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Abstract
Immunizations that target specific types of immune responses are used commonly to prevent
microbial infections. However, a range of immune responses may prove necessary to combat the
ravages of neurodegenerative diseases. The goal is to eliminate the ‘root’ cause of
neurodegenerative disorders, misfolded aggregated proteins, while harnessing adaptive immune
responses to promote neural repair. However, immunization strategies used to elicit humoral
immune responses against aberrant brain proteins have yielded mixed success. While specific
proteins can be cleared, the failures in halting disease progression revolve, in measure, around
adaptive immune responses that promote autoreactive T cells and, as such, induce a
meningoencephalitis, accelerating neurodegeneration. Thus, alternative approaches for protein
clearance and neural repair are desired. To this end, our laboratories have sought to transform
autoreactive adaptive immune responses into regulatory neuroprotective cells in Parkinson’s
disease. In this context, induction of immune responses against modified brain proteins serves to
break immunological tolerance, while eliciting adaptive immunity to facilitate neuronal repair.
How to harness the immune response in the setting of Parkinson’s disease requires a thorough
understanding of the role of immunity in human disease and the ways to modify such immune
responses to elicit therapeutic gain. These are discussed in this review.
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Next to Alzheimer’s disease (AD), Parkinson’s disease (PD) is the second most common
neurodegenerative proteopathy. They share the common pathologic signature of
proteinaceous aggregates comprised of mutated or post-translationally modified proteins,
which affect misfolding and increase aggregation. The accumulation of such protein
aggregates alters cell function, contributes to neuronal death and apoptosis, and initiates
inflammatory responses that contribute to the underlying disease process. In PD and other
synucleinopathies, intracytoplasmic protein aggregates, called Lewy bodies (LBs)
accumulate both in the CNS and in the periphery [1]. Within the CNS, LBs are found in the
substantia nigra pars compacta (SNc), medullary and pontine nuclei, locus coeruleus,
amygdala, allocortex, cingulate area and isocortex [2].

© 2011 Expert Reviews Ltd
*Author for correspondence: Tel.: +1 402 559 8910, Fax: +1 402 559 8922, hegendel@unmc.edu.
Financial & competing interests disclosure
The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or
financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
No writing assistance was utilized in the production of this manuscript.

NIH Public Access
Author Manuscript
Expert Rev Neurother. Author manuscript; available in PMC 2012 October 1.

Published in final edited form as:
Expert Rev Neurother. 2011 December ; 11(12): 1703–1715. doi:10.1586/ern.11.163.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



PD is also characterized by the loss of dopaminergic neurons and dopamine [3,4]. Thus,
current treatments for PD are specifically aimed at improving motor dysfunction by
restoring the loss of dopamine. While levodopa is considered to be the ‘gold standard’ for
the treatment of PD [5], patients usually begin treatment with ‘levodopa-sparing strategies’
[6]. After prolonged levodopa treatment, patients commonly develop fluctuations in motor
control [7]. While these symptoms can be reduced with carbidopa [8], patients eventually
become refractory to treatments [9]. Thus, therapies designed to halt neurodegeneration have
been sought during past decades. Such neural repair modalities included growth factors,
neural grafts, dopaminergic neuronal replacement via stem cells and immune modulation.
All modalities target neural repair in PD, as well as other neurodegenerative proteopathies,
yet none of these therapies have been fully realized owing to, in part, significant hurdles.

For example, neurorestorative therapies involving human fetal mesencephalic grafts show
modest improvements in motor function and reduce the need for levodopa in most
individuals [10,11], with benefits more evident in younger recipients or mild disease [12].
However, up to half of transplant recipients may suffer increased dyskinesia [13,14].
Furthermore, grafts may eventually develop LB inclusions and inflammation [14,15]. These
studies suggest that α-synuclein (α-syn) aggregation, LB formation and loss of dopaminergic
neurons have underlying degenerative processes that, at least in part, are driven by death
mechanisms not yet realized [16]. Additional studies have aimed to improve disease by
administering recombinant growth factors or increasing neurotrophins. Although the use of
neurotrophic factors to promote neuronal survival and repair has had many successes in vitro
[17–21] and in animal models of PD [22–24], growth factor therapies for PD have so far
been met with limited success. Of the growth factors utilized, GDNF has been the most
widely investigated [25]. Experimental observations demonstrated that GDNF positively
affects the regeneration of dopaminergic neurons and, as such, is considered to be a realistic
therapeutic option for advanced PD. In clinical trials performed thus far, severe adverse
events were limited, but disease outcomes were often not changed substantially [26–28].
However, studies delivering GDNF to the putamen demonstrated improvements in clinical
sores and decreases in dyskinesia, suggesting that the target area of the brain can
significantly affect the outcome of treatments [29,30].

