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Abstract
Image labeling and parcellation (i.e. assigning structure to a collection of voxels) are critical tasks
for the assessment of volumetric and morphometric features in medical imaging data. The process
of image labeling is inherently error prone as images are corrupted by noise and artifacts. Even
expert interpretations are subject to subjectivity and the precision of the individual raters. Hence,
all labels must be considered imperfect with some degree of inherent variability. One may seek
multiple independent assessments to both reduce this variability and quantify the degree of
uncertainty. Existing techniques have exploited maximum a posteriori statistics to combine data
from multiple raters and simultaneously estimate rater reliabilities. Although quite successful,
wide-scale application has been hampered by unstable estimation with practical datasets, for
example, with label sets with small or thin objects to be labeled or with partial or limited datasets.
As well, these approaches have required each rater to generate a complete dataset, which is often
impossible given both human foibles and the typical turnover rate of raters in a research or clinical
environment. Herein, we propose a robust approach to improve estimation performance with small
anatomical structures, allow for missing data, account for repeated label sets, and utilize training/
catch trial data. With this approach, numerous raters can label small, overlapping portions of a
large dataset, and rater heterogeneity can be robustly controlled while simultaneously estimating a
single, reliable label set and characterizing uncertainty. The proposed approach enables many
individuals to collaborate in the construction of large datasets for labeling tasks (e.g., human
parallel processing) and reduces the otherwise detrimental impact of rater unavailability.
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I. Introduction
Numerous clinically relevant conditions (e.g., degeneration, inflammation, vascular
pathology, traumatic injury, cancer, etc.) correlate with volumetric or morphometric features
as observed on magnetic resonance imaging (MRI). Quantification and characterization as
well as potential clinical use of these correlations requires the labeling or delineation of
structures of interest. The established gold standard for identifying class memberships is
manual voxel-by-voxel labeling by a neuroanatomist, which can be exceptionally time and
resource intensive. Furthermore, different human experts often have differing interpretations
of ambiguous voxels (e.g., 5-15% coefficient of variation for multiple sclerosis lesions [1] or
10-17% by volume for tumor volumes [2]). Therefore, pursuit of manual approaches is
typically limited to either (1) validating automated or semi-automated methods or (2) the
study of structures for which no automated method exists. An often understood objective in
manual labeling is for each rater to produce the most accurate and reproducible labels
possible. Yet this is not the only possible technique for achieving reliable results. Kearns
and Valiant first posed the question whether a collection of “weak learners” (raters that are
just better than chance) could be boosted (“combined”) to form a “strong learner” (a rater
with arbitrarily high accuracy) [3]. The first affirmative response to this challenge was
proven one year later [4] and, with the advent of AdaBoost [5], boosting became widely
practical and is now in widespread use.

Statistical boosting methods have been previously proposed to simultaneously estimate rater
reliability and true labels from complete datasets created by several different raters or
automated methods [6-9]. Typically, there are very few raters available in brain imaging
research, and raters are generally considered to be superior to “weak learners.” Warfield et
al. presented a probabilistic algorithm to estimate the “ground truth” segmentation from a
group of expert segmentations and simultaneously assess of the quality of each expert [6]. A
similar approach was presented by Rohlfing et al. [8]. These maximum likelihood/maximum
a posteriori methods (hereafter referred to as Simultaneous Truth and Performance Level
Estimation, STAPLE [7]) increase the accuracy of a single labeling by combining
information from multiple, potentially less accurate raters (as long as the raters are
independent and collectively unbiased). The framework has been widely used in multi-atlas
segmentation [10-12] and has been extended to be applicable to continuous (scalar or vector)
images [13, 14].

For practical purposes and ultimately more widespread application, the existing STAPLE
framework has several limitations. First, existing descriptions of STAPLE require that all
raters delineate all voxels within in a given region. In practice, it is often difficult to achieve
this requirement since different sets of raters may delineate arbitrary subsets of a population
of scans due to limitations on rater availability or because of the large scale of the study.
Second, raters are often requested to label datasets more than once in order to establish a
measure of intra-rater reliability; but STAPLE is not set up to use these multiple ratings
when estimating the true label set. It is possible to account for multiple delineations by the
same rater; however, the traditional STAPLE model forces these delineations to be treated
as separate raters entirely. Third, raters are often divided into a class of “experts” whose
performances are previously characterized and “novices” whose performances have yet to be
established. Yet STAPLE has no explicit way to incorporate prior performance estimates
within its estimation framework. We find that the new formulae to address these concerns
involve only small changes to the summand subscripts appearing in the original algorithm,
which might be viewed as a relatively minor contribution. The equations, however, remain
optimal relative to the maximum likelihood criterion of STAPLE, an important condition
that neither heuristic nor ad hoc modification of the equations would guarantee. Thus, both
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the equations comprising the new algorithm that can be implemented under these common
conditions and the fact of their optimality are important contributions of this work.

