing transmission is important to design
efficient control measures, and identify those individ-
uals that are most at risk of infection or are the main
contributors of infection and should therefore be
targeted first.

However, characterizing transmission from outbreak
data can be challenging. First, the transmission process
is usually imperfectly observed. For example, we may
observe the date of symptoms onset of a case, but we
rarely know where, when and by whom a case was
infected. Inference, therefore, requires integrating over
‘missing data’, which may quickly become cumbersome.
Over the last 15 years, data augmentation methods
have been used to tackle this problem: data are augmen-
ted with missing data (e.g. dates of infection) that are
needed to write down the likelihood; in a Bayesian set-
ting, the joint posterior distribution of parameters and
augmented data is explored usually via Markov chain
Monte Carlo (MCMC) sampling [1]. This methodology
is now well established in the field and has been succes-
sfully applied to analyse a range of complex datasets.
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However, for relatively large outbreaks with detailed
data, this approach may require very long compu-
tational times. Interested readers can, for example,
read references [2—11].

The second challenge is that the type of dependency
between observations that is typically observed in an out-
break (i.e. the risk of infection of an individual depends
on the infection status of other individuals) is specific
to communicable diseases and needs to be accounted
for with dedicated methods. This usually requires that
the statistical model used to analyse the data is explicitly
based on a mechanistic model of disease spread [12].
Transmission parameters of interest, for example, the
reproduction number (the number of individuals infected
by a case), are usually mathematically defined in those
models. Fitting such parametric mechanistic models to
outbreak data can give useful insights on transmission
[7,13—15], but is subject to the same limitations as para-
metric fitting in other fields. For example, although there
are some exceptions [10], the approach usually requires
to predefine time intervals on which transmission rates
are constant. This can sometimes be difficult to achieve
in a non-ad hoc way.

An alternative approach that has become increas-
ingly popular is to reconstruct the transmission tree
and derive important summary statistics from it, for
example, the temporal trends in the reproduction
number [16—18]. This may give greater flexibility (for
example, there is no need to specify time intervals
with constant transmission rates), potentially at the
cost of larger variance of the estimates [15,18]. However,
since these methods generally only consider disease
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cases rather than the uninfected, but potentially
susceptible bulk of the population, they can say little
about the risk factors for infection or provide estimates
of transmissibility in different contexts (e.g. households,
schools or as a function of distance between a
susceptible and an infected individual).

Overall, the two methodologies (fitting of a para-
metric mechanistic model and tree-reconstruction
methods) are largely complementary. Fitting a mechan-
istic model seems to be the only way to account for the
depletion of susceptibles, the information on uninfected
individuals leading to a quantification of relative risks;
and it may ensure a better control of the variance of
the estimates. Tree-reconstruction methods can provide
further insights on what effectively happened during
the outbreak with summary statistics on who was
infected by whom, when and where and temporal
change in the reproduction number. They can also pro-
vide a framework to detect abnormal features in the
data that are not initially accounted for in a mechanis-
tic model. It is therefore important that the two
approaches can be integrated in a coherent way.

In this paper, we discuss strategies to tackle some of
the ongoing challenges in the analysis of outbreak data.
We present a relatively generic statistical model for the
estimation of transmission risk factors, and discuss
algorithms to estimate its parameters for different
levels of missing data. We look at the problem of
computational times for relatively large datasets and
show how they can be reduced by appropriate use of
discretization, sufficient statistics and some simple
assumptions on the natural history of the disease. We
also discuss approaches to integrate parametric model
fitting and tree reconstruction methods in coherent
statistical analyses. The methods are tested on both
real and simulated datasets of large outbreaks in
structured populations.

2. TRANSMISSION MODEL, DEPENDENCY
AND COMPUTATIONAL TIMES

Assume that we observe the spread of a disease in
a population of size N from day 0 to day 7. For each
individual =1, , N, let yI' =1, if individual
1 is infected between 0 and T; 0 otherwise. Fach indivi-
dual 7 is characterized by a vector of @ covariates
z;(t) = {2 (1), ..., 2 (t)} such as age, gender, location,
household ID, etc ... that may vary with day t. We
want to quantify the transmission risk factors.

We first consider the situation where day t; of
infection of each case i is observed (by convention,
t;i= T+ 1, if individual 7 escaped infection up to day
T). This assumption is relaxed in §5.

2.1. Transmisston models

For a directly transmitted disease, the first step to esti-
mate transmission risk factors is usually to propose a
model for transmission hazard A,_;(¢|®) from case i to
subject j on day t, i.e. define A;_;(¢|@) as a function
of the individual covariates z;(t) and z;(t) and a set of
parameters @. For example, the transmission hazard
Ai—;(t|®@) may depend on:
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— the time lag t—¢; between day t and the day of infec-
tion #; of case i since infectiousness of a case may
vary during the course of infection. The functional
form between A;;(¢|@) and t-t¢; will depend on
the assumed natural history of the disease;

— the individual characteristics of subjects ¢ and j. For
example, some subjects may be more infectious
while others are more susceptible; and

— the type of interactions that exist between subjects
i and j. The contact rate might, for example,
depend on whether the subjects live in the same
household or go to the same school, etc. It could
also depend on the spatial distance between them.

