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Abstract
Principled techniques for incomplete-data problems are increasingly part of mainstream statistical
practice. Among many proposed techniques so far, inference by multiple imputation (MI) has
emerged as one of the most popular. While many strategies leading to inference by MI are
available in cross-sectional settings, the same richness does not exist in multilevel applications.
The limited methods available for multilevel applications rely on the multivariate adaptations of
mixed-effects models. This approach preserves the mean structure across clusters and incorporates
distinct variance components into the imputation process. In this paper, I add to these methods by
considering a random covariance structure and develop computational algorithms. The attraction
of this new imputation modeling strategy is to correctly reflect the mean and variance structure of
the joint distribution of the data, and allow the covariances differ across the clusters. Using
Markov Chain Monte Carlo techniques, a predictive distribution of missing data given observed
data is simulated leading to creation of multiple imputations. To circumvent the large sample size
requirement to support independent covariance estimates for the level-1 error term, I consider
distributional impositions mimicking random-effects distributions assigned a priori. These
techniques are illustrated in an example exploring relationships between victimization and
individual and contextual level factors that raise the risk of violent crime.
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1 Background
Multivariate data encountered in social, behavioral and medical sciences often have a
hierarchical or multilevel structure due to observational units nested within naturally
occurring groups (e.g. patients within doctors, individuals within neighborhoods). Higher
levels of hierarchies are also common, such as those seen in longitudinal studies of patients
nested within doctors. In these studies, obtaining estimates of the effects and associated
standard errors in a manner that fully incorporates the study design (e.g. clustering) is
generally the main goal of the statistical analysis. In this pursuit, mixed-effects models have
been very useful as they allow explicit modeling of the corresponding cluster-specific
random-effects and distinct variance components.

In practice, the existence of arbitrary missing value patterns in clustered data applications is
arguably the most common analytical challenge. Failing to adopt principled solutions that
ignore relationships, variations (e.g. between and within cluster) and missing-data
uncertainty may lead to biased inferences. Here I consider model-based multiple imputation
(Rubin 1987, Schafer 1997b) for drawing inferences for multivariate incomplete multilevel
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data. This approach consists of two distinct but often complimentary models: (1) a model
used to produce multiple imputations, also known as imputer’s model, typically chosen to
reflect key features of data as well as causes of missingness (Rubin 1987; Schafer 1997b;
Schafer and Yucel 2002); and (2) a model known as an analyst’s model, chosen to
investigate scientific hypotheses of the study with the incomplete data (Schafer and Graham
2002; Rubin 1987; Meng 1994).

What is the appropriate way to impute missing values in multilevel data? Two crucial
criteria are to incorporate unique design features such as clustering and preserve important
relationships among variables of the current and future analyses in the imputations (see
detailed discussion by Little and Rubin 2002, Rubin 1987, Schafer 1997b). In this regard,
multivariate generalizations of linear mixed-effects models are natural choices as they
preserve correlation structures arising from multilevel structures. Similar models have been
considered in several studies (e.g. Schafer and Yucel 2002 and Liu, Taylor, and Belin 2000)
and also have been implemented in the software packages R and MLwiN (R Development
Core Team 2007, Rasbash, Steel, Browne, and Prosser 2006). The main difference between
the models developed in this paper and those in previous papers relates to the distributional
assumption on the variance-covariance term of the level-1 error ε. Here I allow the variances
and covariances of this term to randomly vary across the clusters, mimicking the idea
underlying random-effects. Consider, for example, clustered data where the ultimate interest
is to explain the variation in a certain trait among the respondents. In the example that
follows, this trait is whether the individual has been burgled. A standard mixed-effects
model puts a structure on the means (or probabilities) so that they are allowed to vary across
the clusters. While this might be a reasonable approach in most applications, certain
applications may require the preservation of higher order relationships. The idea of random-
covariances allows clusters to have varying two-way relationships between being burgled
and other key covariates such as income or ethnic heterogeneity of the cluster.

In multilevel data, models addressing the analyst’s substantive research goals underlie the
incorporation of distinct variance sources into the estimation. Since the landmark paper of
Laird and Ware (1982), an extensive literature has developed that discusses a range of
model-fitting techniques and applications, including Diggle, Liang, and Zeger (1994),
Vonesh and Chinchilli (1997), Pinheiro and Bates (2000), Verbeke and Molenberghs (2000),
McCulloch and Searle (2001), Demidenko (2004), and Fitzmaurice, Laird, and Ware (2004).
Together, these provide a clear and comprehensive discussion of state-of-the-art methods for
estimation, testing, and prediction in the context of linear, generalized linear, and nonlinear
mixed-effects modeling. In addition, a broad array of applications are presented with a
complete discussion of available software tools for implementation of existing methods.
Methods allowing distinct estimation of covariance matrices have been considered by
Daniels (2006) and Pourahmadi, Daniels, and Park (2007).