Another criticism of the STAPLE framework is that it can produce dramatically incorrect
label estimates in some scenarios, particularly when raters are asked to delineate small or
thin structures and/or when there are too few raters or raters with highly inaccurate
segmentations. The cause of this type of failure has been interpreted as an estimation
instability due to the presence of anatomical structures with small or heterogeneous volumes
[12]. For example, the top row of Figure 1 illustrates a brain segmentation model (A) and a
seemingly reasonable observation (B); yet when several observations are statistically
combined (C), the result is worse than that from an individual rater. These catastrophic
errors are referred to as the label inversion problem associated with STAPLE. The result of
the label inversion problem is that STAPLE converges to a highly undesired local optimum
due to the fact that the raters are highly inaccurate. One of the major contributions of this
paper is the development of a technique to help alleviate the label inversion problem. Yet, as
Figure 1 also shows in (D)-(F), this catastrophic label fusion behavior does not occur using
the same label fusion approach but similarly distributed label models and rater reliabilities.
Such varied performance on similar problem types could explain both the successful (e.g.,
[6, 7, 13]) and less-than-stellar (e.g., [12]) literature reports regarding the utility of STAPLE.
Nevertheless, there has been contention about the comparison performed in [12] as it
compares STAPLE using a global prior to an algorithm that is initialized in a spatially
varying manner.

In this paper, we present and evaluate Simultaneous Truth and Performance Level
Estimation with Robust extensions (STAPLER) to enable use of data with missing labels
(i.e., partial label sets in which raters do not delineate all voxels), repeated labels (i.e., labels
sets in which raters may generate repeated labels for some, or all, voxels), and training trials
(i.e., label sets in which some raters may have known reliabilities — or some voxels have
known true labels). The incorporation of training data is equivalent to defining a data-driven
a priori distribution on rater reliability, which also may be generated using “catch trials”
against ground truth labels during routine labeling of other data sets. We consider this
information ancillary as it does not specifically relate to the labels on structures of interest,
but rather to the variability of individual raters. We therefore extend the STAPLE label
fusion methodology to include explicit, exogenously defined priors, and this capability can
be used to successfully counter the irregular estimation behavior described above.

STAPLER simultaneously incorporates all label sets from all raters in order to estimate a
maximum a posteriori estimate of both rater reliability and true labels. In this paper, the
impacts of missing and training data are studied with simulations based on two models of
rater behavior. First, the performance is studied using voxel-wise “random raters” whose
behaviors are described by confusion matrices (i.e., probabilities of indicating each label
given a true label). Second, we develop a more realistic set of simulations in which raters
make more mistakes along the boundaries between regions. Using these models within a
series of simulation studies, we demonstrate the ability of a priori probability distributions
(“priors”) on the rater reliabilities to stabilize the estimated label sets by conditioning the
rater reliability estimates. We present simulations to characterize the occurrence of
catastrophic failures of label fusion and show that priors on rater reliabilities can rectify
these problems. The performance of STAPLER is characterized with these simulated rater
models in simulations of cerebellar and brain parcellation.

For all presented experiments, we exclude consensus background regions as proposed in
[15]; however, we are specifically considering minimally trained raters and large numbers of
participants, so there are essentially no voxels (0.61% for the empirical data in Section I) for
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which there is consensus among all raters. For almost every slice, someone (sometimes
many people) executed the incorrect labeling task. Because of the scenarios we consider, the
use of specific consensus regions within the target is impossible. Furthermore, there has
been exciting work using multi-atlas registration using residual intensities [16] and a
plethora of voting methods using intensity information (reviewed in [17]). However, these
approaches are not appropriate for the problem under consideration because we consider
only manual raters in scenarios in which intensity information may or may not be relevant to
their task.

Most closely related to this work, is the idea proposed by Commowick et al. [18] in which a
parametric prior on the performance level parameters is examined. This approach operates
under the assumption that the performance level parameters are distributed as a Beta
distribution and can be extended to multi-label case in a straightforward iterative method.
This technique has been shown to provide a stabilizing influence on STAPLE estimates. On
the other hand, STAPLER provides an explicit method of taking into account training data
and provides a non-parametric approach to the problem. Moreover, STAPLER was
developed with the intent of utilizing data contributed by minimally trained raters and
training data is essential in terms of estimating accurate performance level parameters. The
approach proposed by Commowick et al. is mainly aimed at easing the duties of highly
trained expert anatomists so that the burden of segmenting all structures is dramatically
lessened.

II.Theory
A. Problem Statement

Consider an image of N voxels and the task of determining the correct label for each voxel.
Let  be the number of voxels for which the true label is known (i.e. training voxels),  be
the number of voxels for which truth is unknown (i.e. testing voxels) and these quantities are
such that they sum to N (i.e. ). For notational purposes, let N, , and  be the sets
of all voxels, training voxels and testing voxels, respectively. The set of labels, L, represents
the set of possible values that a rater can assign to all N voxels. Also consider a collection of
R raters that observe a subset of N, where it is permissible for each rater to observe voxel i ∈
N more than once. The scalar Dijr represents the rth observation of voxel i by rater j, where
Dijr ∈ {∅,0,1, …,L − 1}. Note, if rater j did not observe voxel i for the rth time then Dijr =
∅. Let T be a vector of N elements that represents the hidden true segmentation, where Ti ∈
{0,1, …, L − 1}.