Examples of specifications for the transmission
hazard A;_;(t|®) are given in §§6 and 7. The force
of infection exerted on individual j on day ¢ is
then the sum:

NOEEDY

{iyl'=1;t;<t}

Ainj(t]0).

2.2. Likelihood and computational time

The contribution to the likelihood of case j is:

Pyl =1;t;=1)

1—exp| — Z

{uyl'=1;t;<t}

Aij(tO)

t—1
xexpl— > > A(de) ], (21)

{igT=L;t;<t} d=t;

where the first term is the probability of infection on
day t, and the second term is the probability to
escape infection up to day t (the link between the
continuous time and discrete time transmission model
is discussed in appendix A). The contribution of
non-case j is:

Piyf=0)=exp = 5 S A(d6)

(2.2)
{izyl=1} d=t;
The log-likelihood is therefore:
L= 3 log{l—ep| = 3 Aiytl6)
Lyl =1} {it:<t;}
-1
DRI I (2.3)

=L N | {iti<t;} d=1,

The dependency between observations (i.e. the risk
of infection of an individual depends on the infection
status of other individuals) that is apparent in
equation (2.3) means that computational times
required to calculate the likelihood explode with the
size of the outbreak. For example, for the 2001 UK
foot and mouth disease (FMD) outbreak (about
2000 infected premises (IPs) among 130000 farms),
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the number of pairs of farms to be considered per cal-
culation of the likelihood is over 10° [19]. Even with
the recent increase in computational power, brute
force exploration of the system, though feasible, is
very time consuming. Fast and efficient algorithms
are necessary to provide real-time support to decision
making.

3. DISCRETIZATION AND SUFFICIENT
STATISTICS

Here, we explore the extent to which the discretization
of the transmission risk factors can reduce the compu-
tational burden associated with the evaluation of
equation (2.3). Therefore, we now restrict our analysis
to the situation where each transmission risk factor
takes a finite set of values. We will then explore how
the approach can be used to investigate continuous
risk factors.

3.1. Discretization

Assume that the transmission hazard between two
individuals depends on K risk factors x= {xl,...
2"} and that the k-th risk factor z* (k=1, ..., K)
takes a finite number (=Cy) of values {vf,..., v, }.
The set W of posmble values for risk factor vector
z={z',..., 2%} has size Hk 1 Ck. For example, the
list of risk factors might include the (discretized) dis-
tance between the individuals (either spatial or
social, e.g. members of the same household), the
time lag since infection or individual characteristics,
such as age.

We model the transmission hazard between a
case and a susceptible individual in the popu-
lation by:

K
0) = [ B.(«"; 6", (3.1)
=1
where the specific effect of 2z on the transmission
hazard is measured by function B(z";6") >0, and
0" = {6},..., Oﬁk} is a parameter vector of size L.
This expression makes the simplifying assumption
that the effect of all risk factors on the hazard
can be expressed as the product of the impacts of
each factor. Parameters of the model are
k
0= {9 }kzl,..wK
Remembering that 2z denotes data available for
individual 4, we assume here that risk factors for
transmission from case ¢ to individual j on day t are a
function of triplet {z” %, t}: 2 = {x(ll e
where for k=1,..., K, x i = = g:({z, %, t})
The transmission hazard A;_;(¢;|@®) from case i to
individual j on day ¢ is therefore:

Aij(11O) = B(x(ij,1); O).
The total hazard of infection for individual j on day

t is then:
t|@ Z B zyf

{it:<t;}

K
Vg
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3.2. Reduction of the computational burden:
sufficient statistics

If transmission risk factors are discretized, equation
(2.3) can be re-written:

L= Z log(1 — exp(—A,(¢]9)))
{ay=1}
_ Z M, B(z; O), (3.2)
EW

where

Here 8, is the Kronecker delta or identity function
(=11if a= b and 0 otherwise). M, counts the number
of day-transmission events of type z, which might
have occurred before time ¢ but did not.

Equation (3.2) has important implications in terms
of computational speed since it shows that the compu-
tational burden can be substantially reduced without
loss of information. The first term of equation (3.2)
only involves disease cases; the second term character-
izes the probability of escaping infection up to time ¢
So, data needs for inference reduce to:

— ‘case data’;

— table { M, },c y of sufficient statistics that characterize
the interaction of cases with any individual of the popu-
lation. It can be pre-computed and stored once, given
they do not functionally depend on the parameters.

4. EXPLORATION OF THE PARAMETER
SPACE AND TREE RECONSTRUCTION

Tree reconstruction [7,16—18] is a useful complement to
the likelihood-based estimates of the parameters derived
from equation (3.2). Here, we present and discuss differ-
ent strategies to perform tree reconstruction and
parameter estimation in a coherent statistical framework.

4.1. Tree reconstruction

Given parameter @ and given that case j was infected

on day t;, the probability that case j was infected by
case 1 (t; < t;) is simply (see appendix A):
Aini(ti] @) Ainy(]©)
[ — - NCRY
! ZA t<t )‘kH/(t |@) Aj(tj|@)

4.2. Sequential approach

A natural way to integrate tree reconstruction and par-
ameter estimation in a coherent setting is to proceed
sequentially. For example, in a Bayesian setting, a
sample {6,,},,_; ;; can be drawn from the posterior
distribution of @ via MCMC sampling relying on
equation (3.2). Then, for each parameter value in the
sample m=1,. M7 a source of infection r; can be
drawn from 1ts dlstrlbutlon {pii(4|On) }; for each
case j. This gives a sample of M transmission trees



Methods to infer transmission risk factors

S. Cauchemez and N. M. Ferguson 459

drawn from their predictive distribution. For example,
we used this strategy when analysing detailed data
from an influenza outbreak in a school [7].

