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A novel hierarchical quantitative trait locus (QTL) mapping
method using a polynomial growth function and a multiple-
QTL model (with no dependence in time) in a multitrait
framework is presented. The method considers a population-
based sample where individuals have been phenotyped
(over time) with respect to some dynamic trait and genotyped
at a given set of loci. A specific feature of the proposed
approach is that, instead of an average functional curve,
each individual has its own functional curve. Moreover, each
QTL can modify the dynamic characteristics of the trait value
of an individual through its influence on one or more growth
curve parameters. Apparent advantages of the approach
include: (1) assumption of time-independent QTL and
environmental effects, (2) alleviating the necessity for an

autoregressive covariance structure for residuals and (3) the
flexibility to use variable selection methods. As a by-product
of the method, heritabilities and genetic correlations can also
be estimated for individual growth curve parameters, which
are considered as latent traits. For selecting trait-associated
loci in the model, we use a modified version of the well-
known Bayesian adaptive shrinkage technique. We illustrate
our approach by analysing a sub sample of 500 individuals
from the simulated QTLMAS 2009 data set, as well as
simulation replicates and a real Scots pine (Pinus sylvestris)
data set, using temporal measurements of height as dynamic
trait of interest.
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Introduction

Several approaches to mapping quantitative trait loci
(QTLs) influencing dynamic traits (that is, traits, of
which expression changes over time) have been pro-
posed (see Wu and Lin, 2006 for a review). Even though
phenotypes measured at different time points may be
controlled by different sets of QTLs, the phenotypic
values over time points are generally highly correlated.
Thus, the repeated measurement framework has been
proposed for QTL analysis of trait measurements over
time (Lynch and Walsh, 1998). Alternatively, traits
measured at different time points can be treated as
separate traits and analysed jointly in a multitrait
framework. Here, the efficient parametrisation of multi-
ple trait framework in terms of covariance functions
provides a viable approach (Macgregor et al., 2005; Lund
et al., 2008). However, the most common practice is to
use some mathematical function to describe dynamic
trait behaviour and then map QTLs, which influence

this special function using single or multivariate QTL
mapping. For example, the logistic growth function
(Ma et al., 2002; Wu et al., 2002, 2003, 2004), as well as
polynomial functions (that is, multiple regression model)
(Gee et al., 2003), and Legendre polynomial (Yang et al.,
2006; Yang and Xu, 2007) have been proposed for this
purpose. The logistic growth function has been justified
biologically (West et al., 2001). As a criticism, regression
using logistic functions fit only growth trajectories that
are sigmoidal, that is, monotonically increasing function
of time (Yang and Xu, 2007). The Legendre and other
orthogonal polynomial fittings (for covariance function)
have also been criticised by Pletcher and Geyer (1999).
In general, the choice of function should be based on the
complexity of the trait trajectory. Even if several methods
have been proposed, most of the approaches are limited
to single or two-QTL model. Exceptions to this include
the methods of Yang and Xu (2007), Min et al., 2011, and
Heuven and Janss (2010).

Separate age-to-age analysis of QTL for growth has
been applied to address questions on QTL stability
across time in woody trees (Verhaegen et al., 1997;
Conner et al., 1998; Kaya et al., 1999; Lerceteau et al.,
2001). However, to our knowledge, Ma et al. (2004) is the
only study where functional QTL mapping has been
applied to study growth trajectories in a forest tree
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species. In their work, Ma et al. (2004) noted an increased
statistical power for QTL detection based on a functional
mapping method compared with the alternative QTL
time-point analysis.

Functional QTL mapping methods commonly model
average curve behaviour with time-specific QTL and
environmental effects (Yang and Xu, 2007 and Min et al.,
2011). Individual-specific variations in these methods are
described as deviations from the mean curve behaviour,
and these deviations are dependent at neighbouring time
points. Exceptions to this common theme are provided
by Gee et al. (2003) and Heuven and Janss (2010), where
all time-dependent behaviour is described with indivi-
dual-specific curve parameters, which allows hierarchi-
cal modeling of QTL effects. These two worlds
(hierarchical and non-hierarchical) are conceptually very
distinct from each another. In the parametrisation of Gee
et al. (2003), QTL effects are not time dependent and they
affect the shape of the curve rather than having specific
effect at particular time points. To describe the functional
curve over time, we consider here the approach of Gee
et al. (2003). As an improvement to their approach (as
well as to the approach of Heuven and Janss, 2010), we
formulate the whole problem as a single hierarchical
model. In our formulation, we simultaneously use
multitrait multiple-QTL model and model selection,
while estimating functional curve and other model
parameters in a Bayesian framework.

Model

Let us consider the population-based sample of indivi-
duals where the data sample has been phenotyped with
respect to some dynamic trait, and genotyped at a given
set of marker loci. Although this represents a typical
design in the population-based single-nucleotide poly-
morphism association studies, the proposed method is
directly applicable to a backcross and double haploids in
inbred lines, as well as offspring population resulting
from outbred line crosses. When handling missing
values, we ignore parental (linkage) information com-
pletely, so that markers are treated independently. This
also means that only marker positions are considered as
putative QTL positions. For alternatives, see the subsec-
tion dealing with Missing genotype data further on.

Phenotypic model over time points
For each individual i, let us assume that yi,t is the
phenotypic value measured at time point t, (t¼ 1,y,T).
We use the following regression model to describe the
phenotypic behaviour over time:

yi;t ¼ b0;i þ b1;iat;i þ b2;ia
2
t;i þ ei;t: ð1Þ

Here, bi¼ {b0,i,b1,i,b2,i} are the curve parameters for
individual i, and the errors ei,t are assumed to be
independent and normally distributed with mean zero
and variance s2

e common for all time points. Because the
curve parameters are different across individuals, we
pre-specify s2

e to improve parameter identifiability in
our hierarchical model (described below). Note that s2

e

describes how much measurements at each time-point
are allowed to deviate from individual-specific curve
(that is, the level of agreement between the data and the
growth function). The suitable value for s2

e will depend
on the type of the data. For example, for growth data,

we have used here s2
e¼ 0.1 constantly in our small

simulation examples and s2
e¼ 0.01 for real data analyses

and for QTLMAS 2009 data analysis (the selected value
of s2

e should not be too large as this may lead to all
the QTL variation being erroneously explained by the
residual error). The quantity at,i is the age of individual i
at timepoint t (in calendar time which can be expressed
as deviation from the mean age; see Gee et al., 2003).
For simplicity we consider common time points and
same age for all individuals so that at,i¼ t for time-points
t¼ 1,y,T, and all i.