B. The STAPLER Algorithm
The STAPLER algorithm provides 3 basic extensions to the traditional STAPLE algorithm.
These extensions are 1) the ability to take into account raters that did not observe all voxels,
2) the ability to take into account raters that observed certain voxels more than once and 3)
the ability to take into account training data (or catch-trials). The theory is presented
alongside the traditional STAPLE approach so that the extensions are made clear.

As with [7], the algorithm is presented in an Expectation Maximization (EM) framework,
which breaks the computation into the E-step, or the calculation of the conditional
probability of the true segmentation, and the M-step, or the calculation of the rater

performance parameters. In the E-step we calculate  which represents the probability
that voxel i has true label s on the kth iteration of the algorithm. In the M-step we calculate

 which represents the probability that rater j observes label s′ when the true label is s on
the kth iteration of the algorithm.
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C.E-step – Calculation of the conditional probability of the true segmentation
In the traditional STAPLE approach, it is guaranteed that all raters delineated all voxels
exactly once and the conditional probability of the true segmentation is given by:

(1)

where a s′ is the label decision by rater j at voxel i, p(Ti = s) is prior on the label

distribution, the denominator simply normalizes the probability such that .

In the present (STAPLER) scenario, raters are allowed to observe all voxels any number of
times (including zero). In this case, it can be shown using a straightforward derivation that
the correct expression for this conditional probability is found by simply adjusting the
product terms to exclude unobserved data points and adding an additional product term to
account for multiple observations of the same voxel:

(2)

where s′ is the rth observed label value by rater j at voxel i and ∅ indicates that rater j did
not observe voxel i for the rth time. The product over all r makes it possible to take into
account raters that either did not observe voxel i, or observed it multiple times. Note that for
both Eqs. (1) and (2), only the values of  are iterated over as the true label value for

 is already known. In other words,  where I is the indicator function.

D.M-step – Calculation of the rater performance parameters
Next, we consider how the presence of incomplete, over-complete and training data affect
the calculation of the performance level parameters. In [7], the update equation for
parameter estimates (for all raters observing all voxels and with no “known” data) was
shown to be:

(3)

where the denominator simply normalizes the equation such that . Additionally, it
is important to note that this implementation has no way of taking into account training data,
thus the summations are only iterated over .

To extend in this framework to the STAPLER case, we perform three modifications. First,
we only iterate over voxels that were observed by the rater. Second, we iterate multiple
times over voxels that were observed more than once by the same rater. Lastly, instead of
iterating only over the testing data, we iterate over all i ∈ N. The result of performing these
modifications is shown to be:
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(4)

where the numerator iterates over all observations by rater j that were equal to label s′ and
the denominator is a normalizing factor that iterates over all observed voxels by rater j. Note
that the calculation includes both the training data and the testing data. However, the true
segmentation for the training data is assumed to be known. Thus, it is straightforward to
compute the true rater performance for the training data and only iterate over the testing data
like the technique seen in Eq. (3).

(5)

where  is the number of times rater j observed label s in the training data, and  is the
observed performance parameters from the training data. Note, in situations where 
(i.e. significantly more training data than testing data) then it is unlikely that the testing data
would dramatically change the performance level estimates.

In Eq. (5), we consider what happens when training data is available that is, when the
reliabilities of a rater have been separately estimated in a previous experiment or when it is
otherwise reasonable to assume prior knowledge of a rater’s reliabilities. Training data may
be included in Eq. (5) as the introduction of data that has been labeled by a rater of known
reliability. If the rater represents a gold standard, then the associated confusion matrix is the
identity matrix, but one can use a “less than perfect” confusion matrix if the training data
“solution set” has imperfections i.e., if the experimental truth had been learned by STAPLE
(or STAPLER). The inclusion of training data in Eq. (5) can be viewed as an empirical (i.e.,
non-parametric) prior on the rater reliabilities. When no data is recorded for a rater, the
empirical distribution defines the rater’s reliability. As more data is acquired, the impact of
the empirical prior diminishes. We can generalize the impact of empirical training data on
the estimation of rater reliability through incorporation of an exogenously generated prior
probability distribution. For example, training data from a canonical, or representative, rater
may be used in place of explicit training data. Alternatively, an explicit prior may be
introduced by incorporation of data motivated by a theoretical characterization of raters for a
given task.

It is important to address the fact that in realistic situations it is unlikely that raters would
exhibit temporally or spatially constant performance. This idea has been addressed through
implementations that ignore consensus voxels [19] and a more recently proposed idea in
which spatial quality variations are taken into account using multiple confusion matrices per
rater [20]. STAPLER idealizes the situation by assuming that rater performance is consistent
enough such that the training data is an accurate depiction of a given rater’s performance.
From our initial experimentation, this assumption seems to be only slightly violated on
empirical data. Nevertheless, addressing spatial and temporal rater consistency variation is a
fascinating area of continuing research.
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E. Modification of the Prior Label Probabilities
There are several possible ways one could model theunconditional label probabilities (i.e.,
the label priors as opposed to the rater priors, described above). If the relative sizes of the
structures of interest are known, a fixed probability distribution could be used. Alternatively,
one could employ a random field model to identify probable points of confusion (as in [7]).
The simpler models have the potential for introducing unwanted bias while field based
models may suffer from slow convergence. Here, we use an adaptive mean label frequency
to update the unconditional label probabilities:

(6)

This simple prior avoids introducing substantial label volume bias, as would occur with a
fixed (non-adaptive) or equal probability prior. By introducing this prior Eq. (2) is now
modified to be

(7)

where the a priori distribution is modified at each iteration.