4.3. Simultaneous inference

Here, we explore an alternative strategy where the
two tasks are performed simultaneously. The method
formalizes those introduced in work undertaken in
2001 on the UK FMD epidemic of that year [13]. The
idea is that the source of infection r; for each case j is
considered as ‘augmented’ data. The augmented log-
likelihood is:

Lo= Y {log(py (1)) +log(1—exp(—A,(1))}

e T —
{5/ =1}

€Y

Le= Y {log(A,—;(t) —log(A;(%)) +log(1
{5y =1}

—exp(=A;(1)))} = Y M.B(z; 9).

zEY

(4.2)

. K
Denoting N, = Zj:yjrzl | ) 5z(k7 Lt the number
77

of augmented transmission events of type z (z in V),
equation (4.2) becomes:

Lo = {N.log(B(x: 0)) — M.B(z; 0)}
€Y
+ Y {log(1 —exp(=A;(t)))
{yf=1}
—log(A;(4;))}-
In many situations, where the force of infection

exerted on individuals is relatively small, the likelihood
simplifies to:

Lo~ ) {N,log(B(z; ©)) — M,B(; O)}.

zEY

(4.3)

(4.4)

The analysis of the augmented likelihood can be per-
formed in a frequentist or in a Bayesian setting. In the
frequentist setting, it is straightforward to implement
an expectation conditional maximization (ECM) algor-
ithm [20,21] to both derive maximum-likelihood
estimates of the parameters of the model and recon-
struct the transmission tree. The pseudo-code for this
algorithm is given in box 1. In the common situation,
where one is interested in relative risks (i.e. comparison
with a reference group) and where the force of infection
exerted on individuals is relatively small, no maximiza-
tion routine is needed since the maximum value is
simply a ratio of two sums (appendix A) [13]. Confi-
dence intervals can be obtained from the Fisher
information matrix derived at the maximum value for
the incomplete log-likelihood (equation 3.2). The
approach, therefore, requires that the second derivative
of the log-likelihood with respect to @ exists.

Alternatively, inference can be performed in a Baye-
sian setting via MCMC [1], with a pseudo-code
presented in box 2. The key difference is in the way

J. R. Soc. Interface (2012)

Box 1. The EM algorithm when the days of infection are
observed.

Assume that at the beginning of iteration n,
parameter vector is @,,_1:

— expectation step:
(i) for each case j, compute probabilities { pi—;(¢;)},
given 0,_, (equation 4.1; see appendix A), and
(ii) for zin W, compute the expected number of trans-
mission even}t{s of type z:N,=3Y Jyf=1
Z pi*’j(t]) szl ok ks and
i<t (t47)
— conditional maximization step:
(i) for k=1,..., K, and
(ii) for j=1,..., L;: maximize Lo with respect to 0;-“
other parameters being fixed (see appendix A):

Lo =Y {N.log(B(z; 0)) — M.B(x; O)} + > {log(1

wew {7y =1}

—exp(=A;(t))) —log(A;(t))}

Box 2. Bayesian algorithm when the days of infection are
observed.

At iteration n:

— update missing data:
(i) for each case j, compute probabilities { pi;()},
given 0, (equation 4.1; see appendix A),
(ii) for each case j, draw the source r; of case j from
distribution { p;~;(¢)};, and
(ii) for z in ¥, compute the number of transmission
events of type z:

— update parameters:
(i) for k=1,..., K, and
(ii) for j=1,..., Ly MCMC update 9;“ relying on the
augmented likelihood L¢ (see appendix A):

Lo =) {N.log(B(z; ©)) — M,B(x; ©)}
zEY

+ ) {log(1 — exp(—A;(t))) — log(A;(4)}

{sy=1}

missing data are handled: in the Bayesian approach,
one realization of the missing data is drawn from its
expected distribution; by contrast in the EM algorithm,
the whole expected distribution of the missing data is
used in the expression of the augmented likelihood.

5. SITUATION WHEN THE DAYS OF
INFECTION ARE UNOBSERVED

Often, the day of symptom onset s; of case jis observed
but not the day of infection #. As a consequence,
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Box 3. Bayesian algorithm when only days of symptom onset are observed.

