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A d’Alembert-based solution of forced wave motion with internal and boundary damping is

presented with the specific intention of investigating the transient response. The dynamic boundary

condition is a convenient method to model the absorption and reflection effects of an interface

without considering coupled PDE’s. Problems with boundary condition of the form @w
@z þ ~a @w

@t ¼ 0

are not self-adjoint which greatly complicates solution by spectral analysis. However, exact

solutions are found with d’Alembert’s method. Solutions are also derived for a time-harmonically

forced problem with internal damping and are used to investigate the effect of ultrasound in a

bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the

solution simplifies the analysis of acoustic field problems. VC 2012 American Institute of Physics.

[doi:10.1063/1.3674316]

I. INTRODUCTION

Acoustics are widely used for measurement or mechani-

cal stimulation in medicine, non-destructive testing, refining

processes, chemical reactors and many other applications.

The utility of ultrasound (US) as an imaging tool has greatly

impacted the field of diagnostic imaging1–4 and the develop-

ment of novel sophisticated imaging modalities continue to

enhance the role of ultrasound in diagnosis. Applications of

ultrasound are not restricted to imaging, but also find exten-

sive usage in therapeutic applications as in physiotherapy5

and the use of high-amplitude acoustic shock wave to disin-

tegrate kidney stones (lithotripsy).6 Emerging applications of

ultrasound include the use of high intensity focused ultra-

sound in the non-invasive treatment of tumors.6–8 More

research is in progress to fully understand and develop the

use of ultrasound in the delivery of drugs and genetic mate-

rial, thrombolysis and tumor therapy.9,10

The response of biological tissue to US exposure

depends on the location, function as well as on the acoustic

and biological properties of the exposed tissue.10,11 A wide

variety of biological ultrasound effects have been docu-

mented both in vivo and in vitro.10,12–21 Particularly, studies

in the last ten years have shown that cells maintained in

in vitro cultures can be stimulated by ultrasound15–18,22 and

this feature has been exploited to build bioprocessing sys-

tems that aim to generate tissue engineered cellular

constructs.

Mathematical models of varying complexity have been

used to simulate the different processes.23 Although this pa-

per focuses on acoustic waves specifically, the theory applies

to all physical phenomena described by the one-dimensional

linear wave equation. Propagation of waves through different

media usually requires the solution of coupled partial differ-

ential equations (PDE’s). It is a simple exercise to calculate

the steady-state response of a system forced by a harmonic

function (that is, where the time-dependence is of the form

ejxt, thus transforming the wave equation into the Helmholtz

equation24). However, we are specifically interested in the

transient acoustic response to assess the effects of pulsed

ultrasound, or continuous ultrasound with dynamic fre-

quency and/or amplitude modulation. Calculating the tran-

sient response to arbitrary forcing functions is much more

difficult and one must usually resort to spectral or numerical

methods. The dynamic boundary causes the partial differen-

tial equation to be nonselfadjoint. Consequently, the eigen-

functions required by the spectral analysis will not be

orthogonal and may indeed form an ill-conditioned basis.25

This reduces (and in special cases, eliminates) the ability of

spectral methods to describe wave motion.

Instead, we present an analytical method for solving the

one dimensional linear wave equation by modeling the

effects of absorption and reflection at the media interfaces

using a dynamic boundary condition. Van Rensburg et al.25

has shown that exact solutions are found with d’Alembert’s

method. The paper by Van Rensburg et al.25 is unique in its

application of the d’Alembert method on a finite domain.

We extend the method to account for forcing and internal

damping. Finally, the solution is applied to ultrasonic waves

in a bioreactor for the purposes of tissue engineering.