Common among these neuroregenerative therapies, are failures to clear misfolded proteins
and to directly address inflammation in the brain and the effects of the innate and adaptive
immune systems on neurodegeneration. To these ends, our laboratories have focused on
neurorestorative research, utilizing control of the adaptive immune system for dopaminergic
neuronal repair. The perils and promise of this approach are outlined in this review.

The immune system & neurodegeneration
Cells of the innate immune system that affect neuronal function include mononuclear
phagocytes (MPs; macrophages, microglia and dendritic cells), neutrophils, mast cells,
eosinophils, basophils and natural killer (NK) cells [31–33]. MP phagocytose aberrant
proteins and cellular debris, secrete both proinflammatory neurotoxic molecules and
neurotrophic molecules, and release chemokines that recruit cells of the adaptive immune
system to the CNS. The cells use conserved pattern recognition receptors (PRRs), called
toll-like receptors (TLRs), which are encoded in the germline and recognize broad pathogen-
associated molecular patterns (PAMPs) on pathogens and danger-associated molecular
patterns (DAMPs). These are self-molecules released following tissue injuries including
those in the brain [34,35]. In neurodegenerative diseases, cells of the innate immune system
are activated by DAMPs such as DNA, ATP, hyaluronan aggregates and fibrinogen, as well
as modified or misfolded proteins [36]. Unlike the innate immune system, the adaptive
immune system is highly specific. Membrane-bound receptors (T-cell receptors [TCRs] and
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B-cell receptors [BCRs]) recognize cognate foreign antigens. Recognition of antigen by
TCRs in the context of the correct major histocompatibility complex allows for target
effector responses via cell-to-cell contact or through soluble factors. B cells can secrete their
BCRs as soluble antibodies (immunoglobulin [Ig]), which recognize and bind the pathogen
or foreign debris and further aid in their removal by opsonization and activation of
complement, increasing phagocytosis and uptake by antigen presenting cells (APCs) that
include microglia.

MP neuroinflammation is now accepted as a characteristic of PD and other
neurodegenerative diseases [37–42]. Moreover, systemic inflammation is linked to chronic
neurodegeneration [43]. Risk factors associated with PD are also associated with
inflammation and include aging, rural residence, pesticides, brain injury or encephalitic
infection [44]. These elicit reactive oxygen species that are readily linked to nigrostriatal
degeneration in PD [41,45]. Thus, initial immunotherapies have targeted inflammation. For
example, in vitro, NSAIDs were shown to reduce levels of the proinflammatory enzymes
cyclooxygenase 1 and 2 (COX-1 and COX-2) [46], and reduce secretion of neurotoxins by
microglia in vitro [47]. However, while some epidemiological studies suggest that chronic
use of some NSAIDs decrease risk for AD and PD, other studies have failed to reproduce
these results [48–54]. These reports demonstrate that NSAIDs alone are not sufficient to
prevent neurodegeneration, although reduction of inflammation is beneficial. The questions
remaining are when to treat, how long and at what dose. These demand further investigation.