At iteration n:

— Gibbs sampling for missing data:
(i) for each case j, compute probabilities { p;(¢)}, for the day of infection of the case given 0,_; (see appendix A),
(ii) for each case j, draw the day ¢; of infection of the case from distribution { p;(¢)},,
(iii) for each case j, compute probabilities {p,ﬁ i(t)}; given 0,_; (equation 4.1; see appendix A),
(Evg for each case j, draw the source r; of case j from distribution { pi—;(%)}; and

v) for z in ¥, compute the number of transmission events of type
- K
N, = E o iy
1.
Jiy=1 k=1 r345)

— update parameters:
(i) for k=1,..., K, and
(i) forj=1,. Lk MCMC update 0 relying on the augmented likelihood. The augmented likelihood is slightly differ-
ent from the case when days of 1nfect10n are known (equation 3.2). In particular, since days of infection of cases
change during the inference procedure, it is no longer possible to pre-compile and store the contribution of cases
to matrix {M,} (i.e. number of day-transmission events of type z that could have occurred but did not); but one
can still pre-compile and store the contribution {MM,} of non-cases, which is usually the key computational

burden. The augmented likelihood is:
({5177J:t} |0) = Z {log(f (silt;))

{sy=1}

-2 i’\iﬂ(d)—ZB(x)MM

{sy=1} {iti<t;} d=1;

+ log(pr,— () +log(1 — exp(=A;(t)))}

eV

likelihood as shown in equation (3.2) is no longer avail-
able. If the incubation period (time lag between the day
of infection and the day of symptoms onset) has a
known density f(s;|t;), a common strategy to tackle
the problem is to augment the data with the day of
infection of each case. A particular computational
burden is then that updating the day of infection of a
single case may require re-calculation of the whole like-
lihood as the update may affect the risk of infection of
all other individuals. In order to avoid this compu-
tational cost, we introduce the additional assumption:

(H1) Given the day of symptoms onset s;, infectious-
ness over time is independent of the day of infection ¢;.

This is, for example, the case if infectiousness starts
with symptom onset. This assumption seems acceptable
for a relatively wide range of diseases since infectivity is
often triggered or influenced by symptoms. Under H1,
there is no need to re-compute the whole likelihood
each time a day of infection is updated.

It would be possible to extend the EM approach to
the situation when the days of infection are unobserved.
Inference would work as in the previous section except
that one would have to take the expectation on both
the contact tracing information and the day of infec-
tion. However, for this second application, it is no
longer possible to easily derive the variance of the esti-
mates. This is because, although maximum-likelihood
point estimates could be derived from the likelihood
for the ‘complete’ dataset, estimation of the variance
of the estimates has to rely on the likelihood of the
observed dataset (equation 3.2). This expression
cannot be computed here since days of infection are
not observed. The Bayesian approach does not suffer
from this limitation and makes it possible to easily
obtain Bayesian credible intervals (box 3).

J. R. Soc. Interface (2012)

6. APPLICATION TO THE FOOT AND
MOUTH DISEASE OUTBREAK WITH
OBSERVED DAYS OF INFECTION

6.1. Data

We reanalyse the 2001 UK FMD dataset presented by
Chi-Ster & Ferguson [19]. The dataset contains infor-
mation on 131243 farms of which 2013 were IPs,
between 7 February 2001 and 5 October 2001. For
each farm, the dataset contains the location of the
farm and the number of cattle and sheep in each farm.
In addition, the data give the estimated time of infection
of the farm (if infected) and the removal time (when ani-
mals of the farm were slaughtered). Details on the data
can be found in Chi-Ster & Ferguson [19].

6.2. Specification of the statistical model

We explore how the discretization of risk factors and the
algorithms introduced in §4 can reduce the compu-
tational burden of inference. For simplicity, farms are
partitioned into three groups on the basis of the
number of cattle n. and the number of sheep 3mng:
cattle (cattle farm: n. > ng), sheep (sheep farm: n, >
n.) and small (small farm: n.+ n,<100) [13].
We assume that the latent period of FMD is 3 days
and that infectious farms remain so until the time of
slaughter. The transmission hazard B between case
farm 4 and susceptible farm j that is introduced in
equation (3.1) is modelled as a function of the following
characteristics:

— the type (cattle, sheep or small) of case farm i.
We estimate the relative infectivity of sheep farms
(") and small farms (¥%™) relative to cattle
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Table 1. Estimates of relative infectivity and susceptibility of sheep and small farms relative to cattle farms for model M1 with
the EM and the MCMC algorithm.

MCMC
EM a=0.01 a=0.1 a=1
infectivity
sheep farm 0.90[0.75,1.04] 0.90[0.76,1.06] 0.89[0.76,1.05] 0.86[0.73,1.00]
small farm 0.60[0.46,0.74] 0.60[0.48,0.74] 0.59[0.47,0.74] 0.57[0.45,0.71]
susceptibility
sheep farm 0.60[0.54,0.66] 0.60[0.54,0.67] 0.60[0.54,0.67] 0.60[0.54,0.66]

small farm

0.17[0.15,0.19]

0.17[0.15,0.19]

0.17[0.15,0.19]

0.17[0.15,0.19]

farms. So the multiplicative term on the trans-
mission hazard is yfh, if case farm is a sheep farm,
¥ if it is a small farm and 1 if it is a cattle farm;

— the type (cattle, sheep or small) of susceptible farm
j. We estimate the relative susceptibility of sheep
farms (y3') and small farms (¥3) relative to cattle
farms; and

— the distance d;; between farm ¢ and farm j. Two
models are considered: M1: discrete model. We
assume that the transmission kernel is a step func-
tion with K+ 1 change points {dj};—o, ... x and
where the multiplicative term on the transmission
hazard is 3/]5 if d—1< d;; < di. In practice, we take
18 change points {0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 10,
15, 20, 40, 60, 100, 200, 400, 10*} (km). M2: ‘para-
metric’ step function. A continuous transmission
kernel often used in the field is

fc(d|a7 b, C) = Q(av b)

C

(L+(d)/(a)"

where  q(a,b) =1/ f;i%o(l +u/a)ldu is  a
normalizing constant. Here, we introduce a discre-
tized version of this kernel. Consider K+ 1 change
points {di}i—o, .. k- We define dy;, the mean distance
between farms ¢ and j satisfying di, 1< d;; < dj:

_ (Zi‘jdzj~5d“<dﬁgdk71>
dy = .