Multiple trait QTL model
We treat the three curve parameters in bi as three latent
traits, and assume that, conditionally on genetic effects,
the curve parameters are a priori correlated with each
other. By making such an assumption, we can hierarchi-
cally fit a multitrait QTL model for the curve parameters
bi. For each individual i, let us assume that there are
p additively acting marker loci with genotypic values
xi,j, j¼ 1,y,p, coded as 0 or 1 for two homozygotes and
the 0.5 for the heterozygote. Given the marker effects
(B(k)¼ {B1(k),y,Bp(k)}, k¼ 0, 1, 2), each curve parameter
(bk,i, k¼ 0, 1, 2) is modelled as a linear combination
(weighted sum) of effects of genotypes xi,j at different
loci.

b0;i ¼ m
0
þ
Xp

j¼1

Ijð0ÞBjð0Þxi;j þAið0Þ: ð2Þ

b1;i ¼ m1 þ
Xp

j¼1

Ijð1ÞBjð1Þxi;j þ r10b0;i þAið1Þ: ð3Þ

b2;i ¼ m2 þ
Xp

j¼1

Ijð2ÞBjð2Þxi;j þ r20b0;i þ r21b1;i þAið2Þ: ð4Þ

Here, m¼ {m0,m1,m2} are the baseline parameters, and
Ai(k) are the residuals. Residuals Ai(k) are assumed
to be independent and identically normally distri-
buted with mean zero and variance s2

A(k) Different
residual variances are represented in the vector s2

A¼
{s2

A(0),s2
A(1),s2

A(2)}. The autoregressive terms r¼ {r10,r20,
and r21} are included in the model to take into account
between-trait residual dependencies so that actual resi-
duals can be assumed to be independent. Autoregressive
models are usually used to model covariances between
different time points in time series data. We use the
same principle here to model between trait covariances
(cf class D model of Bonney, 1986). Note that even if one-
directional dependence is visible in the model, two-way
dependence will be induced automatically as b0,i and b1,i

are model parameters rather than observed quantities in
the model. Although a model assuming multivariate
normally distributed residuals with unstructured covari-
ance matrix would have been a common way to model
this phenomenon, we decided to use this autoregressive
model on computational grounds.

In the above multiple trait QTL model, we use own
indicator variable for each locus and for each trait, Ij(k),
where k¼ 0,1 or 2. Although these indicators provide a
natural way to monitor posterior occupancy of QTLs, the
real reason for having them in the model is to improve
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heritability estimation as shown by Pikkuhookana and
Sillanpää (2009). For details, see the subsection dealing
with Heritabilities and genetic covariances/correlations.

Although not explicitly shown here, environmental
factors like block effects can be easily included as
covariates into the QTL model of each trait (2–4). In such
models, environmental factors can have different effects
on different curve characteristics. Alternatively, before
QTL analysis, one can try to first adjust phenotypic data
for (constant or time dependent) environmental factors.
This means that residuals of the preliminary analysis
are taken as phenotypes for consequtive QTL analysis.
However, this kind of adjustment is likely to pre-correct
the influence on the intercept (b0,i) only. In general, this
kind of pre-correction practice may have many problems
(see Martinez et al., 2005), which are likely to be more
severe for time-dependent covariates.

Hierarchical model
All the models (1–4) presented above are considered
simultaneously as parts of a larger hierarchical model.
Let us denote the phenotype and marker data as Y and X,
respectively. We denote the model parameters jointly as

y¼ {b1,y,bN,m,B(0),B(1),B(2),I(0),I(1),I(2),r,s2
A,t2

(0),t2
(1),t2

(2)}.
Note that this vector includes all the unknown para-
meters needed in models (1–4). The posterior distribution
P(y|X,Y) is proportional to the joint distribution P(X,Y,y)
of the data and parameters. This joint distribution can be
described as a product of a likelihood P(Y|y) and the
prior P(y|X), where the likelihood (with a pre-selected
value of se

2) is

PðYjyÞ ¼
YN
i¼1

YT
t¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

e

p expð� 1

2s2
e

ðyi;t � b0;i � b1;iat;i � b2;ia
2
t;iÞ

2Þ

ð5Þ
and the prior is

PðyjXÞ ¼
Y2

k¼0

YN
i¼1

Pðbk;ijbok;i;X; mk;BðkÞ; IðkÞ; r;s
2
AðkÞÞ�

ð6Þ

�
Y2

k¼0

PðmkÞPðs2
AðkÞÞ

Yp

j¼1

PðIjðkÞÞPðBjðkÞjt2
jkÞPðt2

jkÞ
h i2

4
3
5�

ð7Þ

�Pðr10ÞPðr20ÞPðr21Þ: ð8Þ
Here, the notation bok,i refers to all the preceding terms
in bi that appear before bk,i. For example, for b1,i, a
preceding term is b0,i. The functional forms of priors
P(bk,i|bok,i,X,mk,B(k),I(k),r,s2

A(k)) are normal densities of the
residuals of models (2–4) with mean zero and variance
s2
A(k) (see Sillanpää and Arjas, 1998). For the intercept,

this is

Pðb0;ijbo0;i;X; m0;Bð0Þ; Ið0Þ; r;s
2
Að0ÞÞ

¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Að0Þ

q expð� 1

2s2
Að0Þ
ðb0;i � m0 �

Xp

j¼1

Ijð0ÞBjð0Þxi;jÞ2Þ

ð9Þ

Each individual prior in P(s2
A(k)) is assumed to be

an Inverse-Gamma (0.001, 0.001) and each of P(mk),
P(r10),P(r20) and P(r21) to be N(0, 100). The Inverse-
Gamma distribution supports values in positive range
and the above normal distribution is rather flat. There-
fore, they present practical priors applicable for many
data sets without normalisation. The priors P(Ij(k)),
P(Bj(k)|tjk

2 ) and P(tjk
2 ) are covered in next section.

Model selection
Variable selection, selecting a specific set of trait loci
contributing to each of the curve parameters, is here
performed using the Bayesian adaptive shrinkage pre-
sented in Xu (2003). The adaptive shrinkage of Xu (2003)
was found to perform well in comparison with other
methods (O’Hara and Sillanpää, 2009). Following Xu
(2003), a hierarchical prior

PðBð0Þ; t2
ð0ÞÞ ¼ PðBð0Þjt2

ð0ÞÞPðt2
ð0ÞÞ ¼

Y
j

PðBjð0Þjt2
j0ÞPðt2

j0Þ
h i

is assumed for coefficients so that Bj(0) B N(0,t2
j0) and

P(t2
j0) p 1/t2

j0. It has been shown earlier that this
formulation is mathematically equivalent to assuming
Student’s t-distribution for Bj(0) (Yi and Xu, 2008), which
may induce a sparse model representation (Figueiredo,
2003; Xu, 2003; Hoti and Sillanpää, 2006). Similar
assumptions are also made in

PðBð1Þ; t2
ð1ÞÞ ¼

Y
j
PðBjð1Þjt2

j1ÞPðt2
j1Þ

and in

PðBð2Þ; t2
ð2ÞÞ ¼

Y
j
PðBjð2Þjt2

j2ÞPðt2
j2Þ:

The benefit of the adaptive shrinkage is that no tuning is
needed, but one cannot make any prior assumptions
from the degree of sparseness either.

As in Pikkuhookana and Sillanpää, (2009), there is
another source of sparseness in our model, given by the
indicator variables. In principle, the degree of sparseness
can be controlled by specifying a small prior probability
to include each marker into the model. Thus, as prior
P(Ij(k)) for each marker j and each trait k (referring to
one of the curve characteristics k¼ 0,1, or 2), we can
assume a Bernoulli distribution with fixed parameter
s ¼ PðIjðkÞ ¼ 1Þ ¼ 1

p. However, we know from our earlier

experience (Pikkuhookana and Sillanpää, 2009) that the
shrinkage prior tends to dominate marker selection,
so that this latter Bernoulli prior only has a modest
influence on the degree of sparseness.