Innate immune responses
Microglia are the resident macrophages of the CNS and are continually sampling the local
environment [55]. While normally in a quiescent state, they respond quickly to disturbances
in their microenvironment and can migrate throughout the brain to areas of insult or injury
[56,57]. The engagement of PRRs activates signaling pathways that lead to translocation of
NF-kB and AP-1 to the nucleus where they induce transcription of innate immune proteins.
Once activated, they secrete both neurotoxic and neurotrophic factors [58,59], such as the
cytokines IL-1α, IL-1β and TNF-α [60,61], and neurotrophins, such as NGF and
neurotrophin-3 [62,63]. Macrophages clearly have divergent effects [32], and their responses
to specific stimuli and cytokines have led to the recent classification of macrophages as
‘classically activated’ (M1), which are more proinflammatory compared with the
antiinflammatory ‘alternatively activated’ macrophages (M2) [64]. During chronic
inflammation and CNS injury, the neurotoxic effects of microglia overcome the
neurotrophic effects [65] and the M1 phenotype predominates [64]. A recent study
investigating the polarization of macrophages in spinal cord injury demonstrated that both
subsets of macrohpages are present, but only M1 macrophages are neurotoxic, while the M2
macrophages promote neuoronal repair [66]. These data suggest that modulation of the
microglia or macrophage phenotype represents a candidate target for immunotherapies to
combat neurodegeneration.

Proteopathies, inflammation & neurodegeneration
Neuroinflammation is seen in many neurodegenerative diseases, while activated microglia
have long been recognized to exacerbate disease [31,32,57]. In neurodegenerative diseases,
M1 microglia expressing human leukocyte antigen (HLA)-DR and -DQ are associated with
the accumulation of aberrant proteins, oxidative stress and neuronal cell death. Reactive
microglia have been found in AD, PD, Huntington’s disease and amyotrophic lateral
sclerosis, as well as Creutzfeldt–Jakob disease, among other neurodegenerative disease [67–
70], and are associated with amyloid plaques in AD brains and LB aggregates in PD brains
[71–74].
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In PD, the association of LBs and dopaminergic neuron cell death led to the α-syn burden
hypothesis [41]. LBs are cytoplasmic inclusions consisting of aggregated and misfolded
proteins, such as α-syn, ubiquitin and neurofilament, as well as many other proteins [75–78].
The α-syn present in LBs is often post-translationally modified; thus it may be ubiquitinated
[79], phosphorylated [80] and/or oxidized or nitrated [81]. Post-translationally modified
forms of α-syn have an increased propensity to aggregate into LBs [82,83], but are also
found extra-neuronally in PD brains [84,85] or in the periphery [86]. As demonstrated in
animal models and in vitro assays, overexpression of α-syn also increases the protein’s
propensity to aggregate [87,88]. Furthermore, point mutations in the gene encoding α-syn
(SNCA; OMIM 163890) are linked to parkinsonism [89–92], as are duplications and
triplications of the SNCA gene [93,94]; all of which increase aggregation of α-syn [95–97].
Taken together, these observations support the α-syn burden hypothesis, which posits that
sporadic PD results from the inability to clear α-syn, while familial PD results from the
overproduction of normal α-syn or mutated α-syn that prevents or slows clearance.
Alternatively, mutations occur in other proteins that normally assist in α-syn clearance, but
become defective in this function [41]. McGeer and McGeer further hypothesized that
disease can be eliminated with a reduction in α-syn production or prevention of α-syn
aggregation [41]. Thus, it is not surprising that vaccines currently being developed for PD
target α-syn with the aim to clear aggregated and aberrant forms of the protein. However,
there is also much evidence to support a non-autonomous cell death theory, in which cells
other than neurons contribute to PD [16].