2 i O <dy<din

(6.1)

The transmission kernel is the step function:
f(dla,b,c) = f.(di]a, b,c) where dy_1 < d < d.

In practice, interval 0—2000 km is partitioned in 250
intervals of length 0.25, 0.5, 1, 2, 5, 10, 20 and 40 km
between 05, 515, 15-65, 65—165, 165-415, 415—
815, 815-1015 and 1015—-1415 km, respectively.

For the ECM algorithm, we consider that conver-
gence is achieved at iteration n if the relative change
in parameter values between iteration n and iteration
n+ 1 is smaller than 10~ for all parameters. In the
Bayesian implementation of the model, we specify the

following priors for our parameters. Parameters

Ay 8yl ..., ¥ all have a gamma prior

I, ) with @ = 1072 We also do a sensitivity analysis
for « =10"", 1. For model M2, we specify a uniform
prior U[0,100] for kernel parameters a and b and a

J. R. Soc. Interface (2012)

gamma prior I(«, a) for parameter ¢. The MCMC is
run for 8000 iterations with a burn in of 500 iterations.

Transmission parameters are estimated for time
interval 23rd February (when the national ban on
animal movements was introduced) to 5th October
2001, conditional on the state of the epidemic on 23rd
February. Computation times are given for single
threaded code running on an Intel Xeon x5570 system.

6.3. Results

We first use the ECM algorithm (box 1) to estimate
model M1 (table 1). Convergence is achieved in only
91 iterations (figure 1). Total computational time is
1 min 14 s with most of the time (58 s) spent reading
the data and computing the table {M,},ew of
sufficient statistics (equation 3.2). In particular,
there is no need to use maximization routines since
there is an analytical solution to the conditional max-
imization step (see appendix A). Computational times
are also very short (4min 28s) for the Bayesian
algorithm (box 2).

Estimates of transmission kernel M2 are obtained in
6 min 41 s (table 2). Those computational times con-
trast with those needed through brute calculation of
the likelihood (equation 2.3). Replacing model M2 by
the exact continuous parametric kernel (equation 6.1)
and using equation (2.3) does not affect estimates
(table 2); but computational times move to a month
for the same number of iterations of the MCMC, on
the same machine and with no serious attempt to opti-
mize the code. While algorithmic optimization and
parallel programming allows this to be reduced to a
few days [19], the algorithms presented here still give
comparable estimates two orders of magnitude more
rapidly than brute force approaches.

7. SIMULATION STUDY WITH
UNOBSERVED DAYS OF INFECTION

7.1. Simulations

We simulate an epidemic in a city that is structured in
households and hospitals and where community trans-
mission can happen. Table 3 summarizes the structure
of the city. We consider a city of size 400 000 with an
average household size of 2.2 persons and with house-
hold demographics consistent with the 1999 French
census [22]. The city has three hospitals with 2240
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Figure 1. Convergence of the ECM algorithm for model M1.

Table 2. Estimates of relative infectivity and susceptibility of sheep and small farms relative to cattle farms, parameters of the
transmission kernel for discretized kernel, f and the continuous kernel, f..

discretized kernel, f

continuous kernel, f, and
brute force inference

a=0.01 a=0.1 a=1 a=0.01

infectivity

sheep farm 0.89[0.75,1.05] 0.89[0.76,1.05] 0.89[0.75,1.05] 0.89[0.77,1.05]

small farm 0.59[0.47,0.74] 0.59(0.47,0.74] 0.59[0.47,0.74] 0.59[0.47,0.75]
susceptibility

sheep farm 0.60[0.54,0.67] 0.60[0.54,0.67] 0.60[0.54,0.67] 0.60[0.54,0.66]

small farm 0.17[0.15,0.19] 0.17[0.15,0.19] 0.17[0.15,0.19] 0.17[0.15,0.19]
kernel par.

a 1.79[1.4,2.17] 1.781.43,2.21] 1.78[1.47,2.17] 1.75[1.43,2.11]

b 2.64[2.5,2.76] 2.64[2.51,2.77) 2.63[2.52,2.76] 2.62[2.51,2.75]

c 0.08[0.07,0.08] 0.08[0.07,0.08] 0.08[0.07,0.08] 0.08[0.07,0.08]
Table 3. Description of the virtual city in which the that are put in place in the different settings. We are
epidemic is simulated. interested in a scenario like the severe acute respiratory

syndrome (SARS) rather than, for example, an influ-

number of inhabitants 400 000 enza scenario; that is a disease for which it is possible
average household size 2.2 to detect and identify a substantial proportion of cases.

number of hospitals 3

number of beds in hospital 800 beds
number of staff per hospital 2240
hospital occupancy outside the epidemic period 70%
duration of hospital visit (days) 10

staff members and 800 beds each, a bed occupancy of
70 per cent outside the epidemic period for a duration
of hospitalization of 10 days.