Missing genotype data
So far, we have implicitly assumed that QTLs are placed
exactly at marker points. We assume that there may be a
small amount of missing values among the genotypes xi,j

of the data sample. In such case, the right hand side of
the equation P(X,Y,y)¼P(Y|y)P(y|X), presented in the
Hierarchical model above, should also include prior for
P(X)¼PiPjP(xi,j). For this we have simply used Bernoulli
prior P(xi,j) where all genotypic values are considered to
be equally likely. In case of a population-based associa-
tion studies, the use of known or estimated allele
frequencies and assuming that genotypes occur in
Hardy–Weinberg proportions may provide a more
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informative alternative to be used here. Although not
considered here, it is possible to build up more efficient
missing data models to account for dominant markers,
linkage information and/or linkage disequilibrium
information potentially available in the data sample.
The use of linkage information necessitates the presence
of haplotype information and/or multiple generations of
pedigree data. The requirement for the use of linkage
disequilibrium information is a dense set of markers and
known physical or genetic marker distances. Missing
marker (or QTL) genotype at arbitrary map positions can
be predicted as pseudomarkers based on Mendelian
segregation and marker distances (see Sillanpää and
Arjas, 1999; Servin and Stephens, 2007 for details) and/or
on linkage disequilibrium (Druet and Georges, 2010;
Marchini and Howie, 2010).

Markov chain Monte Carlo estimation and posterior

summaries
We apply Markov chain Monte Carlo (MCMC) estima-
tion to draw dependent samples from the joint posterior
distribution of the unknowns (Robert and Casella, 2004).
As an output from adaptive shrinkage, one obtains
posterior estimated effect size at each considered posi-
tion along the genome. Instead of monitoring the
estimated effects or their posterior functions (Xu, 2003;
Hoti and Sillanpää, 2006), one can take posterior
expectations of indicator variables (see equations 2–4)
to obtain estimates for posterior occupancy probabilities
P(Ij(k)¼ 1|data). This is calculated simply as a proportion
of MCMC rounds, in which the focal indicator is one.
The posterior P(Ij(k)¼ 1|data) provides a natural model-
averaged measure of evidence for a strength of
phenotype–genotype association at locus j. Note that
we obtain separate set of estimated posterior occupancy
probabilities for each of the three curve parameters. For
small QTL probabilities, it may be more meaningful to
present them as Bayes factors (Kass and Raftery, 1995;
Yi et al., 2007): BFjðkÞ ¼

PðIjðkÞ¼1jdataÞ=PðIjðkÞ¼0jdataÞ
PðIjðkÞ¼1Þ=PðIjðkÞ¼0Þ , which

measures evidence for inclusion against exclusion
of a locus. Although values of BF in range 1 to 3 are
‘not worth more than bare mention’, values in interval (3,
10) represents ‘substantial’ evidence (Jeffreys, 1961).
Alternatively, a level of 2ln(BF)¼ 2.1 has been suggested
for declaring statistical significance (Kass and Raftery,
1995).

Heritabilities and genetic covariances/correlations
As polynomial curve parameters (intercept, slope and
quadratic terms) are treated as latent traits in our model,
we can estimate posterior heritabilities for each of them
based on marker data. Like the curve parameters, these
heritabilities are constant over time points. Using the
QTL models (2–4), (narrow sense) heritabilities for
curve parameters {b0,b1,b2}, can be estimated when
there are no environmental effects in the QTL models.

For the intercept, h2
y0 � 1

M

PM
m¼1

ŝ2
y0ðmÞ�s

2
Að0ÞðmÞ

ŝ2
y0
ðmÞ , where ŝy0

2 (m) is

the empirical phenotypic variance of b0 at MCMC round
m, which can be estimated using sample variance of
the curve parameter b0,i(m) values at MCMC round m.
Here, M is total number of MCMC rounds, sA(0)

2 (m) is
residual variance for an intercept in MCMC round m.

Heritabilities for the slope h2
y1 � 1

M

PM
m¼1

ŝ2
y1ðmÞ�s2

Að1ÞðmÞ
ŝ2

y1
ðmÞ and

the quadratic term h2
y2 � 1

M

PM
m¼1

ŝ2
y2ðmÞ�s

2
Að2ÞðmÞ

ŝ2
y2
ðmÞ are based

on terms from QTL models (3) and (4), respec-
tively. In the presence of environmental effects,

h2
y0 � 1

M

PM
m¼1

Var½
P

j

Ijð0ÞBjð0Þxi;j �ðmÞ

ŝ2
y0
ðmÞ where the numerator is the

empirical variance of the predictor of the QTL model (2)
in MCMC round m. In general, as was found by
Pikkuhookana and Sillanpää (2009), indicator variables
in QTL models (2–4) improve heritability estimation.
Otherwise, the cumulative sum of markers with spurious
effects tends to introduce some noise to the predictions.

The use of multitrait QTL model makes it possible
to also estimate genetic covariances (and correlations)
between polynomial curve parameters. The genetic
covariance between the intercept and the slope is

estimated as sg10 � 1
M

PM
m¼1

ðŝy10ðmÞ � r10ðmÞŝy10ðmÞÞ and

the genetic correlation as r10 � 1
M

PM
m¼1

sg10

ŝy1ðmÞŝy0ðmÞ.

Here ŝy10ðmÞ ¼ ½
PN
i¼1

b1;iðmÞb0;iðmÞ �
ð
P

i

b1;iðmÞÞð
P

i

b0;iðmÞÞ

N �=N � 1

is the empirical covariance between the intercept and the
slope at MCMC round m. The term r10(m)ŝy0(m)
represents the residual covariance in MCMC round m.
The genetic covariances (sg21 and sg20) and genetic
correlations (r21 and r20) for other parameters are
calculated using the same principle.

Example analyses

Simulated data from QTLMAS 2009
We used public-simulated time-course data from
QTLMAS 2009 workshop (Coster et al., 2010), which
has been previously analysed in several other publica-
tions including Heuven and Janss (2010). The data set
consists the growth curve measurements at five con-
secutive time points and 453 markers (within five
chromosomes) measured from 2025 individuals. There
were certain family structures present among the
individuals in the data. There were altogether 18 QTLs
influencing the growth curve phenotype among which
three QTLs had five times larger effects on the trait than
the rest of the QTLs. A map is available at http://
www.qtlmas2009.wur.nl/UK/Dataset/ where one can
find the marker ID and positions. The individual growth
curves were simulated based on a logistic growth
function, which is different from our polynomial growth
function (equation 1). Thus, the logistic growth data can
be seen as a test of the robustness of our method. We took
a sub sample of 500 individuals, selected randomly
within each family (but with equal contribution from all
full-sib families). Only 50 families with phenotype data
were used, which resulted in 10 individuals per family.

Real data on scots pine (Pinus sylvestris)
We genotyped a set of 160 AFLPs on 250 individuals
from a full-sib family of Scots pine that was established
in 1988. The parents of the full-sib cross are part of the
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Swedish breeding population; both parents come from
northern Sweden (AC3065 latitude 65080 and Y3088
latitude 64090).

Total DNA was extracted from vegetative buds. The
buds where pealed, dried and grinded. The DNA
extraction was made using the CTAB method. The AFLP
markers were produced according to Vos et al. (1995).
The following 15 primer enzyme combinations were
used E-act/M-cctg, E-act/M-cccg, E-act/M-ccgc, E-act/
M-ccgg, E-act/M-ccag, E-acg/M-cctg, E-acg/M-cccg,
E-acg/M-ccgc, E-acg/M-ccgg, E-acg/M-ccag, E-aca/
M-cctg, E-aca/M-cccg, E-aca/M-ccgc, E-aca/M-ccgg
and E-aca/M-ccag.