The substantia nigra (SN) has the highest density of microglia of any brain region [98], and
post-mortem studies consistently demonstrate microglial activation in this region in PD.
Furthermore, modified and aggregated forms of α-syn present in the PD patient SNc activate
microglia. Chronic microglial activation has been seen in mice that over-express human α-
syn [99], and in vitro, microglia are activated by aggregated human α-syn, leading to
increased dopaminergic cell death and increased levels of reactive oxygen species and
NADPH oxidase production [100]. In the acute 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) mouse model of nigrostriatal degeneration, nitrated α-syn (N-α-
syn) enhances the neurotoxic activities of microglia, contributing to neuronal death [101].
The elimination of microglia-derived nitric oxide and superoxide are neuroprotective,
suggesting that oxidative mediators from activated microglia play a key role in
neuroinflammation, neurodegeneration and the accumulation of aberrant forms of α-syn
[102]. Indeed, microglia in PD brains are positive for inducible nitric oxide synthase [103],
from which nitric oxide-derived peroxynitrite is formed and is available to nitrate α-syn,
which in turn and in part, induces neuronal cell death [104]. In addition to reactive oxygen
species, activated microglia secrete many other soluble factors, such as chemokines and
cytokines. COX-2 is present, as well as increased levels of TNF-α and NFκB1 in the SN,
and IL-15, RANTES and IL-10 levels are significantly elevated in PD brains and in
peripheral circulation [105–109]. Cytokines such as IL-1α and TNF-α secreted by activated
glia or endothelial cells increase blood–brain barrier (BBB) permeability [110], which
upregulates the expression of cellular adhesion molecules (such as E-selectin) on
microvascular endothelial cells [111]. Increased BBB permeability allows activated T cells
and B cells to enter the CNS more readily and migrate to the site of neuronal injury [112–
114]. Indeed, increased BBB permeability is found in both AD and PD, allowing increased
lymphocyte ingress [110,115–117]. In this way, activated innate immune cells of the CNS
can affect the adaptive immune system in the periphery and recruit cells to the CNS. In
addition, aberrant species of disease-specific proteins, including phosphorylated α-syn, are
detectable in tissues outside the CNS in PD and dementia with Lewy bodies patients [86].
The presence of aberrant forms of α-syn in the periphery, such as within the GI tract and
draining cervical lymph nodes, presents a possible means for exposure to the protein as a
neoantigen and subsequent activation of the adaptive immune system.
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Adaptive immune responses
It was once thought that the CNS was an ‘immune privileged’ site, in which immune cells of
the periphery could not enter or rarely entered, and thus the two systems had little to no
interaction. This hypothesis was supported by the early observation that tissue grafts in the
eye or brain survived longer than grafts in other areas of the body [118]. However, evidence
for the interaction of the adaptive immune system and the CNS is now well-recognized, and
researchers are beginning to harness the neurotrophic effects of the immune system to aid in
repair and regeneration in the CNS.

In neurodegenerative disease, CNS proteins may drain to the lymphatic system where the
protein is processed and presented by dendritic cells and other APCs to lymphocytes. As
proteins associated with neurodegenerative disease are often modified, the immune system
may recognize them as non-self, leading to an immune response. An influx of antigen-
specific lymphocytes into the brain may exacerbate and perpetuate the activation of
microglia near dopaminergic neurons and increase the concentration of neurotoxic
molecules within the nigra. Indeed, innate immune system abnormalities have been found in
PD and models of PD. Overexpression of human α-syn in a mouse model of PD induces an
influx of T and B cells into the CNS with increased proinflammatory cytokines [99]. In
MPTP-intoxicated mice, N-α-syn is found in both the brain and in cervical lymph nodes, and
immunization with N-α-syn induces N-α-syn specific proliferation of T cells [119]. CD4+

and CD8+ T cells can be found near dopaminergic neurons in both MPTP-treated mice and
in PD patients [120]. Moreover, plasma B cells produce autoantibodies against glia and
neuron antigens, and these antibodies are present in the cerebrospinal fluid and serum of PD
patients [121,122]. Studies of the peripheral blood from PD patients have also shown many
immunological disparities such as decreased naive (CD4+CD45RA+) T cells and increased
memory (CD4+ CD45RO+) T cells [123], increased activated CD4+ T cells expressing Fas
[124], increased IFN-γ-producing Th1 cells, decreased IL-4-producing Th2 cells and a
decrease in CD4+CD25+ T cells [125]. Altogether, these data suggest that preferential
activation of immune cells in PD and immune responses to aberrant forms of α-syn, as well
as oxidative stress, affect neuronal cell death, further suggesting the utility of targeted
immunotherapies in the treatment of PD [33,41,126].