We simulate the spread of a disease in this popu-
lation and would like to assess how the techniques
described above can be used to evaluate and monitor
transmission in the different settings (community, hos-
pital and household), infectivity and susceptibility of
different types of individuals (here: children versus
adults) along with the efficacy of the interventions

J. R. Soc. Interface (2012)

We assume that the incubation period of the disease
has a geometric distribution (with probability 0.3, trun-
cated after 10 days); that individuals start to be
infectious on the day of symptoms onset with an infec-
tivity profile following that time which has an
exponential shape with mean 3 days (truncated after
20 days). We assume that 20 per cent of cases are hos-
pitalized with equal probability of hospitalization
occurring 1 or 2 days after symptoms onset. We
assume that children are 1.5-fold more susceptible and
more infectious than adults. Following Cauchemez
et al. [8], we assume that the person-to-person house-
hold transmission rate is inversely proportional to the
size of the household. The epidemic starts with five
cases infected on day 0. Control measures targeting
community, household and hospital transmission each
with an efficacy of reducing transmission of 50 per
cent are implemented on day 60 of the outbreak.
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Figure 2. Simulated epidemic and information collected during the epidemic. (a) Epidemic curve. (b) Follow-up of households.
(¢) Follow-up of outbreaks in hospitals. Pink, child; light blue, adult.

We consider different scenarios for the proportion of
cases that are detected in the population. Initially, we
assume that all cases are detected. In alternative
scenarios, we investigate the situations where 50 or
25 per cent of cases are randomly detected in the commu-
nity /hospital, but where follow-up of households with
detected cases is good (90%) and, last, the situation
where detection of cases among household members is
of the same quality as detection of cases in the
community and in hospitals.

7.2. Specification of the statistical model

The transmission hazard B between case ¢ and individ-
ual j that is introduced in equation (3.1) depends on the
following characteristics:

— setting, i.e. whether individuals ¢ and j are (i) members
of the same household, (ii) have visited the same hospi-
tal or (iil) other (i.e. community transmission)—the
multiplicative term on the transmission hazard is
Buouws/n (n: size of the household), Buosp/ Niosp
(Niosp: number of staff members plus average hospital

J. R. Soc. Interface (2012)

occupancy outside an epidemic) and Bcoom/Ncom
(Ncom: size of the city). We specify a gamma prior
F(10757 1073) for BHOusa BH()sp and :BCom;

infectivity profile from symptom onset of case i—
modelled with a normalized discretized exponential
distribution with a mean to be estimated. We
specify a uniform prior U [1,10] for the mean value;
whether or not case i is a child—we estimate the
infectivity of children relative to adults. We specify
a lognormal prior distribution with log-mean
0 and log-variance 1 for the relative infectivity of
children ;. This ensures that <y has the same
prior as 1/yy;

whether or not individual j is a child—we estimate
the susceptibility of children relative to adults, 7s,
assuming a lognormal prior distribution with
log-mean 0 and log-variance 1; and

efficacy of interventions implemented in the different
settings (i.e. household, hospital and community).
After implementation of the intervention (day 60),
the transmission rate in the household, hospital and
community is multiplied by parameter Vious, YHosp
and YComy l"eSPGCtively; where YHous; YHosp and YCom
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Figure 3. Estimates of transmission rates and relative transmission risk factors as a function of the number of days since the out-
break started when all cases are detected. Solid line, posterior mean; dashed line, 95% Credible Interval; dotted line, simulation
value. For parameters used to compare groups (e.g. relative susceptibility, efficacy of interventions, etc.), we have also added a
thin horizontal line y = 1. Top row gives estimates of the transmission rates in the different settings. Middle row gives estimates of
the relative infectivity and relative susceptibility of children and the mean duration characterizing the infectivity profile. Bottom
row gives the estimates of the efficacy of intervention to reduce transmission rates in the different settings.

have the same prior as the relative infectivity and
susceptibility of children.

7.3. Results

Figure 2 summarizes the data that would need to be col-
lected during the outbreak with the age and dates of
symptom onset of cases (figure 2a), a follow-up of house-
holds with cases and tracking of hospitalizations and
more generally of hospital occupancy (figure 2b) and a
follow-up of epidemics in hospitals (figure 2c¢). Inference
also requires having information on the age distribution
of the population. In the simulated outbreak, there
were a total of 1842 cases with 631 (34%) child cases.

In the scenario, where all cases are identified, figure 3
shows how estimates change in real-time. On day 20,
only 31 cases have been detected and credible intervals
of parameters are therefore wide. The credible interval
includes the true value for all parameters except the
relative infectivity of children. On day 30, with 80
cases detected, posterior means are always relatively
close to the true simulation value although credible
intervals remain wide for some parameters like the

J. R. Soc. Interface (2012)

relative infectivity and susceptibility of children and
the mean generation time. On day 40 (182 cases
detected), we would rightly conclude that children are
more infectious and susceptible than adults although
here again the credible intervals remain relatively
wide. Properly characterizing the infectivity profile
requires substantially more data (849 cases detected
by day 60). Only 10 days after control measures are
implemented, fairly accurate estimation of the efficacy
of interventions in different settings becomes possible.
When only 50 per cent of cases in the community
and in hospitals are detected, performance of the
approach remains satisfying although as expected cred-
ible intervals are wider and it takes longer for accuracy
to be acceptable (figure 4). When 25 per cent of cases in
the community and in hospitals are detected, precision
of estimates starts to break down (electronic sup-
plementary material, figure S1). Although estimates of
transmission rates in the community and the hospital
are not strongly affected by under-reporting in those
settings, this is not true of estimates of transmission
rates in small closed settings such as households
(electronic supplementary material, figure S2).
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The method also allows disaggregated monitoring of
the reproduction number and the number of cases
infected in different settings (figure 5).