II. MATHEMATICAL MODEL

A. Justification of the dynamic boundary condition

In this section, we present the validity and physical

interpretation of the dynamic boundary condition used to

account for the absorption and reflection of acoustic waves

at a media interface. The acoustic wave equation in inviscid

fluids may be approximated by the linearization of the conti-

nuity (Eq. (1)) and momentum balance (Eq. (2)) equations as

well as the compressibility equation of state (Eq. (3)):24

@q
@t
þ q0r � w!¼ 0; (1)
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q0

@w!
@t
þrp ¼ 0; (2)

p ¼ K
q
q0

: (3)

In the linearization, q and p are the acoustic density and pres-

sure variations respectively, such that pabs ¼ pþ p0 (simi-

larly for pabs). The velocity is given by the vector w! and the

bulk modulus by K. We can substitute Eq. (3) in Eq. (1),

take the gradient of Eq. (1) and the time derivative of Eq. (2)

and rearrange to obtain Eq. (4):

@2 w!
@t2
� K

q
r2 w!¼ @

2 w!
@t2
� c2r2 w!¼ 0: (4)

Equation (4) is the linear wave equation. In one dimension,

the problem is solvable using d’Alembert’s method, which

states that the solution has the form given by Eq. (5):

w z; tð Þ ¼ wR z� ctð Þ þ wL zþ ctð Þ; (5)

where wR nð Þ and wL nð Þ are arbitrary functions describing the

profile of the right- and left-traveling wave, respectively.

The one-dimensional form of the wave equation is applicable

to waves traveling down a solid bar, vibrating strings, etc. In

acoustics, the one-dimensional wave equation is appropriate

when evaluating plane waves. It is common practice to rep-

resent complex waves (such as the beams generated by trans-

ducers) as an infinite series of plane waves.26 The problem is

solved for each individual plane wave, and the beam is

reconstructed using these solutions.

Next, we calculate the first partial derivatives with

respect to time and position, Eqs. (6) and (7):

@w

@t
¼ �c w0R z� ctð Þ � w0L zþ ctð Þ

� �
; (6)

@w

@z
¼ w0R z� ctð Þ þ w0L zþ ctð Þ: (7)

The prime indicates the derivative w.r.t the argument,

w0 nð Þ ¼ dw
dn. The pressure is given by rearranging Eq. (2) to

give Eq. (8):

p ¼ �q0

ð
@w

@t
dz ¼ q0c

ð
w0R z� ctð Þ � w0L zþ ctð Þ
� �

dz

¼ Z wR z� ctð Þ � wL zþ ctð Þð Þ: (8)

The quantity Z ¼ q0c is known as the acoustic impedance. If

the right-traveling wave impinges on a surface at z ¼ L, it

will create a (left-traveling) reflected wave and a (right-trav-

eling) transmitted wave. The boundary conditions are conti-

nuity of pressure (Eq. (9)) and velocity (Eq. (10)):

wR L� c1tð Þ þ wL Lþ c1tð Þ ¼ wT L� c2tð Þ; (9)

Z1 wR L� c1tð Þ � wL Lþ c1tð Þð Þ ¼ Z2wT L� c2tð Þ: (10)

The subscripts 1 and 2 refer to the first and second medium

and wT refers to the transmitted wave. We can combine Eqs.

(9) and (10) to eliminate wT as shown in Eq. (11) (we drop

the arguments L� c1tð Þ and Lþ c1tð Þ for brevity):

wR þ wLð Þ � Z1

Z2

wR � wLð Þ ¼ 0: (11)

Since Eq. (11) must be true for z ¼ L and all times t > 0, we

take the time derivative of Eq. (11) to get Eq. (12):

@

@t
wR þ wLð Þ � Z1

Z2

wR � wLð Þ
� �

¼ 0

) w0R � w0L
� �

� Z1

Z2

w0R þ w0L
� �

¼ 0: (12)

Substituting Eq. (6) and Eq. (7) into Eq. (12) gives the

dynamic boundary condition Eq. (13):

~a
@w

@t
þ @w

@z
¼ 0; ~a ¼ Z2=c1Z1: (13)

If the equations are rendered dimensionless by u ¼ w=c1,

s ¼ tc1=L, and x ¼ z=L, then we have Eq. (14):

a
@u

@s
þ @u

@x
¼ 0; a ¼ Z2=Z1: (14)

In this form, a is simply the ratio of acoustic impedances for

fluids 1 and 2.