Under MI inference, the imputer’s model is used as a basis for creating the multiple
imputations of missing values to be used in the substantive analyses. This is the stage where
the problem of missing responses or covariates to be used in the substantive analysis is
solved. Once missing values are multiply imputed, say m times (in most problems m < 10),
an analyst’s model is fitted with these imputed data, resulting a set of m coefficients and
associated standard errors. These results are then combined using rules by Rubin (1987).
Other combining rules that operate on other inferential quantities (e.g. p-values) are also
available, see for example Li, Meng, Raghunathan, and Rubin (1991) and Rubin (1987).

1.1 Example
The methods developed here were motivated by a missing-data problem in the Seattle crime
victimization survey (Rountree, Land, and Miethe 1994). The sample consists of 5,302
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adults within 600 Seattle city blocks. The city blocks were paired within 300 clusters or
neighborhoods. Data were collected by telephone interview. Details of the sample design
and interview procedure are given by Miethe and MacDowall (1993).

One analysis from this study involved modeling individual risk of violent crime and
burglary victimization as a function of both individual crime opportunity factors
(individual’s socioeconomic characteristics, routine activities and lifestyle) and contextual
or neighborhood factors (e.g. ethnic heterogeneity). Burglary victimization is treated as the
response variable for the purposes of motivating and illustrating the methods. Specifically,
the substantive model is a hierarchical logistic mixed-effects regression model for the
probability of being burgled. In the original study, cases with incomplete observations were
discarded because the modeling procedure could not handle missing covariates. Summaries
of the data along with the proportion of missing data are given in Table 1.

Missing-data patterns indicate that covariates and response variables are missing in a non-
overlapping fashion. There are only 18 missing values in the response variable, however, the
key covariates such as family income or race are missing for 589 (11.11%) and 66 cases
(1.25%), respectively. Overall, a complete-case only model-fitting procedure would
eliminate 13.22% of the sample, potentially biasing the inferences to those who are less
likely to be burgled. If the only variable subject to missingness were the response variable,
then the theory of mixed-effects model indicates that inferences are valid under the
assumption of missing at random. As this is not the case, I proceed with the inference by MI
leading to asymptotically valid inferences under MAR (Rubin 1987).

Inference by MI offers a more efficient and objective way to draw inferences in the case of
missing covariates than complete-case-only analysis. An important consideration in this
problem is how to preserve clustering and important substantive relationships in the
imputation model. These points are discussed in the following sections. As the relationship
between the response and other covariates vary by cluster or neighborhood, I extend the
current joint imputation models for clustered data (Schafer and Yucel 2002; Yucel 2008) to
allow random covariance matrices at level 1 in addition to the random-effects at higher
levels which preserve the substantively important relationships in imputations.

The remainder of this paper is organized as follows. Section 2 briefly introduces
fundamental concepts in MI inference such as the missing-data mechanism and EM-and-MI-
based techniques. Sections 3 and 4 introduce key models of this paper and computational
algorithms for fitting these models. Finally, Section 5 illustrates the MI inference under a
random-covariance approach. A discussion of current and future research on these topics
concludes the paper.

2 Key concepts and methods for missing data
2.1 Missing-data Mechanism

Regardless of the method of choice to draw inferences in the presence of missing values, a
certain mechanism generating the missing values must be assumed. Below brief definitions
of these missingness mechanisms are given, and for more details readers are referred to
Rubin 1987 or Schafer 1997b.

Let R denote a matrix of indicator variables whose elements are 0 or 1, identifying whether
elements of a data matrix Y are missing or observed, denoted as Ymis and Yobs, respectively.
The missing values are said to be MAR if P(R | Yobs, Ymis, θ) = P (R = r | Yobs = yobs, θ),
holds for all θ, where θ contains all unknowns of the assumed model. This assumption states
that the the probability distribution of the missingness indicators may depend on the
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observed data, but given these, not on the missing values. In applications where MAR is a
reasonable assumption, MI gives valid inferences. While it is impossible to formally test
MAR, an important attraction of model-based MI is in its ability make the models richer to
account for missingness (by relying on extra information on Yobs or auxiliary information).

A special case of MAR is missing completely at random (MCAR) in which P(R | Yobs =
yobs, Ymis, θ) = P (R | θ), for all θ. In MCAR, the probability distribution of missingness is
independent of both the observed and missing data. MCAR is often seen as a very restrictive
assumption as it essentially regards incomplete cases as a random subsample, which can be
formally tested. Thus, analyses ignoring incomplete cases are only valid under MCAR.
Finally, if MAR is violated, the probability distribution depends on the missing values and
the missingness mechanism is said to be missing not at random (MNAR). In the case of
MNAR, a joint probability model must be assumed for the complete data as well as R, the
missingness indicators.

Models presented here assume that the missingness mechanism is ignorable in the sense
defined by Rubin (1977), i.e. the missing data are MAR and the parameters of the
missingness distribution and complete-data distribution are distinct (see a more detailed
discussion in Rubin (1987) or Schafer (1997b)). When carrying out a likelihood-based
analyses, the “ignorability” assumption merely means that missingness mechanism can be
ignored when performing statistical analyses.