Immunotherapy for neurodegenerative disease
Immunotherapies are designed to induce, enhance or suppress the immune system for the
benefit of the host in the treatment of disease and more recently in neurodegenerative
disorders [127–131]. Vaccine therapies have been used for centuries to modulate the
immune system’s response to antigens, with the goal of either producing immunity against
an infectious disease or attenuating the disease. Vaccines in the traditional sense consist of
attenuated or killed pathogens, viral proteins or toxoids to protect against infectious agents.
However, in most neurodegenerative proteopathies, no infectious agent is present to target,
with the exception of prions. Thus, therapeutic vaccines against neurodegenerative diseases
would consist of the self-proteins or peptides derived from the proteins that characterize the
disease. Vaccine therapy may evoke active or passive immunity. Active vaccines contain
epitopes that elicit immunity or partial protection against the agent from which the epitope is
derived. Immunity to the pathogenic agent is achieved upon immunization with the ensuing
induction of an immune response and subsequent immunologic memory formation that is
specific for the pathogen. For years thereafter, memory immune cells and antibodies specific
to the pathogenic agent circulate in the host and quickly respond to the antigen upon
reencounter. The response time of immune cells that are primed to the antigen is greatly
increased over that of naive cells and is one mechanism by which vaccine-mediated
protection is afforded. A therapy targeting the humoral response could aid in the clearance
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of α-syn or amyloid-β (Aβ) by inducing B cells and plasma cells to secrete antigen-specific
antibodies. In addition to antibodies that can cross an already permeable BBB, the
accumulation of antibodies outside of the CNS and within the peripheral circulation could
act as a peripheral sink, reducing the protein load in the CNS by driving the aberrant
proteins into the periphery by mass action. The concept of a peripheral sink also makes the
infusion of preformed antibodies (passive immunization) against rogue proteins an attractive
option for both AD and PD. Indeed, two humanized monoclonal anti-Aβ antibodies,
bapineuzumab and solanezumab, are currently in clinical trials [132]. Other
immunotherapies include adoptive transfer and immunosuppression. Adoptive transfer
involves the transfer of lymphoid cells from an immune donor to a naive recipient, while
immunosuppression simply decreases the number or function of effector immune cells.

As previously stated, most immunotherapies are designed to protect the host from recent or
potential exposures to foreign invaders. However, for neurodegenerative proteopathies, the
target is self-proteins or modified self-proteins. Thus, the extent and the type of the immune
system’s response to the vaccine become critical. Excessive inflammation, especially in the
CNS, can lead to tissue damage, and chronic inflammation can develop into aberrant
autoimmune responses as was seen in the AN1792 clinical trial for AD. This was due in part
by the inherent plasticity of CD4+ T cells, which can differentiate into Th1, Th2, Th17 or
Tregs [133] depending on the microenvironment in which the antigen is recognized and the
nature of the major histocompatibility complex–peptide complex. Thus, the response to the
antigen can play an important role in the outcome of disease, and most new vaccines are
developed with this in mind. Differentiation of naive T cells into Th1 effectors contributes to
cell-mediated immunity (activation of macrophages), while Th2 effectors contribute to
humoral immunity (activation of B cells). According to the Th1/Th2 paradigm, Th1 cells,
which produce IL-2, IFN-γ and TNF-α, are proinflammatory and induce release of reactive
oxygen species and nitric oxide by microglia, while Th2 cells that produce IL-4, IL-5 and
IL-13 enhance microglial-mediated neuroprotective functions, and thus are considered anti-
inflammatory [134]. Both responses may have beneficial effects for neurodegenerative
proteopathies, therefore, a balance between the two responses is an important consideration
in the design of immunotherapies for neurodegenerative disease.