B. D’Alembert solution for an arbitrary forcing
function and no internal damping

It is important to note that the procedure described in

this section can be used to find the solution to the problem

with dynamic boundaries on either side of the domain. It is

even possible to calculate the response of multiple acoustic

layers to an arbitrary input by coupling the dynamic bounda-

ries. For the examples to follow, we will only consider the

simplest case where no waves are entering the domain from

the dynamic boundary, which is true when the second me-

dium is sound-absorbing or semi-infinite. We seek the tran-

sient response of a dimensionless, linear acoustic wave as

described by Eq. (15):

@2u

@s2
� @

2u

@x2
¼ 0 0 < x < 1; s > 0

u x; 0ð Þ ¼ f xð Þ
@u

@s
x; 0ð Þ ¼ v xð Þ

u 0; sð Þ ¼ / sð Þ

a
@u

@t
1; sð Þ þ @u

@x
1; sð Þ ¼ 0:

(15)

Define the functions g1 xð Þ and g2 xð Þ as extensions of 1
2

f xð Þ
and 1

2
h xð Þ, respectively, where h0 xð Þ ¼ v xð Þ, on the infinite

domain x 2 �1;1ð Þ. The solution to the problem posed in

Eq. (15) is given by Eq. (16):

u x; sð Þ ¼ g1 xþ sð Þ þ g1 x� sð Þ þ g2 xþ sð Þ� g2 x� sð Þ;
(16)

Substituting Eq. (16) into the boundary condition at x ¼ 0

we can obtain recursive formulas for the extension functions,

shown in Eqs. (17) and (18):
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u 0; sð Þ ¼ g1 sð Þ þ g1 �sð Þ þ g2 sð Þ � g2 �sð Þ ¼ / sð Þ;

Thus, let:

g1 �sð Þ ¼ / sð Þ � g1 sð Þ; (17)

and

g2 sð Þ ¼ g2 �sð Þ: (18)

Similarly, if we apply Eq. (16) at x ¼ 1, we obtain the recur-

sive formulas given by Eqs. (19) and (20):

ux 1; sð Þ þ aus 1; sð Þ ¼
g01 1þ sð Þ þ g01 1� sð Þ þ g02 1þ sð Þ � g02 1� sð Þ
� �
þa g01 1þ sð Þ � g01 1� sð Þ þ g02 1þ sð Þ þ g02 1� sð Þ
� �

 !
¼ 0;

which leads to

g01 1þ sð Þ ¼ �ag01 1� sð Þ; (19)

and

g02 1þ sð Þ ¼ ag02 1� sð Þ: (20)

Note that the prime indicates differentiation. The constant

a ¼ 1�a
1þa ¼

z1�z2

z1þz2
is the reflection coefficient. Furthermore,

g1 xð Þ ¼ 1
2

f xð Þ and g2 xð Þ ¼ 1
2

h xð Þ are defined on x 2 0; 1½ � by

the initial conditions. Since f xð Þ and v xð Þ are defined on the

interval x 2 0; 1½ �, Eqs. (17)–(20) can be used to extend the

functions to x < 0 and x > 1 and still satisfy the boundary

conditions. The method is illustrated in Fig. 1.

Let x ¼ k þ �, where k 2 Z and � 2 �1; 1ð Þ � R (e.g.,

if x ¼ �2:43, then k ¼ �2 and � ¼ �0:43). Equations

(17)–(20) provides a recursive method for determining

g1 xð Þ ¼ g1 kþ�ð Þ and g2 xð Þ ¼ g2 kþ�ð Þ. By iteratively apply-

ing Eqs. (17)–(20) and through extensive algebraic manipu-

lation, we arrive at the extension functions as given by Eqs.

(21) and (22):

g1 xð Þ ¼

� x

xj j
Xkj j�1

2

n¼H xð Þ
�að Þn/ xj j � 2nð Þ½ � þ �að Þ

kj jþ1

2

2
f 1� x� kj jð Þ

2
4

3
5 k is odd

�x

xj j
Xkj j

2

n¼H xð Þ
�að Þn/ xj j � 2nð Þ½ � � �að Þ

kj j
2

2
f x� kj jð Þ

2
4

3
5 k is even

8>>>>>><
>>>>>>:

; (21)

g2 xð Þ ¼
�að Þ

kj jþ1
2

2
h 1� x� kj jð Þ k is odd

�að Þ
kj j
2

2
h x� kj jð Þ k is even

8<
: : (22)

Note that the lower bound of summation is given by the Heav-

iside function H xð Þ ¼ 0 if x < 0 and H xð Þ ¼ 1 if x � 0. The

implications of this method are illustrated in Fig. 2 below.