While we believe it is unlikely to occur in practice, it is possible in principle that using this
iterative global prior may prevent STAPLER from converging. This would occur if the
estimation was constantly oscillating between conflicting estimations for the performance
levels and the true segmentation. We have seen more accurate estimations of the true
segmentation occur using this prior; however, if convergence issues occur we suggest using
the traditional global prior described in [7].

III. Methods and Results
A. Terminology

In the following, we investigate the performance of STAPLE and STAPLER when used
with label observations from different categories of possible underlying “true” distributions
and from different classes of raters. We use several levels of randomization in order to
model and evaluate the different scenarios, and proper interpretation of our results requires a
common and consistent terminology throughout:

• A label is an integer valued category assigned to an anatomical location (e.g., pixel
or voxel).

• A label set is a collection of labels that correspond to a set of locations in a dataset
(typically, associated via spatial extent – e.g., an image).

• A truth model for a label set defines the true labels for each anatomical location.

• A generative label model is a definition for the probability of observing a particular
label set.

• A family of generative label models defines a series of related generative label
models.

• A rater is an entity (typically a person or simulated person) who reports (observes)
labels.
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• A rater model characterizes the stochastic manner in which a rater will report a
label given a true value of a label for a particular location.

Since we are considering STAPLE and STAPLER approaches without the use of spatial
regularization, the relative order of a label within a label set—i.e., its particular spatial
arrangement or location—does not impact statistical fusion. Therefore, the label size,
volume, or area is simply the number of pixels or voxels, and this number also directly
corresponds to label probability.

B. Data
Imaging data were acquired from two healthy volunteers who provided informed written
consent prior to the study. A high resolution MPRAGE (magnetization prepared rapid
acquired gradient echo) sequence was acquired axially with full head coverage (149×81×39
voxels, 0.82×0.82×1.5 mm resolution). In order to generate realistic simulated label sets,
ground truth labels were established by an experienced human rater who labeled the
cerebellum from each dataset with 12 divisions of the cerebellar hemispheres (see Figures
3B and 4A) [21, 22]. For additional experiments the a topological brain atlas with 12
topologically correct brain, cerebellar, and brainstem labels was used as a truth model [23].

Simulated label sets were derived from simulated raters using a Monte Carlo framework.
Two distinct models of raters (described below) were evaluated as illustrated in Figure 2 and
described below.

In the first model (“voxel-wise random rater,” see Figure 2A), each rater was assigned a
confusion matrix such that the i,jth element indicates the probability that the rater would
assign the jth label when the ith label is correct. Label errors are equally likely to occur
throughout the image domain and exhibit no spatial dependence. The background region is
considered a labeled region. This is the same model of rater performance as employed by the
STAPLE (or STAPLER) statistical framework. To generate each pseudo-random rater, a
matrix with each entry corresponding to a uniform random number between 0 and 1 was
created. The confusion matrix was generated by adding a scaled identity matrix to the
randomly generated matrix and normalizing column sums to one such that the mean
probability of true labels was 0.93 (e.g., the mean diagonal element was 0.93). Ten Monte
Carlo iterations were used for each simulation.

In the second model (“boundary random raters”, see Figure 2B), errors occurred at the
boundaries of labels rather than uniformly throughout the image domain. Three parameters
describe rater performance: r, l, and b. The scalar r is the rater’s global, true positive
fraction. The boundary probability vector l encodes the probability, given an error occurred,
that it was at the ith boundary. Finally the vector b describes the error bias at every boundary
which denotes the probability of shifting a boundary toward either bounding label. For an
unbiased rater, bi = 0.5, ∀i. Twenty-five Monte Carlo iterations were used for each
simulation. To generate a pseudo-random rater, the boundary probability vector was
initialized to a vector with uniform random coefficients and normalized to sum to 1. To
generate a simulated random dataset with a given boundary rater, the voxel-wise mask of
truth labels was first converted into a set of boundary surfaces. Then, the following
procedure was repeated for (1 – r) ∣B∣ iterations (where B is the set of all boundary voxels).

• A boundary surface (a pair of two labels) was chosen according to the l
distribution. If the boundary did not exist in the current dataset, a new boundary
surface was chosen until it did exist.

• A boundary point within the chosen surface was selected uniformly at random for
all boundary points between the two label sets.
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• A random direction was chosen Bernoulli(bi) to determine if the boundary surface
would move toward the label with the lower index or the label with the high index.

• The set of boundary voxels was updated to reflect the change in boundary position.
With the change in labels, the set of boundary label boundary pairs was also
updated.

In this study, the mean rater performance was set to 0.8 and the bias term was set to 0.5.
These settings were chosen as we felt it was a realistic model of unbiased rater performance.
Note that the boundary probability vector, l, was randomly initialized for each rater, which
helps ensure that each rater is still unique in the manner in which they observe each voxel.