In preclinical studies for the treatment of AD, using PDAPP mice that are transgenic for
human amyloid precursor protein (APP) driven by the human PDGF-β promoter, active
immunization with synthetic human Aβ42 before the onset of neuropathology prevented the
development of plaque formation and gliosis, and vaccination after the onset of
neuropathology, slowed progression of disease and as concomitant with the increase in
serum antibody titers against Aβ42 [135]. Furthermore, intranasal administration of Aβ
peptide lowered Aβ plaque burden and Aβ42 levels in PDAPP mice and was associated with
reduced reactive microglia and increased levels of in the anti-inflammatory cytokines IL-4,
IL-10 and TGF-β [136]. Additional studies with TgCRND8 and Tg2576 mice demonstrated
that vaccination against Aβ reduced cognitive dysfunction with reduced deposition of
cerebral fibrillar Aβ and protected against deficits of learning and age-related memory,
respectively [137,138]. Similarly, passive immunization against Aβ reduced Aβ deposition
in the CNS and Aβ plasma levels [139,140]. These studies suggested a therapeutic effect of
Aβ42 vaccination, and after a Phase I clinical trial confirmed its safety, a Phase II clinical
trial ensued (AN1792). However, dosing in the Phase II trial was terminated early owing to
the occurrence of autoimmune meningoencephalitis in 6% of patients, which was found to
be due to Th1-type immune responses [129,141]. Comparing the cytokine profile of
peripheral mononuclear cells from patients of the Phase I trial to those of the Phase II trial, it
became evident that responses to the vaccine shifted from a Th2 to a Th1 phenotype, which
was thought to be due to the addition of polysorbate 80 to the vaccine between the Phase I
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and Phase II trials [129]. These data stress the importance of well-controlled immune
responses in immunotherapies.

Expert commentary
Immunotherapies for Parkinson’s disease

To date, no PD vaccines have been to clinical trial, and relatively few immunotherapies have
been developed for preclinical testing. However, of those in preclinical testing, clearance of
α-syn and diminution of neuroinflammation represent the major therapeutic strategies. These
therapies may improve neuronal survival by decreasing protein aggregates within
dopaminergic neurons and by decreasing activation of microglia. In 2005, a preclinical study
tested a vaccine against human α-syn (hα-syn) in a mouse model of LB disease [142].
Transgenic mice overexpressing hα-syn that model LB disease were immunized with
recombinant hα-syn to increase antibody production and elicit clearance of aggregated hα-
syn in the CNS. Immunized mice had elevated hα-syn antibody titers, and while all
immunized mice displayed reduced hα-syn load compared with controls, immunized mice
producing antibodies with high relative affinity to hα-syn had more pronounced reduction
than those with low affinity antibodies. This study also suggested that antibodies against hα-
syn are taken up by neurons, bind intracellular hα-syn and increase hα-syn degradation via
lysosomal pathways [142]. The work by Masliah et al. [142], as well as the studies with AD,
suggest that clearance of α-syn represent a viable target, and in 2011 the first clinical trial of
a PD vaccine is said to begin. The Michael J Fox Foundation funded the preclinical efficacy
testing of the vaccine, PD01, in 2010 by AFFIRiS. PD01 is a mimotope that elicits a highly
specific humoral immune response to clear an aberrant form of α-syn [201]. PD01 targets
the phosphorylated form of the protein, which activates microglia and induces neurotoxic
proinflammatory responses. AFFIRiS claims that PD01 exhibits disease-modifying activity,
but the company has yet to publish the preclinical data in a peer-reviewed format [143].