The s-x plane is divided into regions on Fig. 2. In region

a, the solution depends only on the initial conditions u x; 0ð Þ
and us x; 0ð Þ. In region b, the effect of the forcing function

appears, which corresponds mathematically to g1 xð Þ and

g2 xð Þ on x 2 �1; 0½ �. In region c, the initial wave is reflected,

corresponding to g1 xð Þ and g2 xð Þ on x 2 1; 2½ �. In region d,

both the reflected wave and the forcing function contribute.

For example, in region d, where xþ sð Þ 2 1; 2½ � and

x� sð Þ 2 �1; 0½ �, the solution has the form given by Eq. (23):

u x; sð Þ ¼ g1 xþ sð Þ þ g1 x� sð Þ þ g2 xþ sð Þ� g2 x� sð Þ

¼ / s� xð Þ þ a

2
f 2� xþ sð Þð Þ � h 2� xþ sð Þð Þð Þ

� 1

2
f s� xð Þ þ h s� xð Þð Þ: (23)

The first term in Eq. (23) is the forcing function. The second

term presents the two waves that have been reflected at the

dynamic boundary (note the reflection coefficient a).

FIG. 1. (Color online) Diagram showing

the dependency of g1 xð Þ on the forcing

function and initial condition. (a)

u 0; sð Þ ¼ / sð Þ on s 2 0; 1½ � depends on

g1 xð Þ for x 2 �1; 1ð Þ. However, since

g1 xð Þ ¼ 1
2

f xð Þ on x 2 0; 1ð Þ is defined,

one can calculate g1 xð Þ on x 2 �1; 0ð Þ
using Eq. (17). Similarly, Eq. (19) can

be used to calculate g1 xð Þ on x 2 1; 2ð Þ.
(b) This method is then repeated to cal-

culate g1 xð Þ on x 2 �2;�1ð Þ [ 2; 3ð Þ.
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Similarly, the last term represents the waves that have been

reflected of the left hand boundary.

The extension functions given by Eqs. (21) and (22)

simplify if u x; 0ð Þ ¼ us x; 0ð Þ ¼ 0 (in practice, the medium is

usually initially at rest). The initial condition terms can be

neglected completely and Eq. (21) reduces to Eq. (24), while

Eq. (22) is equal to zero:

g1 xð Þ

¼� x

xj j / xj jð ÞH �xð Þþ
X1
n¼1

�að Þn/ xj j�2nð ÞH xj j�2nð Þ½ �
 !

:

(24)

Substituting Eq. (24) into Eq. (16), the solution is given by

Eq. (25):

u x; sð Þ ¼ / s� xð ÞH s� xð Þ þ
X1
n¼1

�að Þn

�
/ s� 2nþ xð Þð ÞH s� 2nþ xð Þð Þ
�/ s� 2n� xð Þð ÞH s� 2n� xð Þð Þ

� 	
: (25)

To summarize this section, the solution of Eq. (15) is given

by Eqs. (21) and (22). The solution can be further simplified

if u x; 0ð Þ ¼ us x; 0ð Þ ¼ 0, and this solution is given by

Eq. (25).