2.2 Principled methods for handling missing values
Several criteria qualify a method as a principled method for dealing with missing values.
First the method of choice should be capable of carrying important relationships among
variables (both between and within clusters) or between completely-observed and
incompletely-observed variables into the substantive analyses. Second, it should incorporate
distinct variance sources such as those seen in clustered data. Third, uncertainty introduced
by the missing values and the analytical method tackling missing values should be
quantified and/or incorporated into the uncertainty measures. In most cases, failure to adopt
principled methods in dealing with missing data may result in biased estimates (e.g.
regression coefficients) and inaccurate statements on uncertainty measures of these
estimates (Rubin 1987, Little and Rubin 2002, Schafer 1997b). Therefore, methods such as
case deletion and most ad hoc methods of single imputation are not preferred for any
missing data problem as the required assumptions (e.g. MCAR) are often implausible.

The current state of the principled methods centers around the model fitting techniques (e.g.
EM-type algorithms) and MI inference. Model fitting techniques tend to be problem-specific
and have been well-addressed in the literature (see Schafer 1997b, Little and Rubin 2002 or
Schafer and Yucel 2002). Another increasingly popular method for analyzing incomplete
datasets is multiple imputation. In multiple imputation, missing data are treated as an
explicit source of random variability to be averaged over, with the averaging being carried
out by simulation. In some problems the process of creating imputations usually involves
Markov Chain Monte Carlo (MCMC) techniques such as the Gibbs sampler and the
Metropolis-Hastings algorithm. To produce the imputations, some assumptions about the
data (typically a parametric model) and the mechanism producing missing data need to be
made. As briefly mentioned in the previous section, the imputation model should be
plausible and should be somewhat related to an analyst’s investigation (Schafer 1997b,
Meng 1994).

In any given problem, it may be possible to handle the missing values either by EM-type
methods or by multiple imputation. Inference by multiple imputation may have some
practical advantages. Multiple imputation provides complete datasets for subsequent
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analyses, allowing the analyst to use their favorite models and software. This point is
important as imputation models can be made much richer than the models serving
substantive goals. Thus, in practice, imputation models account for reasons for missingness
(by including additional variables such as those on the causal path) and serve for multiple
substantive purposes. Another possible reason for preferring multiple imputation is that it
avoids the problem of there being no algorithm or procedure available to maximize the
potentially complicated observed likelihood. Furthermore, because multiple imputation
treats missing data as an explicit source of variation, it allows the analyst to quantify
missing-data uncertainty in addition to that of ordinary sampling variability.

3 Imputation models
3.1 Multivariate fixed-covariance and mixed-effects (FCME) models

For the purposes of creating multiple imputations, variables subject to missingness are
viewed as responses and a model is imposed on them to formulate the predictive distribution
of the missing values, given the observed values. One such model was considered by
Schafer and Yucel (2002), Liu, Taylor, and Belin (2000), and Yucel (2008) where
multivariate adaptation of the well-known linear mixed-effects models were used to model
multivariate responses with incomplete observations. Notationally, suppose yi is an ni × r (r
> 1) matrix of multivariate responses for sample unit i, i = 1, 2, …, m, where each row of yi
is a joint realization of the variables Y1, Y2, …, Yr. The Multivariate adaptation of (2) is

(1)

where Xi (ni × p) and Zi (ni × q) are known covariate matrices, β (p × r) is a matrix of
regression covariates common to all units (the “fixed effects”), and bi (q × r) is a matrix of
coefficients specific to unit i (the “random effects”). Random effects are assumed to be
distributed as vec(bi) ~ Nq×r(0, Ψ) independently for i = 1, …, m (the “vec” operator
vectorizes a matrix by stacking its columns). Depending on the application and number of
variables modeled, these random-effects may be allowed to be a priori independent, leading
to a block-diagonal Ψ. Traditional mixed-effects models assume that the ni rows of r−
dimensional vectors of εi are independently distributed as Nr(0, Σ). Some versions of mixed-
effects models put further structures on Σ such as an auto-regressive structure in longitudinal
studies. For the purposes of creating multiple imputations, an unstructured version of Σ is
preferable where possible to fit.

3.2 Multivariate random-covariances and mixed-effects (RCME) models
Recall the example given in Section 1, where the associations are believed to vary randomly
across the neighborhoods, even after accounting for some of the observable characteristics at
the contextual and individual levels. When using a model of the form (1), one explicitly
assumes equal covariance matrices for the errors in εi across all the clusters, i = 1, 2, …, m.
When data or subject-matter relevance indicate that a heterogeneous covariance matrix is
more appropriate, one might assume

(2)

where r × r covariance matrices Σ1, Σ2, …, Σm vary. Here “vec” operator is used to stack the
columns of a matrix.
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Depending on the size of yi, it may be possible to estimate a separate Σi for each individual
or cluster. When the data are too sparse to support independent estimates for Σ1, Σ2, …, Σm,
it makes sense to specify a model in which they are randomly sampled from a population,
mimicking the idea of including random-effects in a mixed-effects model. In the Seattle
victimization survey, for example, an imputation model of the form (1) with error terms in
(2) could be employed to jointly impute missing responses and covariates. In this example,
the large number of subject-specific parameters would create problems if we tried to
estimate Σ1, Σ2, …, Σm separately.