Our laboratory is developing an immunization strategy to clear aberrant forms of α-syn
while concurrently controlling neurotoxic inflammatory responses by inducing Treg
populations. Tregs are a specialized subset of CD4+ T cells that maintain self-tolerance,
prevent autoimmunity and maintain immune homeostasis by attenuating inflammation
caused by pathogens, injury or autoimmunity [144–151]. In mice, Tregs are identified by
CD4 and CD25 cell surface markers and by the transcription factor forkhead box P3
(FOXP3) [152–154]. In humans, they are identified as CD4+, CD25+, CD39+, CD49d+,
FOXP3+ and CD127− [155,156]. While naturally occurring Tregs (nTregs) mature in the
thymus, naive CD4+ T cells in the periphery can be polarized into the inducible Treg
phenotype under certain conditions. The presence of TGF-β, IL-2, IL-10 and all-trans
retinoic acid polarize T cells to the inducible Treg phenotype [157–160], and histone
deacetylase inhibitors induce proliferation and increase the suppressive function of Tregs
[161–164]. Tregs can also be induced by vasoactive intestinal peptide (VIP) [165–167].
Once induced, Tregs promote neurotrophic support by inducing astrocytes to increase
expression of BDNF and GDNF [168,169] and may promote glutamate clearance [170].
This is significant considering that astrocyte dysfunction is a known contributor to
neurodegeneration [171]. Furthermore, in in vitro studies, Tregs suppress effector T-cell
(Teff) responses via cell-to-cell contact [150] and with the secretion of soluble factors [172].
Tregs also inhibit the adaptive immune system indirectly by affecting antigen presentation
by APCs [173]. Dysfunctional and reduced frequencies of Tregs are associated with several
diseases [174] and are being investigated for therapeutic use [167,175–178]. Tregs may also
be attractive therapeutic targets in neurodegenerative diseases, as their induction could
modulate microglia phenotypes and control adaptive immune responses to CNS proteins.
Indeed, works from our laboratory support the utility of Tregs in neuroprotection.
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Early studies in our laboratory tested the ability of copolymer-1 (Cop-1; Copaxone®,
glatiramer acetate) as an immunomodulatory agent in a model of PD. Cop-1 is a random
polymer composed of four amino acids that induces Th2/Th3/Tr1 cells [179]. The immune
response induced by Cop-1 cross-reacts with myelin basic protein [180,181]. Thus, Cop-1 is
used as an immunomodulator in the treatment of relapsing–remitting multiple sclerosis, and
is thought to work largely by changing the proinflammatory immune response to a more
anti-inflammatory response, in part by the induction of Tregs. In relapsing–remitting
multiple sclerosis patients, Cop-1 increases Treg frequencies [177], and in mice with
experimental autoimmune encephalomyelitis, reduces Th17 frequencies, while increasing
Tregs [182]. We tested the immunomodulatory effects of Cop-1 in the acute MPTP-mouse
model of nigrostriatal degeneration. Adoptive transfer of splenocytes from Cop-1-
immunized mice to MPTP-intoxicated recipients led to T-cell infiltration in the SN, a
reduction in microgliosis, an increase in neurotrophic factors and an increase in neuronal
survival [169]. The protection provided by the transferred splenocytes was found to be dose
dependent, with CD4+ T cells providing the greatest degree of neuroprotection [183].
Further investigation provided evidence for the role of CD4+CD25+ Tregs in the
neuroprotection provided by Cop-1-splenocytes transferred to MPTP recipients. Adoptive
transfer of CD3-activated Tregs to MPTP-intoxicated mice reduced microgliosis, increased
neurotrophic factors and provided greater than 90% protection of dopaminergic neurons in a
dose-dependant manner, while in vitro assays demonstrated that Tregs modulate the
phenotype of microglia and control microglial responses to N-α-syn, lipopolysaccharide and
TNF-α with or without phorbol myristate acetate [168]. N-α-syn is immunogenic and
vaccination with nitrated-4YSyn (N-4YSyn) elicits an adaptive immune response; 4YSyn is
the C-terminal portion of recombinant mouse α-syn that contains four out of five of the
nitratable tyrosine residues. Adoptive transfer of T cells from mice immunized with
N-4YSyn to MPTP-intoxicated recipients increased dopaminergic neuronal loss [119].
However, when splenocytes from VIP-treated mice were coadoptively transferred with
splenocytes from N-4YSyn-immunized mice, a decrease in microgliosis and an increase in
dopaminergic neuron survival were observed, while adoptive transfer of splenocytes from
mice treated with VIP alone showed only a small increase in neuronal survival, and adoptive
transfer of splenocytes from N-4YSyn-immunized mice alone significantly decreased
neuronal survival and exacerbated microgliosis. To elucidate which cell types are involved
in this process, CD4+ T cells were polarized before adoptive transfer, and demonstrated that
Th1 and Th17 cells exacerbated the MPTP-induced neurodegeneration. Furthermore, when
Tregs from VIP-treated mice were adoptively transferred with splenocytes from N-4YSyn-
immunized mice, dopaminergic neuronal survival increased to 96% [184]. Together, these
data implicate Th1 and Th17 cells in neurodegeneration and suggest that CD4+CD25+ Tregs
have increased suppressive function in the presence of N-4YSyn-specific T cells.