8. DISCUSSION

In this paper, we have presented strategies to tackle
some of the challenges associated with the estimation
of transmission characteristics of infectious diseases
and the risk factors affecting transmission patterns.
The dependency that is typically observed in out-
break data (i.e. the risk of infection for an individual
depends on the infection status of other individuals)
can potentially lead to long computational times. We
showed that if risk factors are discretized, the inferen-
tial problem can be simplified to the analysis of (i) a
dataset on cases only and (ii) a pre-compiled summary
table on interactions between individuals of the popu-
lation and cases. In the FMD application,
discretization reduced the computational time from
few weeks to few minutes with no change in the esti-
mates of the transmission kernel. It is likely that with
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substantial effort and parallel programming, we could
have reduced the computation time of brute force
approach by one or two orders of magnitude. Even
o, it seems unlikely that computational times could
have gone much below few days. This has to be com-
pared with the few minutes needed to run our
algorithms on the FMD dataset. For small datasets,
discretization may provide no computational gain if it
takes longer to explore the set W of transmission risk
factors than to sum over the pairs {case i, individual
j}. Discretization may be difficult to implement on
particularly complex transmission models [19,23] in
which case brute force calculation of the likelihood
may be needed.

We presented two strategies to perform parameter
estimation and tree reconstruction in a coherent way.
The first one is a sequential approach that we used to
analyse data from an influenza school outbreak [7].
Here, we implemented an alternative strategy where
transmission parameters and the transmission tree are
estimated simultaneously. There are pros and cons for
each of those strategies. A nice feature of simultaneous
inference is that the information on the transmission
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tree can sometimes lead to very simple and fast maximi-
zation routines in the frequentist setting (see appendix
A) and to very good mixing in the MCMC chains in
the Bayesian setting. However, for small datasets, we
sometimes observed convergence problems in the Baye-
sian implementation of simultaneous inference. For
example, let assume that there are two types A and B
of individuals and that at iteration 4 of the MCMC, by
chance, all the source cases in the transmission tree are
of type A. If that happens, the chain may then be
stuck at a local maximum where the infectivity of cases
of type B is very close to 0. The EM algorithm does
not suffer from that problem on small datasets; but has
the disadvantage that it cannot be used when dates of
infection are missing. The sequential Bayesian approach
presented in Cauchemez et al. [7] may therefore be the
most robust strategy, as it can be used in small datasets
and when dates of infection are missing; but it requires
extra work to tune the variance of the Metropolis-
Hastings proposals to ensure satisfactory mixing.

For situations when the dates of infection are
unknown, we presented models which assumed that

J. R. Soc. Interface (2012)

infectivity depends on the time elapsed since symptom
onset, and is independent of the time of infection. This
assumption reduces the computational burden since it
implies that the infection hazard an individual is
exposed to solely depends on measured quantities plus
the parameters of the model, rather than on the unob-
served days of infection of other cases. In practice,
assumption H1 seems acceptable for a relatively wide
range of diseases since infectivity is often triggered or
influenced by symptoms. However, where the assump-
tion is invalid, more computationally intensive
methods accounting for the unobserved times of
infection become necessary [23].

In the simulation study, we considered an epidemic
for which it would be possible to detect and identify a
substantial proportion of cases; this would therefore
be more applicable to a SARS-like scenario rather
than pandemic influenza. The simulation study
showed that even in situations where under-reporting
is substantial (e.g. 50%), it would still be possible to
obtain informative estimates of key characteristics.
We found that estimates of the transmission rate in
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the community and in the hospital were relatively
robust to under-reporting in those settings. This can
be explained by the fact that in a large population,
the exponential growth rate of the epidemic is not
affected by under-reporting. But estimates of trans-
mission rates in small social units such as households
were—as might be expected—strongly affected by
under-ascertainment of cases. Estimates of relative
infectivity were particularly sensitive to under-
reporting, with large variance and sometimes important
bias. Estimating relative infectivity is in general quite
challenging because it requires that one can compare
the offspring of one group of individuals (e.g. adults)
with that of another group (e.g. children) and this
becomes very difficult as under-reporting increases. It
is likely that estimates would be less robust to under-
reporting, if reporting rates changed over time, as
probably happens in real epidemics.