For simplicity, we assume that the heterogeneous covariance matrices are sampled from an
inverted-Wishart population. The motivation for this is similar to the motivation regarding
b1, b2, …, bm as a sample from N (0, Ψ). Assuming that random effects are drawn from a
common distribution allows the pooling information across clusters. Thus poor estimation of
subject-specific parameters often does not have a significant impact. This random
covariance model preserves random variation in the variances and covariances across the
clusters, which is analogous to allowing fixed by random interactions among the variables.

In this new model which I call the random-covariances and mixed-effects (RCME) model,
the response matrix yi (ni × r) for an individual or cluster i is expressed as

(3)

where Xi and Zi are completely-observed covariate matrices. Further

(4)

(5)

and , independently for i = 1, 2, …, m, where a ≥ r, A > 0 are the
degrees of freedom parameter and scale matrix of the Wishart distribution.

In the following section, I describe a MCMC algorithm for fitting the RCME model, and
hence imputing the missing data.

4 MCMC algorithm under RCME model for creating multiple imputations
Following the conventional notation in the missing-data literature, let Yobs = (y1(obs), y2(obs),
…, ym(obs)), Ymis = (y1(mis), y2(mis), …, ym(mis)). Further, let θ = (β, Ψ, a, A), B = (vec(b1), …,
vec(bm))T, and Σ̃ = (Σ1, Σ2, …, Σm) denote the unknown parameters, random-effects and the
set of random covariance matrices, respectively.

The RCME model (3) has unknown components Ymis, θ, B and Σ̃. For the purpose of
imputation we only need draws of Ymis, but in order to simulate proper values of missing
data, we need to take into account the uncertainty introduced by other unknowns.

Simulation of these unknowns is accomplished in a four-step Gibbs sampler. The steps of
the Gibbs sampler are
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(6)

(7)

(8)

(9)

Executing this cycle repeatedly creates sequences {θ (1), θ (2), …} and { }
whose limiting distributions are P(θ|Yobs ) and P (Ymis |Yobs ), respectively.

A prior distribution for θ must be specified to derive the conditional distribution (6). We
follow the same practice as before for the prior distributions for β and Ψ, which is to set Ψ−1

~ W(ν, Λ), where ν ≥ qr and Λ > 0, and to assign a uniform prior ‘density’ over  to β. For
a and A, we adopt the new prior distributions

(10)

where γ, Γ and η are user-specified hyperparameters. Note that a, the degrees of freedom
parameter of the Wishart distribution, must be greater or equal to r in order for A−1 to exist.
I address this issue by working with a transformed version u = log(a + r) which may take
values on the real line.

4.1 Simulation of θ
First, consider the problem of drawing Ψ and β from P(θ| Y, B, Σ̃). Since bi | Ψ ~ N(0, Ψ)
independently for i = 1, 2, …, m and Ψ−1 ~ W(ν, Λ), Bayes’ theorem implies that Ψ−1 | B ~
W(ν + m, (Λ−1 + BTB)−1). As a result, the updated value of Ψ−1, at iteration t is drawn from
W(ν +m, (Λ−1+(B(t))TB(t))−1). For drawing the fixed effects β, ordinary least-squares
coefficients are calculated to initialize the Gibbs sampler:

and draw β (t+1) from a multivariate normal distribution centered at β ̂ (t) with the covariance
matrix

Yucel Page 7

Stat Modelling. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Drawing the scale matrix A(t+1) is similar to drawing Ψ,

where .

Simulating a(t+1) from its marginal posterior distribution  completes the step (6).
Unfortunately, this cannot be simulated directly. P(a | Σ̃) has the form

(11)

which is not a recognizable distribution. One can, however, approximate (11) to draw the
value of a from a nearby distribution and correct for the approximation by a Metropolis-
Hastings step. Using the parameterization u = log(a + r), we have

(12)

Given a current simulated value u(t), I sample a candidate value u† from a density function
h(u†) that approximates the marginal posterior P(u | Σ̃). We then calculate the acceptance
ratio

(13)

and set

where v ~ U(0, 1) is a uniform random variate. The algorithm defined above is a special type
of Metropolis-Hastings algorithm which Tierney (1994) has called an independence
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sampler. It has the desired property of an MCMC method, i.e. as t → ∞, {u(t)} converges in
distribution to P(u | Σ̃), provided that h(u) is nonzero over the support of P(u | Σ̃). The
convergence is fast when h(u) is a good approximation to P(u | Σ̃). It is recommended to
choose h(u) so that it has heavier tails than P(u | Σ̃) (Gelman, Carlin, Stern, and Rubin 2004).
Doing so will improve the possibility that the candidate values fall into the region of
posterior density and reduce the chance of “getting stuck” in the tails of P(u | Σ̃).