The abovementioned studies support the utility of Tregs to reduce microgliosis and
modulate the adaptive immune response to a neurotrophic phenotype, while reinforcing the
therapeutic efficacy of an α-syn vaccine for the clearance of LBs via humoral responses
(Figure 1). In disease, proinflammatory M1 microglia predominate, and potentially
autoreactive Th1 or Th17 cells exacerbate this phenotype. While M2 microglia may still be
present in the diseased brain, the release of reactive oxygen species by M1 microglia and
infiltrating macrophages is linked to the accumulation of modified α-syn proteins that
contribute to neurotoxicity. An α-syn vaccine designed to elicit a predominately humoral
response could induce the production of antibodies specific for modified species of α-syn,
which would increase clearance of LBs. The induction of Tregs may ameliorate disease
further by modulating the innate and adaptive immune responses as demonstrated in mouse
models. Tregs would act by inducing phenotypic switching in Teffs, microglia and
macrophages or by killing autoreactive T cells, thus supporting a neurotrophic and anti-
inflammatory microenvironment. All together, these strategies may decrease the α-syn load
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in the CNS and modulate microglia towards a more homeostatic neuroprotective M2
phenotype, thereby increasing neuronal survival and function, and slowing disease
progression.

Five-year view
PD is manifest, in part, as a consequence of progressive nigrostriatal degeneration with
parallel losses in dopamine and communication links between the SNc and the striatum.
Genetic environmental exposure, toxins and aging all contribute. To date, there are only
symptomatic treatments available with dopamine replacement therapy or dopamine agonists.
A real treatment for disease would involve replacement of damaged neurons and its
connections (stem cell therapy), reversal of neural damage (through growth or other
neuroregenerative factors) or by engaging the host’s immune system to exact repair through
natural means. As for the latter, the realization of a neuroprotective immunization strategy
remains the lifeblood of our laboratories. How best to control the production of neurotoxic
aggregated, misfolded and oxidized proteins that affect free radical formation and tissue
damage is difficult. Such proteins are, for the better part, intracellular and released in limited
bursts to the extracellular and extravascular compartments. However, its devastating effects
on neural connections and neuroinflammation cannot be understated. We posit that effective
clearance can be realized through specific antibody and cellular immune responses that can
also transform autoreactive neurotoxic Teffs into neurotrophic ones. It is our belief that the
mechanism by which the immune system can be controlled for therapeutic benefit will be
realized in the next decade, and when combined with other treatment modalities, such as
neuronal replacement by stem cells and/or growth factors, will change the course of human
disease from devastating to controlled and usher in an era where the ravishes of PD are no
longer seen.

Key issues

• Aberrant forms of proteins can be immunogenic.

• Immunization against aberrant forms of α-synuclein could affect clearance of
Lewy bodies.

• Immunotherapies may be used to modulate or transform the immune system and
lead to neuroprotection in Parkinson’s disease and other neurodegenerative
diseases.

• Immunotherapies for Parkinson’s disease are being developed in preclinical
studies.
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Figure 1. Immunomodulation in Parkinson’s disease
In Parkinson’s disease, modified α-syn affect microglial immune responses. Reactive
microglia secrete neurotoxins, chemokines, peroxynitrite ONOO− and other ROS and RNS,
which increase the formation of oxidized proteins. Chemokines attract cells of the adaptive
immune system, and infiltrating Teffs exacerbate a proinflammatory neurotoxic phenotype
by secreting TNF-α and IFN-γ. Tregs may be present in low numbers or are dysfunctional,
and thus have a limited affect on disease progression (A). Tregs promote neurotrophic
support, suppress Teff responses and secrete anti-inflammatory cytokines, such as IL-10,
IL-4 and TGF-β. In the brain of the immunotherapy-treated patient, Treg induction could
decrease microglial responses and control adaptive immune activities while supporting the
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clearance of misfolded proteins though induction of humoral responses. Thus, the α-syn load
in the CNS would be decreased and microglia would switch to a more homeostatic
neuroprotective phenotype, thereby increasing neuronal survival and function and slowing
disease progression (B) [184].
α-syn: α-synuclein; FasL: Fas ligand; RNS: Reactive nitrogen species; ROS: Reactive
oxygen species; Teff: Effector T-cell.
Adapted with permission from [33].
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