C. D’Alembert solution for a time-harmonic forcing
function and internal damping

Damping is introduced by adding a third, mixed deriva-

tive term to the linear wave equation, as shown by Eq. (26),

which is known as the linearized Kuznetsov equation:27

@2u

@s2
� @

2u

@x2
¼ b

@3u

@x2@t
: (26)

The dimensionless parameter b ¼ 4
3
� þ lB

q0
þ c� 1ð Þj


 �
=cL

is the diffusivity of sound,27 with �;lB, and j being the kine-

matic viscosity, bulk viscosity and thermal diffusivity

respectively and c ¼ cP=cV is the adiabatic index. The mixed

derivative term uxxs describes the internal damping and the

change in the propagation speed due to damping, which

depends on the spectrum of the wave. Here we present ana-

lytical solutions for the special case where the forcing func-

tion is given by / sð Þ ¼ ejxs and the initial conditions are

zero, i.e., u x; 0ð Þ ¼ us x; 0ð Þ ¼ 0: To accommodate internal

damping, we replace / x; sð Þ in Eq. (25) with

/� x; sð Þ ¼ ej xs�kxð Þ, where k 2 C.

The solution consists of two parts corresponding to the

right- and left-traveling waves (uR and uL, respectively, Eq.

(27)). The first term in Eq. (27) represents a wave emanating

from x ¼ 0 that has not been reflected at the dynamic bound-

ary x ¼ 1. The first term in the summation represents waves

that have traveled a distance of 2nþ x, while the second

term represents waves that have traveled a distance of

2n� 1ð Þ þ 1� xð Þ ¼ 2n� x:

uðx;sÞ¼
 

e�jkxH


s�Realfkg

x
x
�

þ
X1
n¼1

ð�aÞn
"

e�jkð2nþxÞH


s�Realfkg

x ð2nþxÞ
�

�e�jkð2n�xÞH


s�Realfkg

x ð2n�xÞÞ

#!
ejxt:

(27)

The physical wave is given by the real part of Eq. (27). Each

term in Eq. (27) must satisfy the Kuznetsov equation. Upon

FIG. 2. (Color online) The s-x plane, divided into regions determined by its

dependency on the function f xð Þ.

FIG. 3. (Color online) a ¼ 1; b ¼ 10.

No reflection occurs at the interface

when a ¼ 1. The slight decrease in the

wave amplitude is purely due to

damping.
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substitution of any one of these terms into the differential

equation and separating real and imaginary terms, one can

solve for the complex wave number k using Eq. (28):

k ¼ x

 
bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ð1þ ðbxÞ2Þðð1þ ðbxÞ2Þ
1
2 � 1ÞÞ

q

� jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ð1þ ðbxÞ2ÞÞ

q
!
: (28)

D. Extension to an arbitrary forcing function and
internal damping

The solution above is specific to a time-harmonic forc-

ing function. However, any function on s 2 �1;1ð Þ can be

represented using a Fourier integral f sð Þ ¼
Ð1
�1 f̂ xð Þejxsdx,

hence the solution can be represented by a similar integral

form, u x; sð Þ ¼
Ð1
�1 f̂ xð Þû x; s; xð Þdx, where û x; s; xð Þ is the

solution to the system forced by / sð Þ ¼ ejxs given by

Eq. (27).

III. RESULTS

In Figs. 3–6 we present solutions, given by Eq. (27) for

various values of a and b; the forcing function is

/ sð Þ ¼ sin 2psð Þ. For the special case a ¼ 1, the wave is

completely absorbed at the dynamic boundary as shown in

Fig. 3. The internal damping coefficient is extremely large in

this case. The value of b has a strong effect on the wave

speed and the amount of damping. When a is large, the

right-hand side boundary approximates a fixed boundary

condition (u 1; sð Þ ¼ 0), the result is shown in Fig. 4. Fig-

ures 3 and 4 show the case where b is large, corresponding

to a high wave speed and reasonably high damping. The

high wave speed can clearly be seen from the contour graphs

in Figs. 3 and 4. Maximum damping occurs if kb ¼ 1, or

b ¼ 1=2p in this case—the results are shown in Fig. 5, where

FIG. 4. (Color online) a ¼ 100; b ¼ 10.

The high value of a forces the boundary

at x ¼ 1 to be nearly constant. The wave

has a high speed and minimal damping.

FIG. 5. (Color online) a ¼ 0:01; b
¼ 1=2p. When a is small, the right-hand

boundary is free, causing the reflected

wave to enforce the oncoming wave.

Damping is maximized when kb ¼ 1.