C.Implementation and Evaluation
STAPLER was implemented in Matlab (Mathworks, Natick, MA). The implementations of
STAPLE and STAPLER presented in this manuscript are fully available via the “MASI
Label Fusion” project on the Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC, www.nitrc.org/projects/masi-fusion). The random rater framework and analysis
tools were implemented in the Java Image Science Toolkit (JIST, http://www.nitrc.org/
projects/jist/ [24, 25]). All studies were run on a 64 bit 2.5 GHz notebook with 4 GB of
RAM. As in [7], simultaneous parameter and truth level estimation was performed with
iterative expectation maximization.

Simulation experiments with random raters were performed with a known, true ground truth
model. The accuracy of each label set for Simulations 1 and 2 was assessed relative to the
truth model with the Jaccard similarity index [26, 27] for each labeled region:

(8)

where X is either an individual or reconstructed label set and Y is the true label set. Bars
indicate set cardinality. For Simulation 3 the Dice Similarity Coefficient (DSC) [28] is used
to analyze the accuracy of each label set:

(9)

where X and Y are defined in the same manner as Eq. (8). The Jaccard index and DSC range
from 0 (indicating no overlap between label sets) to 1 (indicating no disagreement between
label sets). Multiple label accuracy assessment techniques were used to diversify the
presentation of our analysis.

D.Simulations 1 and 2: Fusion of Incomplete and Over-Complete Datasets
Simulated label sets were generated according to the characteristic label sets and
randomized rater distributions. For each rater model (voxel-wise random raters and
boundary random raters), the following set of experiments was carried out. Traditional
STAPLE was first evaluated by combining labels from 3 random raters (Eqns. (1) and (3)).
Each of the three synthetic raters was modeled as having labeled one complete dataset.
STAPLER was evaluated by labels from three complete coverages where M total raters were
randomly chosen to perform each coverage (Eqns. (2) and (5)). Each rater delineated
approximately 1/Mth (i.e., each rater labels between 50% and 4% of slices with the total
amount of data held constant), where M is the number of raters used to observe each
coverage. Note that all simulations were designed such that each voxel was labeled exactly
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three times; only the identity of the simulated rater who contributed these labels randomly
varied.

Next, the advantages of incorporating training data were studied for both rater models by
repeating the STAPLER analysis with all raters also fully labeling a second, independent
test data set with known true labels (Eqns. (2) and (5)). Note, when M=1 (i.e. each rater
labeled the whole brain) and no training data is used STAPLER is equivalent to STAPLE. In
these simulations, explicit rater priors (e.g., priors not implied by training data) were not
used. The procedure was repeated either 10 or 25 times (as indicated) and the mean and
standard deviation of overlap indices were reported for each analysis method. As in the first
experiment, all simulations were designed such that each voxel was labeled exactly three
times; only the identity of the simulated rater who contributed these labels varied.

E. Simulation 1 Results: Incomplete Label Fusion with Voxel-Wise Random Raters
For a single voxel-wise random rater, the Jaccard index was 0.67±0.02 (mean ± standard
error across all regions over simulated datasets, one label set is shown in Figure 3C). The
traditional STAPLE approach with three raters visually improved the consistency of the
results (one label set is shown in Figure 3D), and the average Jaccard index increased to
0.98±0.012 (first column of Figure 3E). In the remaining experiments, the traditional
STAPLE algorithm cannot be used in a volumetric manner; although each voxel is labeled
exactly three times, the number of raters from which each label is selected is greater than 3,
and therefore STAPLER must be used. As shown in Figure 3E, STAPLER consistently
resulted in Jaccard indexes above 0.9, even when each individual rater labeled only 10
percent of the dataset. Additionally, the STAPLER performance where each rater only
observed a third of the dataset (3rd column Figure 3E) resulted in an equivalent performance
(in terms of Jaccard index) to the STAPLE approach (1st column Figure 3E). As the fraction
of the data observed decreased beyond a third, the STAPLER performance saw a slowly
degraded performance. For all STAPLER simulations, use of multiple raters improved the
label reliability over that which was achievable with a single rater (Figure 3E).

As shown in Figure 3F, use of training trials greatly improved the accuracy of label
estimation when many raters each label a small portion of the data set (Figure 3E). No
appreciable differences were seen when the number of raters providing the same quantity of
total data were varied (as indicated by the consistent performance across labeling fraction).

Lastly, it is important to note that, as with [12], a large number of observations by raters
were fused (e.g. more than 35). Theoretically, it is possible for dramatic numerical
instability issues to occur using double precision arithmetic with this many raters. However,
the authors of this paper did not see any evidence of mathematical instability during the
writing of this manuscript.

F. Simulation 2 Results: Incomplete Label Fusion with Boundary Random Raters
For a single boundary random rater, the Jaccard index was 0.83±0.01 (representative label
set shown in Figure 4B). Using three raters in a traditional STAPLE approach increased the
average Jaccard index to 0.91±0.01 (one label set shown in Figure 4E). As shown in Figure
4C, the STAPLER approach led to consistently high Jaccard indexes with as low as 25
percent of the total dataset labeled by each rater. However, with individual raters generating
very limited data sets (<10%), STAPLER yielded Jaccard indexes lower than that of a single
rater—clear evidence that use of multiple raters can be quite detrimental if there is
insufficient information upon which to learn their reliabilities. In a further analysis of this
scenario, we found that the off-diagonal elements of the estimated confusion matrices
become large and result in “label switching” (seen in Figure 4C and E-G). This behavior
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was not routinely observed in the first experiment, but is one factor that led toward increased
variability of Jaccard index in the second experiment (see outlier data points in Figure 3E).