The amplified fragments were sent to the DNA facility
at Iowa State University, USA and run on ABI3100
Genetic Analyzer. The mapping data were analysed with
GeneMarker v1.6 (SoftGenetics, State College, PA, USA).

The height measurements were carried out with a
measuring stick of telescope type from the ground to the
terminal bud. The height was repeatedly measured 11
times between the years 1996 and 2007. The phenotype
measurements from 1996 to 1999 have already been used
for QTL analysis and published in Lerceteau et al. (2001).
After more close inspection of temporal measurements,
we decided to exclude 14 individuals from the collected
data because those individuals showed negative enrich-
ment of height in some of the consecutive time points
because of some damage in the apical shoot due to wind
or snow. Thus, our final data set contained 236
individuals.

Simulated pine data replicates
Latent trait phenotypes: We took above real Scots pine
data (236 individuals, 160 AFLP markers; xi,j, i¼ 1,y,236
j¼ 1,y,160) as starting point for our simulation. First
with equal probabilities we completed (by sampling
once) all the missing genotypes so that there was
no missing genotypes in simulated data. For each
individual, we simulated 10 replicates of a vector bi

containing a new set of latent trait phenotypes from the
modified versions of the QTL models (2–4) by setting
r10¼r20¼r21¼ 0 and assuming that the residual vector
Ai¼ (Ai(0), Ai(1), Ai(2)) is drawn from a tridimensional normal
distribution, MVNð~0;SÞ, with a mean vector ~0 ¼ ð0; 0; 0Þt
and a covariance matrix S specifying between-trait
residual dependencies. For all the replicates, three
QTLs (at loci 18, 32 and 95) with average joint
heritability of 0.39 (replicates varied in range (0.36–
0.47)) were simulated for the 1st latent trait–intercept,
four QTLs (at loci 32, 74, 135 and 144) with average
heritability of 0.66 (replicates in (0.62–0.71)) for the 2nd
latent trait-slope and two QTLs (at loci 9, 104) with
average heritability of 0.50 (replicates in (0.43–0.56)) for
the 3rd latent trait—quadratic term. Here, indicators
Ij(k),j¼ 1,y,160, k¼ 0, 1, 2 were set to one for QTLs and to
zero for non-QTLs. The contents of S and the other QTL-
model parameters used in our simulations are described
in Tables 1 and 2.

Functional trait phenotypes: Given the replicated values
of curve parameters (that is, latent traits) above, we
simulated 10 replicates of phenotypic measurements at
11 consecutive time points for each individual. For this,
we used the modified version of the model (1) with time-
specific residual variances {s1

2,y,s2
11}¼ {2,3,5,4,3,5,3,2,3,5,4}.

These time-specific residual variances describe how
much individual phenotypic measurements (at each
time point) are allowed to deviate from individual-
specific functional curve. Eventually this process
produced 10 data replicates.

Table 1 Analysis of 10 simulated data replicates

Latent
trait

Location Simulated
effect

E(effect� Ij|data) P(Ij¼ 1|data)

Intercept 18 1/2 0.0002 0.006
32 3/2 0.152 (0, 0.858) 0.109
65 0 0.076 0.011
75 0 �0.090 0.061
78 0 0.077 0.058
95 �1/2 �0.0008 0.006
99 0 0.021 0.022

Slope 32 2 2.222 (1.878, 2.562) 1.000
74 �1/2 �0.036 0.056

135 �1 �0.867 (�1.253, �0.445) 0.907
144 3/2 1.440 (1.073, 1.792) 1.000

Quadratic 9 �1/2 �0.000009 0.359
76 0 0.003 0.014

104 2 1.971 (1.709, 2.232) 1.000

P
¼
 

1 0:5 0:3
0:5 1 0:2
0:3 0:2 1

!

The map locations and the simulated and estimated phenotypic
(additive genetic) effects of the trait loci of three latent traits
(intercept, slope and quadratic term), as well as their posterior
occupancy probabilities P(Ij¼ 1|data). The marker effect is esti-
mated as E(effect� Ij|data) and the corresponding 95% credible
interval is shown for the estimates, of which absolute value is larger
than 0.1 . The posterior estimates are averaged over analyses of 10
replicated data sets. The values used in the residual covariance
matrix S on simulations is also shown

Table 2 Analysis of 10 simulated data replicates

Parameter Simulated
value

Posterior
mean estimate

95% credible
region

hy0
2 0.39 0.009 (�0.195, 0.179)

hy1
2 0.66 0.544 (0.443, 0.627)

hy2
2 0.50 0.499 (0.396, 0.584)

Ny0 3 1.1826 (0.0, 3.3)
Ny1 4 3.8579 (2.9, 5.9)
Ny2 2 2.2561 (1.3, 4.5)
sg10 1.48 �0.246 (�0.447, �0.044)
sg21 0.13 0.021 (�0.116, 0.156)
sg20 0.26 0.226 (0.073, 0.379)
r10 0.61 �0.046 (�0.084, �0.007)
r21 0.05 0.009 (�0.042, 0.060)
r20 0.13 0.054 (0.0163, 0.092)
sA(0)

2 1.00 7.798 (6.428, 9.450)
sA(1)

2 1.00 1.578 (1.291, 1.925)
sA(2)

2 1.00 1.039 (0.861, 1.250)
m0 3.00 3.563 (2.878, 4.106)
m1 4.00 4.242 (3.838, 4.686)
m2 5.00 4.396 (3.922, 4.870 )
r10� ŝy0 0.5 �0.536 (�0.288, �0.359)
r21� ŝy1 0.2 0.176 (0.040, 0.311)
r20� ŝy0 0.3 0.093 (�0.042, 0.229)

The simulated values and the posterior estimates (mean and 95%
credible region) of heritabilities, the number of QTLs, genetic
covariances, genetic correlations, residual variances, the baselines
and pairwise residual covariances (cf.Table 1) for the three latent
traits (intercept y0, slope y1 and quadratic term y2). The posterior
estimates are averaged over analyses of 10 replicated data sets.
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Creation of data sets with missing phenotypes: As a
goodness-of-fit test for the model, we wanted to study
also the robustness of our method for increased number
of missing phenotype measurements in time points.
Thus, for every other time point, we introduced missing
entries by deleting B50% of the phenotypes randomly.
Note that individuals with missing phenotypes at
consecutive time points are not neccessarily the same.
The same treatment was carried out for a real Pine data
set and one additional simulation replicate. After this
treatment, we had 13 different Pine data sets: an original
real data set, 10 simulation replicates, and one real and
one simulated data set with increased missingness.

Analyses

In the following, we introduce results from five different
analyses. First, we present QTL analysis of simulated
QTLMAS 2009 data set. Then, we cover QTL analysis of
10 simulation replicates and prediction of unobserved
phenotypes for additional simulated Pine data set.
Finally, we show results from QTL analysis and
phenotype predictions with real Pine data. In real data
analyses, we included environmental block effect (of four
blocks) to each of the QTL models (2–4) and assumed
that block effects in each model are independently
normally distributed with common block variance. For
three block variances, we assumed Inverse-Gamma (0.01,
0.01) priors.