The wave speed has decreased,

approaching the normal speed of sound.
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the wave amplitude is reduced by nearly 90% across the

length of the medium. Further decreasing b results in a

decrease in damping and the wave speed approaches the nor-

mal speed of sound, as shown in Fig. 6. For small values of

a, conditions of a free boundary are approached. In Figs. 5

and 6 the results are shown for a ¼ 0:01, and b ¼ 1
2p and

b ¼ 0:01, respectively.

A. Applications

1. Transient response

As discussed in Sec. I, ultrasound may be used to stimu-

late cells for tissue engineering, and the various ultrasonic

regimes used for stimulation requires analysis of the tran-

sient phase of the acoustic response. In Table I we list typical

parameter values for ultrasound stimulation of cells. The

forcing function is sinusoidal and has the form

/ tð Þ ¼ A sin xtð Þ.
Using these parameters, the velocity u and the pressure

fluctuations ~P ¼ P� P0 have been calculated. In Fig. 7 the

pressure fluctuations are shown for the first 75 ls. At the

dynamic boundary (x ¼ 1), four distinct phases of the pres-

sure are noted. These phases correspond to the time it takes a

traveling wave to reach the dynamic boundary, t� ¼ L
c. Ini-

tially, the pressure is equal to zero when t < t1 ¼ t�. After

the first wave has reflected from the boundary, it interferes

destructively with the incoming wave. The destructive inter-

ference is clearly seen in Fig. 7(b) as a lighter triangle when

10 ls < t < 20 ls.

The pressure amplitude remains around P1 	 13:8 kPa

for time t1 < t < t2 ¼ 3t�. When t ¼ 3t�, the wave that has

been reflected from the dynamic boundary has been reflected

off the forcing boundary again and has reached the dynamic

boundary a second time. This adds to the pressure amplitude

and P2 	 18:5 kPa. This happens a third time, when

t < t3 ¼ 5t� and the pressure amplitude is increases to

P3 	 20:0 kPa. After this final increase, subsequent reflec-

tions have little effect and the solution reaches a steady state.

Pressures waves with an amplitude of 20:0 kPa produce aver-

age intensities of 0.027 W/cm2.

The example above clearly demonstrates the extended

d’Alembert’s method’s value in predicting the transient

response to ultrasonic stimulation. For the specific parame-

ters given in Table I, the acoustic field approached its steady

state response within t ¼ 5t�. This information is useful

when using ultrasound for mechanical stimulation of cells

using either pulsed or continuously modulated ultrasound

and may potentially be applied to ultrasonic imaging as well.

2. Energy and energy dissipation

The dimensionless energy in the system at any moment

in time is given by Eq. (29):25

ET tð Þ ¼ 1

2

ð1

0

utð Þ2þ uxð Þ2dx

� 	
: (29)

The energy that is transferred to the system by the actuator

EA tð Þ equals the total energy in the system ET tð Þ plus the

energy that is dissipated at the boundary EB tð Þ and the

energy that is dissipated into thermal energy Eg tð Þ. Using

this relation, we obtain Eq. (30):

EA tð Þ � EB tð Þ � EQ tð Þ ¼ 1

2

ð1

0

utð Þ2þ uxð Þ2dx

� 	
: (30)

Since the system is non-adiabatic, the temperature rise in the

medium is less than the amount of energy dissipated. There-

fore, a system that is perfectly insulated to thermal energy

FIG. 6. (Color online) a ¼ 0:01; b
¼ 0:001. For small values of b, damping

is negligible and the wave speed is equal

to the normal speed of sound. Strong in-

terference patterns caused by the free

boundary are clearly visible from the

contour graph.

TABLE I. Parameters for ultrasound stimulation of cells.

Parameter Value Parameter Value

A 0:1 lm q 1000 kg=m3

x 5 MHz c 1484 m=s

L 1:4 cm l 8:4� 10�4 Pa � s
a 2:5 b 1:12� 10�5 m2=s
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losses will provide a conservative estimate (upper bound) on

the temperature rise in the medium.