My approximation to P(u | Σ̃) is based on the t4 distribution, which is centered at the mode
of P(u | Σ̃),

(14)

where um denotes the mode of P(u | Σ̃), , and

The use of t4, suggested by Gelman, Carlin, Stern, and Rubin (2004), offers a reasonable
compromise between matching the shape of P(u | Σ̃) and keeping the tails of h(t) heavy. A
Newton-Raphson algorithm is used to calculate um, the mode of P (u | Σ̃).

4.2 Simulation of random effects, random covariances and missing data
Using the new random values of θ, I proceed to draw new random values of the random
effects b1, b2, …, bm from P (bi | Y, θ, Σ̃). Note that this step, (7), is almost identical to that
of Gibbs operating under the FCME model as given in (1) (Schafer and Yucel 2002, Yucel
2008, Liu, Taylor, and Belin 2000); the only difference is that we now have different Σi’s for
different clusters instead of the same Σ. After some algebra, we have the following
conditional posterior distribution for the random-effects,

where  and .

In step (8) of the Gibbs sampler, values of Σ1, Σ2, …, Σm are updated using the most recent

values of θ (t+1), B(t+1), and . Note that under model (3) specifications, the pairs (yi, Σi)
are distributed as

Yucel Page 9

Stat Modelling. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



independently for i = 1, 2, …, m. It follows that the updated random value of  is drawn
from the distribution

The final step is to draw new values of εi from the conditional distribution given in (9),
based on the updated values of the other unknown quantities. Note that, within cluster i,
given the unknown values of θ, B and Σ̃, the rows of εi = yi − Xiβ − Zibi are independent and
normally distributed with mean zero and covariance matrix Σi. Therefore, in any row of εi,
the missing elements have an intercept-free multivariate normal regression on the observed
elements; the slopes and residual covariances for this regression can be quickly calculated
by inverting the square submatrix of Σi corresponding to the observed variables. Drawing
the missing elements in εi from these regressions and adding them to the corresponding
elements of Xiβ + Zibi completes the simulation of Yi(mis).

4.3 Implementation issues
In practice one needs to monitor the convergence behavior of the MCMC algorithm. The
convergence of (6)–(9) is influenced by rates of missing information in y1, y2, …, ym and the
degree to which the individual random effects b1, b2, …, bm and Σ1, Σ2, …, Σm can be
estimated from the data. Gibbs samplers are slowest when the number of clusters (m) is
large and the unknown random-effects and variance-covariance matrices are poorly
estimated. As an example, poor estimation for random-effects occurs when the within unit

precision matrices  are small relative to the between-unit precision Ψ.
Intuitively, as the number of subjects or clusters m grows, the random values of Ψ, a, and A
produced at each cycle of the algorithm will be close to their previous values, inducing a
high degree of dependence.

When modeling a large number of response variables at once, it may be advantageous to
restrict Ψ to a block-diagonal structure—not only for the purpose of obtaining prior guesses,
but also when running the Gibbs sampler itself. If Ψ is block-diagonal, then independent
inverted Wishart prior distributions may be applied to the q × q nonzero blocks,

 for j = 1, 2, …, r. Weak priors are obtained by setting νj = q and 
where Ψj is an estimate or prior guess for Ψj. The distributions for these blocks in step (6)

become  where , and bij is the jth column of
bi.

The choice between an unstructured or block-diagonal Ψ will depend on both theoretical and
practical considerations. A block-diagonal structure indicates no a priori associations
between the random effects for any two response variables Yj and Yj′. In a multivariate
cluster sample with many variables, many units per cluster, but relatively few clusters, it
may simply not be possible to estimate covariances among the random effects for all
response variables. It is important to note that even if Ψ is block-diagonal, the columns of bi
are not independent in an a posteriori sense because the posterior covariance matrix, Ui, is
not block-diagonal.
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5 Application: Seattle crime victimization survey
5.1 Preliminary analyses

This section illustrates the imputation procedures on data drawn from the Seattle crime
victimization survey (Rountree, Land, and Miethe 1994). The sample consists of 5,302
adults within 300 clusters (each of cluster is defined as a paired city blocks). Data were
collected by telephone interview. Preliminary analyses of these data indicate low
percentages of missingness across the items making up the variables used in the substantive
analyses (see Table 1 for descriptive statistics and % missingness). The seriousness of the
missing-data problem is realized when investigating the missingness patterns:
disproportionate distribution of burglary victimization across the key covariates raises a
valid concern for subjective conclusions under an analysis ignoring incomplete cases.