For implementation and parameter estimation, we
used WinBUGS 1.4.3 software (Spiegelhalter et al., 2005).
We assumed prior s ¼ PðIjðkÞ ¼ 1Þ ¼ 1

453 for each locus j
and for each latent trait k in QTLMAS 2009 data analy-
sis and for each j and k in simulated and real Pine
data analyses. As WinBUGS does not allow the use
of improper priors such as P(tjk

2 )p1/tjk
2 , we used its

finite approximation (for details, see Pikkuhookana and
Sillanpää, 2009). For each data replicate, we ran one
chain for 30 000 MCMC iterations, discarding 5000 initial
samples as burn-in and thinning the remainder to each
10th sample (that is, storing every 10th sample). This
resulted in 2500 samples to be used in estimating the
posterior for each data replicate. For prediction of
unobserved phenotypes in simulated and real data, as
well as the real Pine data QTL-analysis, we ran one chain
for 50 000 MCMC iterations and used a burn-in period of
5000 samples and a thinning of 5. This resulted in 9000
MCMC samples. The MCMC sample paths of several
different parameters were visually inspected based on
some prior runs. The running time was practically the
same in phenotype prediction analyses and in real Pine
QTL analysis, being about 114 h for the whole analy-
sis on an Intel Core 2 with 1.86 GHz and 1.94 GB of RAM.
On the same computer, running through 10 simulation
replicates took about 30 days. For the QTLMAS 2009 data
analysis, we ran 10 000 MCMC iterations by omitting
6000 initial samples as burn-in and had no thinning.

In the missing data analyses, the prediction accuracy
(between true and predicted phenotypes) was assessed
at each time point (with increased missingness) by
monitoring posterior distributions of relative and abso-
lute prediction error and linear correlation between true
and predicted phenotypes. Calculations of these quan-
tities were based on posterior predictive distributions for
individuals with missing phenotypes. As stated in Lee

et al. (2008), this kind of analysis gives information also
about the accuracy of this method in estimating genomic
breeding values (Meuwissen et al., 2001; Piyasatian et al.,
2007; Lorenzana and Bernando, 2009; Heffner et al., 2009).

Results

Simulated QTLMAS 2009 data set
QTL identification: The loci showing elevated posterior
occupancy probabilities in the three latent traits are
shown in Table 3. The occupancy probabilities of all the
other loci were lower than 0.01. The posterior estimated
heritabilities for the three latent traits are shown in
Table 4. As expected, because different growth functions
were used during simulation and analysis, the QTLs
simulated for one trait seem to be ‘scattered’ among all
three traits in the analysis. The same phenomenon is
visible also in the estimated heritabilities.

The three major QTLs in the data set (at 36, 51 and 78)
were in chromosome 1 with map locations 0.4245, 0.5425
and 0.8765 (see Figure 3 in Coster et al., 2010). Locus 36 or
35, adjacent to the first major QTL (at 36), showed QTL-
occupancy probability of 1.0 in all three latent traits. The
QTL probabilities of 0.058 and 0.72 were found for loci 38
and 37 in slope and quadratic term, respectively. These
positions are evidently more close to the first major QTL
(at 36) but the second major QTL (at 51) is not more than
10 cM away from them. The locus 81, which is close to the
third expected QTL at position 78, acquired QTL
probability of 1.0 for the slope.

Table 3 QTLMAS 2009 data analysis

Latent
trait

Locus Closest
simulated QTL

E(effect�
Ij|data)

P(Ij¼
1|data)

Intercept 36 (0.4153) (0.4245) 36–37 1.528 1.0
98 (1.0359) (1.0455) 98–99 0.005 0.015

137 (1.4829) (1.4889) 138–139 0.177 0.59
173 (1.8574) (1.8864) 174–175 �0.017 0.034
218 (2.2707) (2.2622) 216–217 �0.004 0.012
232 (2.4005) (2.5609) 243–244 0.2022 0.17
288 (3.048) (3.0962) 293–294 �0.295 0.68
408 (4.5353) (4.5971) 411–412 0.019 0.055
421 (4.6635) (4.7719) 432–433 0.013 0.022

Slope 36 (0.4153) (0.4245) 36–37 0.438 1.0
38 (0.4472) *(0.5425) 51–52 0.005 0.058
81 (0.9137) (0.8765) 77–78 0.295 1.0

240 (2.5252) (2.5609) 243–244 0.001 0.017
360 (3.8701) (3.8639) 358–359 0.141 1.0

Quadratic 35 (0.4029) (0.4245) 36–37 �0.130 1.0
37 (0.4447) *(0.5425) 51–52 0.145 0.72

118 (1.3058) (1.3302) 118–119 �0.001 0.014
134 (1.4743) (1.4889) 138–139 0.001 0.017
140 (1.5242) (1.4889) 138–139 0.001 0.012
222 (2.3108) (2.2622) 216–217 �0.001 0.018
223 (2.318) (2.2622) 216–217 0.001 0.010
314 (3.3746) (3.3652) 313–314 �0.001 0.014

The three latent traits are listed in the first column. The second
column ‘Locus’ refers to the marker loci (with their map locations in
parenthesis), which showed non-negligible signals in QTL analysis.
The next column refers to the map position of true QTLs (in
parenthesis), followed by their two flanking markers. The symbol *
indicates the position of the second closest major QTL. The posterior
means of the marker effects (viz. Bj(k)� Ij(k) for latent trait k) and the
posterior occupancy probabilities P(Ij¼ 1|data) for detected loci j
are given in the last two columns.
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Markers near the four minor QTLs (98, 118, 138 and
174) in chromosome 2 also obtained some support in the
analysis. The markers 98, 137 and 173 obtained elevated
signals in the intercept and markers 118, 134 and 140 in
the quadratic term. All of them are extremely close to the
one of four simulated minor QTLs in chromosome 2.
Generally, the level of support was not strong, expect for
locus 137 where the posterior QTL probability was 0.59.

The markers near two minor QTLs (217 and 243) out of
four simulated minor QTLs in chromosome 3 got
support in the analysis, but the level of support was
generally quite small. Such putative QTL positions were
the markers 218 and 232 (with QTL probabilities 0.012
and 0.17, respectively) for intercept, the marker 240 (with
QTL probability 0.017) for slope, and the markers 222
and 223 (with QTL probabilities 0.018 and 0.01, respec-
tively) for quadratic term.

The markers near three minor QTLs (293, 314 and 358)
out of four simulated minor QTLs in chromosome 4 got
support in the analysis. The QTL probabilities for loci
288, 314 and 360 were 0.68, 0.014 and 1.0, respectively.
The simulated minor QTL, which was not found in the
analysis had small effect size.

The markers near two minor QTLs (411 and 432) out of
three simulated minor QTLs in chromosome 5 got
support in the analysis. The loci 408 and 421 had QTL
probabilities 0.055 and 0.022 in intercept, respectively.
The simulated minor QTL, which was not found in the
analysis, had a slightly larger effect size than the two
others.

To better understand the ‘scattering’ of QTLs among
latent traits, we also calculated the pairwise correlation
between the orginal simulation parameters of the logistic
growth function and the posterior estimated values of
the three latent traits (see Table 5). As can be seen in the
table, generally these correlations are moderate except
the correlation of 0.61 between logistic curve parameter 1
and the quadratic term.