As shown in Figure 4D and H-J, use of data from training trials alleviates this problem by
ensuring that sufficient data on each label from each rater is available. The Jaccard index
showed no appreciable differences when raters labeled between 4 percent and 100 percent of
the dataset. We also observed that the artifactual, large off-diagonal confusion matrix
coefficients were not present when training data were used. This is strong evidence that use
of training data stabilizes the reliability matrix estimation process and can be a key factor in
label estimation when using large numbers of “limited” raters.

G.Simulation 3: Relationship between Positive Predictive Value and Fusion Accuracy
In this simulation, we investigate the causes of the major failures of STAPLE and attempt to
relate it back to a single metric. We propose that the positive predictive value (PPV)
associated with the raters for each label could serve as a predictor for the quality relationship
between STAPLE, Majority Vote and STAPLER. We define the positive predictive value
for rater j as the probability that a given voxel has true label s, given that the rater observed
label s′. Note, this is closely related (Bayes rule) to the values of the performance level
parameters (confusion matrices) where each element represents the probably that rater j
observes labels s’ given that the true label is s.

In order to assess this relationship, we apply STAPLE, STAPLER and Majority Vote to
simulated label sets corresponding to a model in which there is one large label (80% of the
total volume) and eight small labels (each corresponding to 2.5% of the total volume). The
total volume was 100×100×25 voxels. A collection of five raters were used for all
experiments. All raters observed each voxel exactly once. In a series of 20 experiments, PPV
was linearly varied between 0.2 and 0.9. For each experiment, 10 Monte Carlo iterations
were used with raters constructed such that simulated confusion matrices were randomly
constructed with the specified PPV. All raters were equally likely to miss at all voxels (i.e.
the STAPLE model of rater behavior). The implementation of STAPLER used a collection
of training data that was the same size as the testing data. Thus, when calculating the
STAPLER performance level parameters, the training estimate provided an approximately
50% bias to final performance level estimates on the testing data. Matlab code to perform
the construction of random rater construction is included in the indicated repository.

H.Simulation 3 Results: Exploring Rater Priors and STAPLE’s Modes of Failure
The results (in terms of fraction voxels correct) for Majority Vote, STAPLE and STAPLER
with respect to the PPV are presented in Figure 5. STAPLER outperforms both STAPLE
and Majority Vote for all presented PPV’s. Interestingly, for PPV’s less than 0.7 Majority
Vote consistently outperforms STAPLE. Two-sided t-tests were performed to assess
differences between experiments. The reason for this is mainly attributed to the fact that
STAPLE is unable to converge to an accurate estimate of the performance level parameters.
However, by utilizing the training data STAPLER is able to provide a much more accurate
estimate of the true segmentation. Unfortunately, for low PPV’s the performance of all three
algorithms is quite poor.

The results seen in the inlay on Figure 5 are in line with the traditionally presented results
when comparing STAPLE and Majority Vote. As expected, for higher PPV’s STAPLE
begins to outperform majority and is able to improve the quality of the performance level
estimates used to estimate the true segmentation. STAPLER is consistently equal or better
quality than STAPLE. The prior for both STAPLE and STAPLER was set based upon the
empirically observed frequencies because the true prior would not be available in practice.
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This small simulation is consistent with more complete characterizations comparing
STAPLE with voting approaches (see review in [17]). The additional use of training data in
STAPLER enables more accurate determination of the prior and yields more consistent
results.

I. Empirical Example of STAPLER
Finally, quantitative differences between STAPLE and STAPLER were assessed in the
practical setting of collaborative labeling of the cerebellum with a high resolution MPRAGE
(magnetization prepared rapid acquired gradient echo) sequence. Whole-brain scans of two
healthy individuals (after informed written consent prior) were acquired (182×218×182
voxels), and each slice was cropped to isolate the posterior fossa. Both datasets were
manually labeled by a neuroanatomical expert in a labor intensive process (approximately
20 hours each). One dataset was designated for training and one for testing. The training
data was implemented as catch-trials so the raters were unaware when they were performing
training or testing data. Axial cross sections were created and presented for labeling for both
data sets. Thirty-eight undergraduate students were recruited as raters. For the axial set,
raters labeled between 5 and 75 slices (training: 521 total) and between 10 and 100 slices
(testing: 545 total). The raters participated at will for various lengths of time and labeled
randomized image sections. As such, overlap of slice contributions between raters was
sparse and STAPLE could not be used to simultaneously statistically fuse all data. To
compensate, STAPLE was applied on a slice-by-slice basis while STAPLER was applied
simultaneously to all data. For comparison, majority vote was also performed.