In a previous set of analyses, Rountree, Land, and Miethe (1994) investigated victimization
using individual and contextual factors. Hierarchical logistic regression models were used to
predict the risk of individuals’ burglary victimization. Rountree, Land, and Miethe (1994)
thoroughly analyzed the victimization survey data and found that certain individual crime
opportunity factors in addition to contextual ones are important predictors of the risk of
victimization. For the purposes of illustrating multiple imputation under the RCME model, I
will assume that the model given below serves the investigators’ goals of modeling burglary
victimization as a function of individual and contextual factors. Table 2 shows the estimates
of the following random-intercept only hierarchical logistic regression model using the 4601
complete cases (R package lme4 by Pinheiro and Bates (2000) was used to compute these
estimates).

(15)

where i, j denote data points (i = 1, 2, …, 300 indicating the neighborhoods and j = 1, 2, …,
ni indexing individuals within neighborhoods) and ui denotes the cluster-specific intercept
term (random intercept) assumed to be .

Consistent with the previous findings (Rountree, Land, and Miethe 1994; Miethe and
MacDowall 1993), significant associations of burglary victimization with whether the home
is left unoccupied, family income, amount of expensive goods at home, and whether the
occupant lives alone are seen. A unit increase in the number of safety precautions results in
about 8% decrease in the odds of burglary. Age, gender and race are also negatively
associated but they are not statistically significant. Rountree, Land, and Miethe (1994) used
models similar to (20) to investigate how the risk of violent and property victimization are
affected by individual and contextual-level characteristics. From the estimates presented in
Table II, we see that neighborhood incivilities play a major contextual role in predicting
victimization. In contrast to this finding, ethnic heterogeneity and busy places, measured in
number of places near the respondent’s residence are not statistically significant.

5.2 Inference by multiple imputation
5.2.1 Imputation models: FCMC and RCME—The model given by (20) and other
substantive models of this form allow the effects of some variables on burglary victimization
to vary by neighborhood. In this example, missing data pose critical threats to the validity of
analyses, including biased regression coefficients and standard errors. How should one
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handle the missingness among variables which will be employed as both responses and
covariates? As described in Section 1.1, because a significant portion of the missingness is
due to incomplete covariates, inference via multiple imputation will be employed to prevent
inefficient use of these data and potential biases.

This section explores two alternative joint modeling approaches for conducting MI
inference: RCME (varying level-1 variance and covariance matrices) and FCME (fixed
level-1 variance and covariance matrix). The main advantages of FCME is to preserve the
varying mean structure across the clusters and RCME improves this by preserving the
effects of the key covariates (of the substantive model) on the burglary victimization across
the clusters in the imputed datasets. Below I explain the specification of the imputation
model (6) with respect to both RCME and FCME which differ in the specification of the
error term. The latter has the specification given by (9) with the inverted Wishart hyper-
prior. The missing values in both the response and covariates of the model (20) are imputed
using these models, and finally the model (20) or the analyst’s model is fitted with these
imputed datasets. Then, the results are combined using rules by Rubin (1987) (MI
estimates).

I will now illustrate the use of multiply-imputed datasets with an analysis of predictors of
burglary victimization. I drew 50 independent imputed datasets from a converged MCMC
chain (the computational details on convergence are given below), under both the FCME
and RCME models. The response variables of the imputation models were burglary
(whether or not individual has been burgled), age, race, number of evenings the home was
unoccupied last week, whether the person lives alone and family income. Both imputation
models included main effects for gender, number of safety precautions taken, an indicator of
how “busy” the neighborhood is, neighborhood incivility and neighborhood ethnic
heterogeneity. Note that all of the covariates in the imputation models are completely-
observed. This model was chosen to impute all variables that are subject to missingness and
had some degree of relevance in the substantive model as well as on the causes for
missingness. The intercepts for all of the variables were allowed to randomly vary among
neighborhoods as well as the slopes for the covariates gender, number of expensive goods
owned, and number of safety precautions taken so that the imputation models are compatible
with the substantive model.

5.2.2 Computational details—A practical question in creating MIs is how to monitor the
convergence of the underlying Gibbs sampler. This question is crucial as it is the
fundamental computational tool used to sample the missing values from their posterior
predictive distribution of missing data. As noted by many, including Gelman, Carlin, Stern,
and Rubin (2004) and Schafer (1997a), there are two general issues with the convergence:
(1) whether the simulations are representative of the predictive distribution of missing data
P(Ymis | Yobs ), and (2) whether the successive draws are significantly correlated. These two
issues, individually or collectively, can seriously damage the overall quality of inferences in
terms of accuracy and representativeness of the target distribution. Simple investigation of
time series plots and autocorrelation function plots is often indicative of the interdependency
of the successive draws. These plots can be used to assess the convergence behavior and to
determine the number of iterations needed to achieve independent samples from the desired
distributions P(Ymis |Yobs ) and P (θ| Yobs ). Running multiple independent chains from
common starting values and checking if they converge to the same P(Ymis | Yobs ) are also
powerful and practical tools to monitor the convergence.