Heuven and Janss (2010) analysed a sub sample of
1000 individuals from the same QTLMAS 2009 data set

by using the growth function assumed in the data
simulation process. Because of this, their heritability and
QTL position estimates showed consistency among the
latent trait parameters. To compare the genomic posi-
tions of the found QTLs roughly (without caring about
which trait each QTL contributes to or how strong QTL
signals were obtained), it is fair to say that comparable
set of QTL positions were identified in our analyses with
the data sample, which was only half of their sample
size.

Simulated Pine data sets
QTL identification: To assess empirical power of our
method in simulated Pine data, the estimated posterior
occupancy probabilities (averaged over 10 data
replicates) for true and false QTLs in the three latent
traits are shown in Table 1. Generally, the major QTLs
with effect size of at least one (in absolute value) were
correctly found in all cases, whereas the QTLs with effect
size 1/2 were correctly identified only once and was
unidentified three times. For the intercept, the highest
QTL-occupancy probability 0.1 was found at correct
major QTL with large effect (at locus 32), but the signal
was very low. The weak QTL probabilities were found at
loci 65, 75, 78 and 99, which were all false positives. All
the other QTL probabilities were smaller than 0.01 and
no signals (QTL probabilities 0.006 and 0.006) were
found at minor QTLs (18 and 95). For the slope, the high
posterior occupancy probability (between 0.9 and 1.0)
was obtained for three true QTLs with large effects (at
loci 32, 135 and 144) and 0.06 for the fourth minor QTL.
Practically, there were no false positives in slope because
all the other positions had QTL probabilities, which were
smaller than 0.01. Note that correctly identified QTL at
locus 32 was pleiotropic and had large effects on both
intercept and slope. For the quadratic term, all simulated
QTLs were correctly identified so that the posterior
occupancy probability 1.0 was obtained for the major
QTL at locus 104 and probability of 0.36 for minor QTL at
locus nine. The weak signal (QTL probability 0.014) was
found at locus 76, which was false positive and all the
other loci had QTL probability that was smaller than
0.01. It is worth emphasizing here that putting the QTL
probability threshold to 0.1 would result in the
elimination of all the false positives in these data.

Estimation of the model parameters: As the indicator
and effect size always appear together as a pair in the
models (2–4), the two quantities are obviously
confounded in their estimates. Thus, the QTL-effect
estimates are presented only in the form of the product
in Table 1. Generally, these posterior means of the
estimated QTL-effects (averaged over replicates) are
clearly closer to their true simulated values when the
QTL-occupancy probability is high, and are constantly
small when the corresponding QTL probability is low.
The exception to this is the minor QTL in quadratic term
where QTL probability was 0.36 but the effect size was
practically zero. The simulated and estimated values for
several other model parameters are presented in Table 2.
The posterior mean estimate of the heritability for the
intercept was 0.01, which was much lower than the true
simulated mean value of 0.39. Here the 95 % credible
interval does not contain the true value. These estimates
are biased probably because the support for the major

Table 4 QTLMAS 2009 data analysis

Parameter Simulated
value

Posterior
mean estimate

95% credible
region

hy0
2 0.50 0.24 (0.13, 0.34)

hy1
2 0.50 0.99 (0.984, 0.995)

hy2
2 0.50 0.75 (0.71, 0.79)

The posterior estimates (mean and 95% credible region) of
heritabilities of three latent traits (intercept y0, slope y1 and
quadratic term y2). Note that simulated values correspond to the
heritabilities simulated under different growth function.

Table 5 QTLMAS 2009 data analysis

Parameter b0 b2 b3

par1 0.46 �0.37 0.61
par2 0.42 �0.35 0.29
par3 �0.29 0.41 �0.13

The pairwise correlation calculated between the three parameters
of the logistic growth function (par1, par2, par3) and the three
posterior mean-estimated parameters of the polynomial function
(b0,b1,b2).
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QTL was weak and two minor QTLs were unidentified
in the QTL analysis. For the slope, we obtained an
underestimated posterior mean heritability of 0.54 while
the true value was 0.66. Here the 95% credible interval
averaged over replicates does not contain the true
simulated value because one minor QTL was
unidentified in the QTL analysis. For the quadratic
term, heritability was accurately estimated with posterior
mean 0.50, which coincides with the true value.
Moreover, the 95% credible interval was rather narrow,
indicating that both simulated QTLs for the quadratic
term were correctly identified. On the other hand, the
number of QTLs is accurately estimated for the slope and
the quadratic term while that for the intercept is badly
underestimated.

Although the posterior means of the parameter
estimates connected to the slope and quadratic term
are generally very close to their true simulated values,
the estimates connected to the intercept are much more
biased (for example, residual variance). An exception to
this general trend comes from the baseline parameters,
which coincide closely with their true values in all cases.
Similarly, the posterior mean of genetic covariance 0.23
and of genetic correlation 0.05 between an intercept and
a quadratic term are not very far from their true values
(0.26 and 0.13, respectively), while the corresponding
parameters between a slope and a quadratic term are
more biased. To compare the estimate of r10 to the
simulated residual covariance, we first have to multiply
it with the standard deviation of latent trait ŝy0, which
gives ŝ10¼r10� ŝy0E�0.5, which is not close to 0.5.
Similar reasoning yields estimates of ŝ21E0.18 and
ŝ20E0.1, which are closer to values of 0.2 and 0.3.

Prediction of unobserved phenotypes: For simulated
data, the values of correlation coefficients between the
true and predicted phenotypes (their posterior means)
were calculated at five different time points with
increased amount of missing phenotypes. These
correlations were almost one in all cases (0.992, 0.998,
1.0, 1.0 and 1.0 for five time points), which indicates that
our method was able to correctly predict the original
ordering of the unobserved phenotypes. For simulated
data, the boxplots in Figure 1 present the relative errors
(top) and absolute errors (bottom) of the predicted
phenotypes at five time points with increased amount
of missing phenotypes. These quantities are calculated
from posterior predictive distributions of unobserved
phenotypes. The reason why relative errors are
decreasing as function of time is the fact that our
simulated growth phenotype is systematically
increasing with time. This means that error values on
the right are systematically divided by larger (true)
values. In this case, absolute error is providing better
indication of phenotype prediction accuracy. At each
measurement point, the mean of the absolute error stays
in the vicinity of zero and one cannot see the systematic
trend of making larger absolute errors, while the actual
predicted values increase from left to right.

Real data on Scots pine
QTL identification: From the real data analysis, the
estimated posterior occupancy probabilities and effect
sizes of QTLs in the three latent traits are shown in
Table 6. Even though these QTL probabilities are

2 4 6 8 10

−10

−5

0

5

Time−points

R
el

at
iv

e 
E

rr
or

2 4 6 8 10

−6

−4

−2

0

2

4

6

Time−points

A
bs

ol
ut

e 
E

rr
or

Figure 1 The prediction accuracy of the phenotypes in the
simulated data. Boxplots of relative errors (top) and absolute errors
(bottom) for predicted phenotypes at five time points, which had
increased missingness. Errors are shown on the y-axis and the time-
points on the x-axis. The absolute error is calculated as difference
between predicted (posterior mean) and true phenotype and
relative error is obtained as 100 times absolute error divided by
the absolute value of the true phenotype.