J. Empirical Example Results
Figures 6A-C present representative slices from the truth model and example observations
of that slice from the minimally trained undergraduate students, respectively. We are
specifically considering collaborative labeling by minimally (poorly) trained raters, so
individual observations vary dramatically. Figure 6D-E present representative STAPLE and
STAPLER estimates, respectively. The top portion of Figure 6F presents the accuracy of the
estimation (in terms of fraction voxels correct) for STAPLE, STAPLER and the individual
observations. It is important to note, however, that STAPLER is consistently as good as or
better than the upper quartile of the observations and also outperforms STAPLE for all
slices. The bottom part of Figure 6F presents a histogram indicating the number of
observations per slice. On average there were about fifteen observations per slice. As with
Figure 5, Majority Vote lies largely between the STAPLER and STAPLE approaches.
Lastly, Figure 6G represents the accuracy of the algorithms on a per label basis (excluding
background) in terms of the DSC. STAPLER significantly outperforms STAPLE on all
labels (two-sided t-test), and is significantly better than majority vote on all labels except the
vermis. This is mainly because of the fact that STAPLER is able to construct a significantly
more accurate estimate of the performance level parameters because of the ability to take
into account incomplete, over-complete and training data all at once.

IV. Discussion
STAPLER extends the applicability of the STAPLE technique to common research
situations with missing, partial, and repeated data, and facilitates use of training data and
reliability priors to improve accuracy. These ancillary data are commonly available and may
either consist of exact known labels or raters with known reliability. A typical scenario
would involve a period of rater training followed by their carrying out a complete labeling
on the training set. Alternatively, a model (parametric or empirical) of a typical rater could
be used to stabilize rater reliability estimates. Only then would they carry out independent
labeling of test data. STAPLER was successful both when simulated error matched modeled
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errors (i.e., the voxel-wise model) and with more realistic, boundary errors, which is
promising for future application to work involving efforts of large numbers of human raters.
STAPLER extensions are independent of the manifold of the underlying data. These
methods are equally applicable to fusion of volumetric labels [29-31], labeled surfaces [32,
33], or other point-wise structures.

With the newly presented STAPLER technique, numerous raters can label small,
overlapping portions of a large dataset, which can be recombined into a single, reliable label
estimate, and the time commitment from any individual rater can be minimized. This
enables parallel processing of manual labeling and reduces detrimental impacts should a
rater become unavailable during a study. Hence, less well trained raters who may participate
on a part-time basis could contribute. As with STAPLE, both the labels and degrees of
confidence on those labels are simultaneously estimated, so that subsequent processing
could make informed decisions regarding data quality. Such an approach could enable
collaborative image labeling and be a viable alternative to expert raters in neuroscience
research.

Decreases in reliability with low overlap were observed with STAPLER. This may arise
because not all raters have observed all labels with equal frequency. For smaller regions,
some raters may have observed very few (or no data points). During estimation, the rater
reliabilities for these “under seen” labels can be very noisy and lead to unstable estimates,
which can result in estimation of substantial off-diagonal components of the confusion
matrix (i.e., overestimated error probabilities). These instabilities were to be resolved
through inclusion of training data; the use of training data effectively places a data-adaptive
prior on the confusion matrix. Since each rater provides a complete dataset, each label
category is observed by each rater for a substantial quantity of voxels. Hence, the training
data provide evidence against artifactual, large off-diagonal confusion matrix coefficients
and improves estimation stability. Furthermore, without missing categories, there are no
undetermined confusion matrix entries.

The inclusion of priors on rater reliability can be seen as forming a seamless bridge between
pure STAPLE approaches (in which reliability is estimated) and weighted voting (which use
external information to establish relative weights). The former can be considered optimal
when raters are heterogeneous and sufficient data are available, while the latter are well-
known to be stable. In the proposed approach, the reliability priors have an impact inversely
proportional to the amount of data present for a particular label.

The characterization of STAPLE failure according to the positive predictive value (as
opposed to simply region size) opens significant opportunities for predicting when
additional regularization might be needed. Intuitively, positive predictive value is a natural
metric for assessing the likelihood of STAPLE failure. With low positive predictive value,
each label observation provides little information. For a constant overall true positive rate,
the average positive predictive value across voxels is constant; however, the positive
predictive value across labels can vary substantially due to heterogeneous region volume,
rater reliability, or relative proportion of observations per label class. We found that for five
raters, low positive predictive values STAPLE is generally outperformed by Majority Vote,
while for moderate positive predictive values (between 0.7 and 0.9 - generally considered to
be the expected operating range), STAPLE is shown to outperform Majority Vote.

Evaluation of STAPLER with heterogeneous labeled datasets is an active area of research.
Improvements in Jaccard index in the boundary rater model were less than that in the voxel-
wise random rater model (from 0.83 to 0.91 versus 0.67 to 0.98). In the voxel-wise rater
example, both the estimation and underlying error models were the same. In the boundary
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rater model, the model used during estimation was only a loose approximation of the
underlying mechanism. This result provides an indication that simple rater confusion models
may still be effective in practice (with human raters) when difficult to characterize
interdependencies that might exist between rater confusion characteristics, the data, and
temporal characteristics.