Here, we have presented relatively simple approaches
to reduce computational burden in the estimation of
transmission parameters and to integrate parameter
estimation and tree reconstruction in a coherent way.
However, the analysis of outbreak data is subject to
many other challenges. For example, it may be difficult
to infer which parametric distribution should be used
for the infectivity profile and the incubation period;
data augmentation strategies may fail in a context
when data are not missing at random or when there
are false-positives or false-negatives [23]. A particular
challenge in outbreak data is that they are rarely infor-
mative about the incubation period of the disease. In
the simulations study, for example, we made the
assumption that the distribution of the incubation
period of the disease was known. If it was not the
case, one would require extra data to estimate it. For
example, in the past, data from outbreaks in an aero-
plane [24] or in a bus [25] were used to estimate the
incubation period of influenza.

A key practical challenge to implement the methods
presented here in real time is the rapid collection and
digitization of sufficiently detailed epidemiological
data. However, recent experience demonstrates that it
is possible to collect very detailed epidemiological
data even during large outbreaks [10,13-15,25,26].
Cleaning and processing those data so that they are
ready for analysis close to real-time remain a huge chal-
lenge, but the recent examples of the 2001 FMD
outbreak in the UK [13,14], the 2003 SARS epidemic
[15,26] and the 2009 HIN1 pandemic [25] show that
this is increasingly feasible. However, reporting delays
should always be expected and it will be important to
account for those delays in future developments of the
statistical method presented here.

Last, a key limit on the more widespread use of the
type of methods presented in this paper is the relatively
high technical hurdle to implement them, given there is
currently no user-friendly statistical software package
that allows easy implementation of this type of analysis.
Developing such tools is therefore a priority.

We thank the MRC Methodology Programme, the NIGMS
MIDAS initiative, the EU FP7 EMPERIE consortium and
Research Council UK for research funding.
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APPENDIX A

A.1. Link between the continuous and
the discrete time transmission
models

We explain here the link between the continuous time
and discrete time transmission models. At any (con-
tinuous) time point « during day ¢ (i.e. u € [tt+ 1)),
the instantaneous hazard of infection exerted on
individual j is
A(u) =Ai(t) fort<u<t+1,

where A;(t) is defined in the main text. So, we make
the assumption that the instantaneous hazard of infec-
tion is a step function with daily steps. Conditional on
the fact that individual j has not been infected up to
day t, the probability that individual j is infected on
day t is equal to

1 — exp (- Jm )\;‘(u)du> =1—exp ( - )\j(t)).

u=t

In the continuous time model, conditional on
the (continuous) time of infection u; of case j with
u; € [t; t;+ 1), the probability that case ¢ is the case
source is:

_ Ay(wl®)  A(40)
Dkt M (WO) D < Ari(t]O)

And we note that this probability is constant for
Uj (S [tj; tj+ 1)

Conditional on the day ¢ of infection, the
probability that case i is the case source given in
equation (4.1) is:

Pii(1]0)

1
pest10) = | (@) P(ulb)d
and
Ay (H1@) [
pimi(t;]0) = amchir J P(uj|t;)du;
N Zk:tk<tj Ai—i(4]0) w=t; T
Ainj(t10)

ey, M (510)

A.2. Simplified routines for relative risks in a
context of small forces of infection

Let consider the common situation where

— we are interested in relative risks (i.e. comparison
with a reference group). For example, the
population is partitioned in Cj groups {vf, ..., v"C}
on the basis of risk factor k£ so that the
multiplicative term associated with risk factor & in
equation (2.4) is:

kLo Ofn if m < Gy,

Bk(vm’ o ) - { 1 if m = Ck

— the force of infection exerted on individuals is
relatively small so that the log-likelihood simplifies
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to equation (4.4):
Lo~ Y N, log(B(z: 0)) — M.B(z: 6)}.

€V

For the conditional maximization of the likelihood
with respect to 6% in the ECM algorithm (box 1), the
log-likelihood can be re-written:

N, | log(6")

{zE€EWzb=vk }

Lc’ftiA+

Bi(z; ©) 0

- Z MT m?
{i=1,....K;i#k}

{z€ Wiak=vk }

where A is a term that does not depend on 6" . So, the
maximum for parameter 6° conditional on other
parameters is simply:

ék - (Z{xeq’;mk:v’%} NI)
" (Z{mé‘l’;mk:v’;]} M, H{i:l,...,K;i#k} BZ(‘T7 @) .

In the Bayesian setting, if we assume that parameter
" has a gamma prior Ia,b), a Gibbs sampler update
[1] for parameter 6% is possible in the MCMC with:

0 ~T|a+ N,, b+

m
{z€W;zb=vk }

{z€EW;ab=vk, {i=1,...K;i#k}

A.3. Derivation of probabilities P;(t)

Let U;={t; t,< t} and S;= {s; t,< t}, respectively,
denote the dates of infection and of symptoms onset
of cases infected before day t. Hypothesis H1 implies
that:

P(t; = t|U;, Si) = P(t; = tS),

so that one only needs the sequence of symptom onset
dates to reconstruct the risk individual 7 was exposed to

P(sj, t; = t[S;) = P(slt;) P(t; = t]S)

and

P(tj = t|Sj, St) = f(87|t) <1 — exp<z /\Pj(t|si)>>

<t

-1
exp| — Z Z)\iﬂ‘(msi)

{i:t; <t} d=t;

Given {s;, S;}, the probability that case j is infected
on day t is therefore:
P(s), tj = 1[5})

pi(t) = P(t; = 1ls;, 5y) = S Pls b —uS)
u<s; 70 %
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