Table 6 Scots pine data analysis

Latent
trait

Location E(effect�
Ij|data)

P(Ij¼
1|data)

Bayes
Factor

Intercept 156 0.017 0.009 1.50
Slope 21 0.018 0.012 1.90
Quadratic 38 �0.0006 0.012 1.88

97 0.001 0.013 2.17

The locations and the estimated phenotypic (additive genetic)
effects of the trait loci of three latent traits (intercept, slope and
quadratic term), as well as their posterior occupancy probabilities
P(Ij¼ 1|data) and the corresponding Bayes factors. The effect size is
estimated as E(effect� Ij|data).
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generally low, our suggested loci show clearly elevated
signals compared with the general level of that in other
positions. However, based on our replicated simulation
analysis, our power here may be rather weak. As it is
hard to judge small QTL probabilities, we decided to
present also the Bayes factor (BF) as BF scales the
corresponding marker evidence with respect to the prior
probability. For the intercept, the highest QTL probability
0.009 (BF 1.50) was found for locus 156 (act/ccgg_433),
while the other QTL probabilities were all smaller than
0.0085 (BF o1.335). However, at QTL threshold level
0.01, which is rather low, one can conclude that no QTLs
were found for intercept. For the slope, the highest QTL
probability 0.012 (BF 1.90) occurs at locus 21 (aca/
ccgc_194) and all the other QTL probabilities were
smaller than 0.009 (BF o1.391). For the quadratic term,
there were two putative QTLs (at loci 38 and 97; aca/
ccgg_277 and acg/ccgc_71) with QTL probabilities 0.012
and 0.013 (BFs 1.88 and 2.17, respectively). The other
QTL probabilities were smaller than 0.008 (BF o1.157).
Based on the general BF categories suggested by Jeffreys
(1961), these evidence are from class of ‘not worth more
than a bare mention’. However, one should keep in mind
that there are two sources of shrinkage in our QTL
models, where the indicators had milder influence on
the overall shrinkage than the effect coefficients
(Pikkuhookana and Sillanpää, 2009). Thus, in the
presence of small sample size, it might be fair to
conclude that the BFs presented here are kind of ‘lower
bounds of their true values’ and should be interpreted in
the light of much smaller prior inclusion probability.
However, even if influence of this ‘double shrinkage’
would be modest, it is likely that these findings are still
rather weak.

Estimation of the heritabilities and other parameters: The
posterior estimates for different model parameters
including latent trait heritabilities are shown in Table 7.
The heritabilities are small for all latent traits,
which supports the fact that genetic variation is
generally low.

Prediction of unobserved phenotypes: For real data, the
value of linear correlations coefficient between the true
and predicted phenotypes (their posterior means)
were calculated at five different time points with
increased amount of missing phenotypes. As in
simulated data, the correlation coefficients here were
also extremely high in all cases (0.993, 0.984, 0.995, 0.995
and 0.980 for five time points), which indicates that our
method was able to correctly predict the original
ordering of the unobserved phenotypes. It is likely that
environmental block effects are at least partly responsible
for these predictions, because the estimated QTL
probabilities and heritabilities in these data set were so
small. For real data, the boxplots in Figure 2 present the
relative errors (top) and absolute errors (bottom) of
predicted phenotypes at five time points with increased
amount of missing phenotypes. It is clear that the first
time point seems to suffer from some bias, which may
reflect a disagreement between the polynomial function
and the data or difficulties in mapping QTLs for the
intercept.

Discussion

A conceptual description of the new method for
mapping functional QTLs was presented in this paper.
Because of its conceptual nature, it is worth emphasising
that practical and scalable implementations of the
method are out of the scope of this very first paper.
The method is based on mapping QTLs which influence
the curve parameters (that is, latent traits) describing
functional curve of time-dependent phenotypic measure-
ments (cf. Gee et al., 2003; Heuven and Janss, 2010).
Unlike the others, we use a multitrait multiple-QTL
model, which is essentially a single Bayesian-hierarchical
model allowing for information flow and incorporation
of uncertainties between different levels of the hierarchy.
Also, the multitrait analysis is known to improve the
accuracy and power of QTL detection (Jiang and Zeng,
1995). Note that Gee et al. (2003) and Heuven and Janss
(2010) used two-stage approaches and performed QTL
analysis for each parameter of the curve separately. One
possible application field of the hierarchical model
presented here is to map regulatory loci controlling
time-dependent changes of gene expressions (eQTL,
transcript abundances) or protein expressions over time
(pQTL) (Reis et al., 2001; Foss et al., 2007; Ge et al., 2010).
In such applications, eQTLs can influence the curve
parameters, which again determine the individual’s
expression curve over time. However, in these situations,
the current polynomial curve function may not be
flexible enough to describe the required nonlinear shape
of the expression profile (see Luan and Li, 2004; Qu and
Xu, 2006). Of course, this unsuitability can be somewhat
handled by giving high value to se

2 but at the same time,

Table 7 Scots pine data analysis

Parameter Posterior mean estimate 95% credible region

hy0
2 0.0004 (0, 0.003)

hy1
2 0.0006 (0, 0.006)

hy2
2 0.0003 (0, 0.004)
sA(0)

2 1148.0 (953.5, 1373.0)
sA(1)

2 95.54 (79.83, 114.5)
sA(2)

2 0.080 (0.067, 0.096)
m0 93.07 (�23.22, 172.3)
m1 52.07 (42.37, 61.19)
m2 2.723 (2.364, 3.082 )
block (0,1) 72.93 (–5.187, 189.8)
block (0,2) 73.48 (–4.655, 190.0)
block (0,3) 81.36 (–0.659, 200.1)
block (0,4) 76.15 (–3.133, 195.3)
block (1,1) �0.814 (–7.545, 7.120)
block (1,2) �3.933 (–11.07, 3.989)
block (1,3) 0.355 (–6.416, 8.406)
block (1,4) 6.842 (0.301, 15.94)
block (2,1) �0.165 (–0.402, 0.077)
block (2,2) �0.043 (–0.277, 0.202)
block (2,3) 0.110 (–0.120, 0.359)
block (2,4) 0.095 (–0.138, 0.362)
s2

block[0] 21990.0 (0.022, 131600.0)
s2

block[1] 57.39 (4.600, 291.6)
s2

block[2] 0.066 (0.007, 0.317)

The posterior estimates (mean and 95% credible region) of
heritabilities, residual variances, the baselines for the three latent
traits (intercept y0, slope y1 and quadratic term y2). Additionally,
the posterior estimates for the block coefficients and their
corresponding block variances are shown for the three latent traits.
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it has a negative influence on statistical power to find
QTLs. Thus, one may need to replace the model (1) with
a more flexible function, for example, one which is
possibly first estimated based on available set of featured
genes from the biological process in question (Luan and
Li, 2004).

There is recent interest in using recursive relationships
or feedback effects in multitrait quantitative genetic
models (Gianola and Sorensen, 2004; Wu et al., 2010).
Thus, we shortly comment on differences between such
recursive models and our autoregressive formulation of
multitrait QTL model. First, our model assumes residual
independence while these recursive models assume

residual dependence. Second, we have effects of trait 1
to trait 2 and trait 3 but not the other way round while
recursive models may include all the effects or cyclic
dependencies between the traits. Although it is possible
to include more complicated between-trait interdepen-
dencies into the model, it is not well justified in our
setting. One should remember that our decision to
include autoregressive coefficients to the QTL models
(2–4) was made to improve computational efficiency
only.