To assess convergence under the RCME model (similar methodology applies to FCME), the
algorithm was run for an initial 1,000 cycles under a very mild prior with νi = 4, , i =
1, …, 6, γ = 6, Γ−1 = 6I, η = 6, corresponding to a block diagonal Ψ. Time-series plots and
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sample autocorrelations for the components of θ were then examined. This initial analysis
revealed that several hundred cycles might be sufficient to achieve approximate stationarity.
The Gibbs sampler was then run for an additional 51,000 cycles, with the simulated value of
Ymis stored at each 1000 cycles. Autocorrelations verified that the dependence in all
components of θ had indeed died down by lag 200, so the fifty stored imputations could be
reasonably regarded as independent draws from P(Ymis | Yobs ).

5.2.3 Results—After the imputation stage, a hierarchical logistic regression model given
by (20) for the variable burglary victimization was fitted to each of the imputed datasets.
Maximum likelihood estimates and standard errors were computed using R lme4 package by
Pinheiro and Bates (2000). These estimates were then combined using the rules defined by
Rubin (1987). The results of this procedure are summarized in Table 3. This table which
contains estimates obtained under RCME and FCME as the imputation models indicates that
the fixed-effects coefficients for the age, home unoccupied, family income, expensive
goods, and safety precautions variables are statistically significant.

While there are minor changes between MI estimates and the complete-case (CC) analysis,
the two sets of analyses are generally consistent in terms of the estimates of regression
coefficients. Important differences, however, occur in the estimation of the associated
standard errors. Since all individuals with partial data are used in inferences, MI results in
inferences that are more efficient than than CC analysis. The MI estimates combine
between-imputation variance B due to missing data with sampling (within-imputation)
variability U conditional on imputed data. The estimated rate of missing information, B/(B +
U), is low for all coefficients due to the relatively small number of incomplete cases. While
they are generally similar under two imputation models, RCME lead to slightly larger
standard errors than their FCME counterparts. This is somewhat expected as, under RCME,
there are more unknown parameters. However, under RCME, slightly lower estimates for
the rate of missing information is observed (except family income which has the highest raw
missingness) indicating RCME leads to slightly better-calibrated results. In applications
where the quantity being estimated is influenced by the missing data, estimates of the
fraction of missing information are expected to be non-zero and inform the users how much
of the information (in the statistical sense) is lost due to missing data.

The MI estimates of the analyst’s model in Table 3 are fairly consistent with those reported
by (Rountree, Land, and Miethe 1994) and also reported here in Table II. The most
noticeable difference is observed in the standard errors (SEs). Though inefficient, CC
analysis would give valid inferences under MCAR. However, MCAR is not plausible here
as incomplete cases differ systematically from the complete cases with respect to the
outcomes of interest (e.g. rate of reported burglary cases in the income groups). Another
difference is observed in the varying degrees of significance in the effects. The effects of
age, race, home unoccupied and ethnic heterogeneity became slightly more significant under
MI inference even though the corresponding SEs incorporate the missing-data uncertainty.
Overall, RCME and FCME lead to similar significant effects (only RCME-estimates given
here): a unit increase in the race (white to non-white), home unoccupied, family income,
expensive goods, safety precautions and live alone result a 23% decrease, a 6% increase, a
9% increase, an 11% increase, a 9% decrease, a 22% increase in the odds of burglary.
Further, a unit increase in the contextual neighborhood incivility indicator result in a 67%
increase in the odds of burglary. However, contextual effects of ethnic heterogeneity and
busy places did not show significance in the MI inference.
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6 Discussion
Models and algorithms developed here present important tools to researchers in the analysis
of multivariate multilevel incomplete data where not only means but also covariances of the
error term vary across the clusters. Multilevel models have been very popular because they
allow researchers to pursue inferences that take into account clustering while presenting
them the ability to estimate effects at the individual and cluster levels. Incorporating these
key features into the missing-data methods carries a similar importance. The main goal of
this paper was to develop an imputation model that will appropriately model not only the
mean structure but also the covariance structure of the clusters. In applications where data
have natural hierarchies as well as incompleteness among responses and covariates, the
methods of this paper allows for a more flexible and appropriate joint model to be fitted to
the observed data, which is also consistent with the substantive model of interest.