In Figs. 8(a) and 8(b), the energy plots are shown for

a ¼ 2:5 and a ¼ 25, respectively. In each figure three curves

are shown:

• Total energy in the system with no dissipation, ET ¼ EA

(solid curve);
• Total energy in the system with losses due to wall damp-

ing, ET ¼ EA � EB (dash-dot curve);

FIG. 7. (Color online) (a) The pressure fluctuations at the dynamic boundary (z ¼ 1:4 cm) is shown over a time period of 75ls. Four different phases, each

with increasing average pressure amplitude, can clearly be seen. Each phase corresponds to the time it takes a reflected wave to reach the boundary

t1 ¼ L
c ; t2 ¼ 3L

c ; t3 ¼ 5L
c

�
and t4 ¼ 7L

c

�
. (b) The contour graph clearly shows the effect of the destructive interference of the reflected wave in the regions

t1 < t < t2 and t2 < t < t3. When t > t3, the pressure amplitude reaches a steady state.

FIG. 8. Total energy in the system (scaled). Three cases are presented: forcing only with b ¼ 0, and a!1 (i.e. a ¼ �1) shown as the solid line, only wall

damping (b ¼ 0), shown as the dash-dot line and the dash-line presents the case of wall damping and internal damping (b ¼ 5� 10�5). (a) When a ¼ 2:5,

wall damping is the primary method of energy dissipation. (b) Much less energy is dissipated by the dynamic boundary when a ¼ 25.
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• Total energy in the system with wall and internal damping,

ET ¼ EA � EB � EQ (dash curve).

The properties of Table I have been used. Significantly

more energy is absorbed at the wall when a ¼ 2:5; this result

is evident from the difference between the total energy curve

and the wall damping curve in Fig. 8(a) compared to the dif-

ference for Fig. 8(b). Also, the total energy with wall damping

approaches a plateau for a ¼ 2:5. A relatively small amount

of energy (difference between the two lower curves) is dissi-

pated as thermal energy. When the wall damping is reduced,

i.e., a ¼ 25, the total energy with damping continues to

increase over time, albeit at a reduced rate compared to the

undamped case. The amount of energy that is dissipated as

thermal energy, is much higher than for the case a ¼ 2:5.

If the actuator is powered for 50 s, then the total energy

in the system can be estimated from extrapolating the curves

shown in Figs. 8(a) and 8(b). The temperature rise after 50 s

is calculated from the difference between the extrapolated

values total energy with wall damping and total energy with

wall and internal damping. In the case of a ¼ 25 and

b ¼ 5� 10�5, the temperature rise is about 21 
C. It needs

to be pointed out that the temperature rise does not account

for heat losses at the lateral walls of the acoustic chamber.

Further, the dissipated energy is calculated as thermal energy

of the water only and temperature rises of the chamber walls

are neglected. All of these omissions will lead to significant

lower temperature increases in practical situations. If a more

realistic value of b ¼ 5� 10�6 is used for the Kuznetsov

damping coefficient and a ¼ 25 then the temperature rise is

only 3 
C after 50 s.

IV. CONCLUSIONS

In summary, analytical solutions for a periodically

forced problem with internal and boundary damping have

been presented. If internal damping is negligible, the solution

is given by Eq. (25) for an arbitrary forcing function. The so-

lution given by Eq. (27) for a complex exponential forcing

function also accounts for internal damping. The analytical

solutions have the following advantageous:

• The model allows for the prediction of the transient

response of an inviscid fluid to initial conditions and arbi-

trary forcing functions at the boundary;
• The dynamic boundary eliminates the need to solve two

coupled PDE’s with jump-conditions at the interface to

determine the reflection and absorption effects;
• The model incorporates internal damping, which allows

application to a wide variety of problems;
• Since the solution is analytical, it is not computationally

intensive or error prone;
• The solution accurately captures the characteristics of the

nonselfadjoint problem, overcoming the short-comings of

spectral methods.

The model was used to investigate the effect of ultra-

sound on a tissue engineering bioreactor. The time to reach

steady state was determined, as well as the energy absorption

by the fluid and at the bioreactor wall. The concise form of

the solution simplifies further analysis of acoustic field

problems.
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