As with the original STAPLE algorithms, STAPLER can readily be augmented by
introducing spatially adaptive, unconditional label probabilities, such as with a Markov
Random Field (MRF). Yet, inclusion of spatially varying priors in statistical fusion is widely
discussed, but rarely used. Spatially varying prior parameters were suggested for STAPLE
in the initial theoretical presentation by Warfield et al [1]. However, almost uniformly,
literature reports using STAPLE have ignored spatial variation and instead opted for a single
global parameter (e.g., [1-10]). Hence, application of spatially varying priors remains a
tantalizing and important area of potential growth, but it is beyond the scope of the present
paper. This work provides an important and necessary “stepping stone” in the direction of
spatially varying priors. When we and/or others provide a more solid foundation for the
incorporation of spatially varying priors, the present paper will provide an existing approach
in scenarios where data are missing or redundant and for cases where consensus data are
unavailable due to either poorly trained or large numbers of raters.
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Figure 1.
Characteristic STAPLE failure and success. For truth label models (one slice shown in
A&D), fusion of multiple sets of reasonable quality random observations (such as in B&E)
can lead to decreased performance (such as in C) as seen through the dramatic label
inversion problem. A collection of 50 raters of quality similar to the observation seen in (B)
were used to generate the estimate seen in (C). This catastrophic segmentation error
occurred between 10% and 20% of the time the simulation was run. However, this behavior
is not ever present, even for models with small regions (as illustrated in the label fusion in
F). Note B&E were observed with the same rater reliabilities and C&F were each fused with
three observations per voxel.
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Figure 2.
Random rater models. In a voxel-wise model (A), the distribution of label probabilities
depends on the underlying true label, but does not depend on the local neighborhood or
spatial position. In a boundary random rater model (B), errors are uniformly distributed on
the boundaries between regions. Sampling of boundary errors is done iteratively with
replacement and model updating so that it is possible for cumulative errors to shift the
boundary by multiple voxels in any location. The “For B Events” panel indicates that the
procedure is performed for all boundary voxels. Boundary surfaces are stored at voxel
resolution on a Cartesian grid.
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Figure 3.
Simulations with voxel-wise random raters. Coronal sections of the three-dimensional
volume show the high resolution MRI image (A), manually drawn truth model (B), an
example delineation from one random voxel-wise rater (C), and the results of a STAPLE
recombination of three label sets (D). STAPLER fuses partial label sets, but performance
degrades with decreasing overlap (E). With training data (F), STAPLER performance is
consistent even with each rater labeling only a small portion of the dataset. Box plots in E
and F show mean, quartiles, range up to 1.5σ, and outliers. The highlighted plot in E
indicates the simulation for which STAPLER was equivalent to STAPLE--i.e., all raters
provide a complete set of labels.
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Figure 4.
Simulations with boundary random raters. Axial sections of the three-dimensional volume
show the manually drawn truth model (A) and sample labeling from a single simulated rater
(B) alongside STAPLER fused results from 3, 36, and 72 raters producing a total of 3
complete labeled datasets without training data (E-G) and with training data (H-J). Note that
boundary errors are generated in three-dimensions, so errors may appear distant from the
boundaries in cross-sections. Boundary errors (e.g., arrow in F) increased with decreasing
rater overlap. Label inversions (e.g., arrow in G) resulted in very high error with minimal
overlap. As with the voxel-wise rater model (Figure 3), STAPLER fuses partial label sets,
but performance degrades with decreasing overlap (C). With the addition of training data
(D), STAPLER sustains performance even with each rater labeling only a small portion of
the dataset.
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Figure 5.
Relationship between the accuracy of fusion algorithms and positive predictive value (PPV).
The accuracy of STAPLE, STAPLER and Majority Vote were assessed with respect to the
PPV. The PPV presented is the same for all 5 raters in each experiment with 10 Monte Carlo
iterations per PPV. The confusion matrices were constructed as to maintain the PPV for each
rater. Each rater was equally likely to make a mistake at all voxels (i.e. the STAPLE model
of rater behavior holds). The results of a two-sided t-test can be seen next to each of the data
points, where red corresponds to the test between STAPLER and majority vote, and blue
corresponds to the test between STAPLER and STAPLE. Note, ** indicates p < 0.001, *
indicates p < 0.05, and NS indicates that the results were not significant. The results indicate
that for PPV’s less than 0.7 Majority Vote consistently outperforms STAPLE despite the
fact that the expected STAPLE of model of rater behavior holds. STAPLER outperforms the
other algorithms for all PPV’s. The inlay shows that for PPV’s between 0.7 and 0.9
(generally considered the normally operating range) STAPLE is nearly as good as
STAPLER and outperforms Majority Vote.
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Figure 6.
Empirical experiment using axial cross-section of cerebellar data to assess the performance
of STAPLE (on a slice-by-slice basis) and STAPLER (volumetric fusion). The
representative slices shown in (A) – (C) present an example truth model, and observations
by minimally trained undergraduate students, respectively. The slices seen in (D) and (E) are
the estimated labels by STAPLE and STAPLER, respectively. The plot on the top of (F)
shows the accuracy on a per slice basis of the observations (box plots) STAPLER (green),
STAPLE (blue), and majority vote (red). The histogram on the bottom of (F) shows the
number of observations per slice. Lastly, the plot seen in (G) shows the difference in DSC
between STAPLER, STAPLE, and majority vote on a per label basis. The legend for these
label numbers can be seen at the bottom of (G).
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