The multitrait multiple-QTL part constitutes one level
of our larger hierarchical multilevel model. It represents
a new and efficient way to handle residual dependencies
between quantitative traits. How this part of the model
performs in the presence of a larger number of traits (for
example, higher order polynomials) deserves to be more
carefully studied in the future. Moreover, it is still an
open question here what kind of modifications are
needed for models (2–4) when the trait values are
observed quantities rather than model parameters.

As seen in examples, the presented hierarchical model
can be used to predict unobserved phenotypic measure-
ments at arbitrary time points from posterior predictive
distributions. The curve parameters (and underlying
QTL model parameters) estimated based on observed
measurements from all individuals provide information
for predicting a single time-point of an individual. As
collecting phenotype data is expensive, one application
of the model may be to use this feature in data collection.
Thus, one can systematically reduce the number of
individuals collected at some of the time points by
randomly selecting measured individuals at each point.
To maintain accuracy in the curve parameters, as
illustrated in our examples, one can collect systematically
more complete data sample at every other measurement
point. However, it is important to keep in mind here that
the hierarchical model does not represent informative
missing data model similarly as in Sillanpää and
Noykova (2008), because missing values occur here at
the highest level of the hierarchy in the model. This
means that only the observed part of phenotypes over
time points have influence on the posterior distributions
of the model parameters. Therefore, the degree of
missingness at any time point should not fluctuate too
much from other time points.

In our analysis of simulated data replicates, we found
that our method had problems to find QTLs for the
intercept while analysis for the other two latent traits
worked much better. Weak signals were also found in
real data analysis while our method worked clearly
better for the simulated QTLMAS data set, where the
sample size was relatively large. However, our suggested
position of the second major QTL in chromosome 1 could
have been more accurate with larger sample. These
results may indicate the importance of having large
sample size in functional QTL studies. On the other
hand, our method was able to provide accurate
phenotype predictions with small data.

The method was implemented using WinBUGS soft-
ware, which allows MCMC estimation of the hierarchical
model parameters without requiring derivation of the
details of the sampling algorithm such as fully condi-
tional posterior distributions. When the size of the
marker sets increases and/or the WinBUGS implementa-
tion becomes too slow for the practical purposes, one can
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Figure 2 The prediction accuracy of the phenotypes in the Scots
pine data. Boxplots of relative errors (top) and absolute errors
(bottom) for predicted phenotypes at five time points, which had
increased missingness. Errors are shown on the y-axis and the time-
points on the x-axis. The absolute error is calculated as difference
between predicted (posterior mean) and true phenotype and
relative error is obtained as 100 times absolute error divided by
the absolute value of the true phenotype.
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proceed by (i) implemenenting one’s own MCMC
sampler using a convenient programming language or
(ii) perform pre-selection of the marker set to reduce the
model dimensionality. For the variable selection part of
our hierarchical model, we recommend relying on some
existing sampling algorithms and their full conditionals,
which may guarantee the sufficient mixing properties of
the sampler. For example, see Banerjee et al., 2008 for
implementational details of suitable MCMC sampling
algorithm in this respect. The sampling steps for
individual-specific functional curve parameters can then
be included as additional steps into the sampling scheme
of Banerjee et al., 2008. The full conditional distributions
of functional curve parameters have analytical forms
because of conjugacy: both the likelihood and the prior
are densities of the normal distribution (details not
shown). The pre-selection of the markers can be carried
out for example, by first estimating the curve parameters
and then eliminating the markers that are weakly
correlated with each curve parameter with a single-
marker test (see Cho et al., 2010). Alternatively, one can
use pre-selected set of haplotype-tagging markers in the
analysis (see Lin and Altman, 2004).

In Pinaceae, age-to-age correlations and narrow-sense
heritability for height have generally been reported to be
low to moderate with an increasing tendency with age
(Lambeth, 1980; Costa and Durel, 1996; Jansson et al.,
2003, 2005, but see Gwaze, 2009). Low correlation across
ages has also been observed for QTL identification
(Plomion et al., 1996; Verhaegen et al., 1997; Kaya et al.,
1999); this is partly due to different set of genes
expressed at each life stage, although environmental
variance is expected to be large, especially at early
growth stages. Although, a time-point QTL analysis of
Lerceteau et al. (2001) reported consistency in the number
and location of QTLs for height across four years in Scots
pine, trees were still at the juvenile stage and QTL
expression at mature stages was not verified. A study of
Lerceteau et al. (2001) was based on 94 individuals and a
total of 152 dominant markers (59 maternal and 93
paternal), but their marker set was different from our
marker set here which makes the comparison difficult.
However, we also detected three QTLs in our study
when analysing functional growth data for 11 years in
the same Scots pine population. Although a similar
number of QTLs was found in both studies, QTLs may
not be equivalent as we used a functional QTL-mapping
approach. A functional QTL mapping is an alternative
approach that focuses on the developmental features of
the dynamic trait (for example, growth curve) over-
coming the problem of age-specific QTL expression.
Many studies in conifers have been devoted to analyse
growth trajectories (see Balocchi et al., 1993; Magnussen
and Kremer, 1993; Danjon, 1994; Gwaze et al., 2002; Wang
et al., 2009). However, to our knowledge, no QTL analysis
in conifers has been trying to investigate functional traits,
the only published works being in Populus (Wu et al.,
2003; Ma et al., 2004). Our analysis revealed three QTLs
for growth parameters such as slope (speed of growth) or
quadratic term (curvature or timing of growth cessation),
which are essential for the genetic improvement of forest
trees and can only be assessed by means of dynamic trait
analysis. Growth curve parameter estimation has critical
advantages such as the fit of the data to a biologically
meaningful mathematical model, which furthermore

helps to correct for data irregularities due to human
errors or environmental effects. Furthermore, dynamic
trait analysis could also be useful to predict growth at
ages where measurements are missing. Growth trajectory
parameters can be shifted as a response to selection.
Breeding on growth curves are used in animal breeding
(Tholon and de Queiroz, 2009; Haraldsen et al., 2009) and
the same results could be expected when used in forest
tree breeding.

In our hierarchical model, additive genetic variation
(of QTLs) influences the curve parameters, which in turn
control the shape of the polynomials over time. In this
context, we illustrated estimation of additive genetic
variances and heritabilites for these curve parameters
and genetic covariances between them. Unlike the
common practice (Gwaze et al., 2002; Kulathinal et al.,
2008; Wang et al., 2009), our analysis does not provide
time-specific heritability or covariance estimates at all.
However, it may be more meaningful from a breeding
point of view to actually inspect the genetics and
estimate the genomic breeding values underlying the
curve characteristics (which control the dynamic beha-
viour of the trait), rather than inspecting genetics at
different time-points. For example, the slope will be easy
to interpret from a biological point of view as ‘speed of
growth’. Note that the additive genetic variance was
estimated as the variance of the genomic breeding values
which provided a marker-based estimate for heritability
(cf. Meuwissen et al., 2001; Xu, 2003; Pikkuhookana and
Sillanpää, 2009; Sillanpää, 2011). Generally, these herit-
ability estimates (when the same growth function was
used in simulation and analysis) were underestimated
due to presumably small sample size, but the accuracy of
the predicted phenotypes were, especially high, and they
both will motivate future studies.

The model specification codes (written in WinBUGS)
used in this article and instructions to use them are freely
available for research purposes at URL http://www.rni.
helsinki.fi/~mjs/.
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