Most substantive analyses focus on an individual response variable as illustrated in Section
3. In the specific data-example used in Section 6, a binary variable was modeled under a
logistic model. To overcome the missing-data problem in the response and covariates, I used
a model based on the multivariate normal distribution with special structures imposed on
means and variances. Should this raise a concern of compatibility? In other words, should
the substantive model be compatible with the imputation model? General discussion on this
subject is given by (Rubin 1987), (Meng 1994) and (Schafer 1997b). Several studies
specifically investigate the use of continuous models as approximations to the imputation of
binary variables (Schafer 1997b, Yucel, He, and Zaslavsky 2008, Horton, Lipsitz, and
Parzen 2003, Demirtas, Freels, and Yucel 2008). These studies commonly indicate that the
use of normality is a reasonable approach to imputing binary variables in most well-bahaved
problems (e.g. moderate missingness and reasonable distributions of binary variable). Other
studies offer imputation strategies (e.g. Demirtas and Hedeker 2008, Goldstein, Carpenter,
Kenward, and Levin In press) for binary variables in longitudinal or multilevel settings
under models with fixed-covariance terms. As a separate note on compatibility, the RCME
model (3) implies a conditional univariate linear mixed-effects model with ε ~ N(0, Σi) for
each response variable given the others, where the others are incorporated into the columns
of Xi. Therefore, the procedures explained in this work can also be used in multilevel
analyses with arbitrarily missing covariates which will be incorporated into subsequent
analyses. However, the current methodology is not clear on how to formally test the varying
variance-covariance structure at level-1, and I believe it is an area that is worthy of further
research.

The methods developed in this paper can be extended in several directions. Here I focus on
two levels of clustering, but extending this to higher levels of nesting is straightforward (see
Yucel 2008). The second extension pertains to limitations of the current imputation model
(3). Note that each column of yi is forced to have the same Xi. The most important role of
this model is to incorporate all of the possible information into the imputation phase, and our
current practice is to make the Xi as rich as possible disregarding the need for distinct Xis.
When this is not the case, minor changes to the algorithms given in Section 5 can easily
accomplish this task.

The third extension relates to incompletely-observed variables for level-2 units, or in
multilevel applications with higher order clustering, level-3 units. These types of variables
can also be found at level-1 in longitudinal studies among non-time varying covariates. If
these covariates have no missing values, then they can be handled under the current model
by simply moving them into the matrix Xi. When they are incompletely-observed, however,
they have to be modeled. From a modeling perspective this is a simple task as it implies an
imposed model marginal on such variables, and given these variables the model of this paper

Yucel Page 14

Stat Modelling. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



remains same. The Gibbs sampler described here can also be easily extended to reflect the
introduced unknown parameters. One has to be cautious, however, if the model is over-
specified especially when the categorical characteristics of the clusters are missing and
modeled.

Another extension relates to other types of variables such as categorical or count variables.
As discussed above, Gaussian-based models usually perform reasonably well for imputing
binary or ordinal outcome variables. However, the normal approximation may not work well
for other type of variables (e.g. nominal). Employing saturated loglinear models with
appropriate random-effects to reflect cluster-specific effects offers a similar caliber of
solutions to the methods introduced here. An important consideration should focus on the
number of variables, as such models often suffer severe estimation problems in high
dimensions. In such cases, one can adapt the methods of this paper into a variable-by-
variable approach such as those by Van Buuren and Oudshoorn (2000) or Raghunathan,
Lepkowski, and VanHoewyk (2001). However, the variable-by-variable approach is not
immune to over-specified models for the categorical variables. Finally, imputation models
that consider special structures such as multiple membership or non-nested clusters need to
be developed not only to conduct traditional MI-based inferences (e.g. in surveys) but also
to conduct inferences under missing-data-like problems (e.g. ambiguous genotype
assignments in genetic studies).
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Table 1

Means, standard deviations (S.D.) of observed variables and percentages of missing values

Mean S.D. % missingness

Level-1 individual effects

Burglary victim (0=no, 1=yes) 0.028 0.166 0.34

Age (1=10–19, …,7=70+) 4.367 1.717 0.12

Gender (0=female, 1=male) 0.503 0.500 0

Race (0=white, 1=nonwhite) 0.150 0.358 1.25

Home unoccupied (nights per week) 1.791 1.969 1.81

Expensive goods (# items owned) 2.533 1.408 0

Safety precautions (# precautions) 3.837 1.509 0

Live alone (0=no, 1=yes) 0.258 0.437 1.36

Family income (1: < $10K, …,7:> $100K) 3.371 1.370 11.11

Level-2 contextual variables

Busy places (# of places nearby) 3.441 1.340 0

Ethnic heterogeneity (% nonwhite * % white) 0.090 0.079 0

Neighborhood incivilities (# of indicators) 1.328 0.704 0
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Yucel Page 18

Table 2

Estimates from hierarchical logistic regression on burglary victimization using complete-cases only

est. SE z value p-value

Individual effects

Intercept −2.4830 0.279 −8.889 0.00

age −0.0317 0.028 −1.125 0.261

gender −0.0507 0.082 −0.623 0.533

race −0.2446 0.127 −1.931 0.053

home unoccupied 0.0429 0.021 2.004 0.045

family income 0.1032 0.033 3.137 0.002

expensive goods 0.1194 0.033 3.626 0.001

safety precautions −0.0793 0.029 −2.688 0.007

live alone 0.1783 0.103 1.733 0.083

Contextual effects

busy places −0.0433 0.039 −1.120 0.263

ethnic heterogeneity 0.3495 0.647 0.540 0.589

incivilities 0.4991 0.079 6.337 0.000
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