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Fracture detection in pelvic bones is vital for patient diagnostic decisions and treatment planning in traumatic pelvic injuries.
Manual detection of bone fracture from computed tomography (CT) images is very challenging due to low resolution of the
images and the complex pelvic structures. Automated fracture detection from segmented bones can significantly help physicians
analyze pelvic CT images and detect the severity of injuries in a very short period. This paper presents an automated hierarchical
algorithm for bone fracture detection in pelvic CT scans using adaptive windowing, boundary tracing, and wavelet transform
while incorporating anatomical information. Fracture detection is performed on the basis of the results of prior pelvic bone
segmentation via our registered active shape model (RASM). The results are promising and show that the method is capable of

detecting fractures accurately.

1. Introduction

Pelvic fractures are high energy injuries that constitute a
major cause of death in trauma patients. According to the
Centers for Disease Control and Prevention (CDC), trauma
injury kills more people between the ages of 1 and 44 than
any other disease or illness. Among different types of trauma
with a high impact on the lives of Americans, traumatic
pelvic injuries, caused mainly by sports, falls, and motor
vehicle accidents, contribute to a large number of mortalities
every year [1, 2]. Traumatic pelvic injuries and associated
complications, such as severe hemorrhage multiple organ
dysfunction syndrome (MODS), result in the mortality rate
from 8.6% to 50% [3]. When combined with other injuries in
the body, for instance, the abdomen, the chance of mortality
is even higher [4]. In general, a pelvic fracture can be asso-
ciated hemorrhage, neurologic injury, vascular injury, and
organ damage, as all of the vital structures run through pel-
vis. Pain and impaired mobility are normally the results of

nerve and internal organ damage associated with the pelvic
fracture [5-7].

Patient data, in particular, medical images such as
computed tomography (CT) images, contain a significant
amount of information, and it is crucial for physicians to
make diagnostic decisions as well as treatment planning on
the basis of this information and other patients’ data. Cur-
rently, a large portion of the data is not optimally and com-
prehensively utilized, because information held in the data is
inaccessible through visual observation or simple traditional
computational methods. Information contained in pelvic CT
images is a very important resource for the assessment of the
severity and prognosis of the injuries. Each pelvic CT scan
consists of several slices; each slice contains a large amount of
data that may not be thoroughly and accurately analyzed via
visual inspection. In addition, in the field of trauma, physi-
cians frequently need to make quick decisions based on large
amount of information. Hence, a computer-assisted pelvic
trauma decision-making system is crucial and necessary for
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assisting physicians in making accurate diagnostic decisions
and determining treatment planning in a short period.

Automated fracture detection from segmented bones in
traumatic pelvic injuries can help physicians examine the
pelvic CT images and to detect the injury severity within a
short period. Extraction of features such as presence and lo-
cation of fracture, hemorrhage, and displacement between
the fractured bones in an automated fashion is vital for such
injuries. Identification of fracture alone is not sufficient to
assess the injury severity. Therefore, details of the fracture
such as distance and angle between the fractured bones must
be taken into account. However, the task of pelvic bone seg-
mentation and fracture detection is very challenging due to
low resolution of CT images, complex pelvic structures, vari-
ations in bone shape, and size from patient to patient. Adding
to these complexities, the presence of noise, partial volume
effects, and in-homogeneities in the CT images make the task
of fracture detection very challenging. The objective of this
study is to design a computer-assisted system that helps radi-
ologists better and further assess the bone fractures in pelvic
region. It also illustrates the fracture bones in a clearer and
more visible manner. In particular, mild and small fractures,
while still partially visible in the CT images, are sometimes
considered as “irregularities” that need further investigation
by the radiologists in the first read, as radiologists may not be
able to reliably label them as fractures due to the quality of
the CT as well as the volume of the data to be processed. For
these situations, it normally takes multiple reads to identify
and determine the confirmation on the existence and/or de-
tails of fracture. A machine-based analysis can consider and
process detailed information from several neighboring slices
to provide radiologists with clues as to whether one partic-
ular slice contains a fracture and if so extract details such as
the separation among the pieces.

While there have been few studies directly focusing on
fracture detection in pelvic CT images, there are many closely
related work. Moghari and Abolmaesumi [8] utilized a global
registration method for multifragment fracture fixation in
femur bone. However, the method suffers from initial align-
ment errors, and the dataset includes only femur bone gener-
ated randomly from 3D data points. Moghari and Abolmae-
sumi [9] proposed a technique to automatically register mul-
tiple bone fragments of a fracture using a global registration
method guided by a statistical anatomical atlas model. Due
to the limited number of bone models, the method is unable
to capture all variations of femur. Winkelbach et al. [10]
presented an which is approach based on a modified version
of Hough Transformation and registration techniques for
estimating the relative transformations between fragments
of a broken cylindrical structure. This method is designed
for computer-aided bone alignment, such as fractured long
bones and fracture reduction in surgery. However, the ap-
proach is not fully automatic and requires a significant
amount of human supervision. Another work, by Ryder et al.
[11] explored using nonvisual methods to detect fractures.
In addition, there are image processing methods for fracture
detection applies to X-ray images [12—14]. Douglas et al. [12]
focused on early detection of fractures with low-dose dig-
ital X-ray images in a pediatric trauma unit. Tian et al. [13]
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determined the presence of femoral fracture by measuring
the neck-shaft angle of the femur. Lum et al. [14] used three-
texture features combined with a classifier to detect radius
and femur fractures. This method may suffer from the im-
balanced dataset. The majority of these X-ray image process-
ing methods may not be applicable to fracture detection in
CT images because of the variation in image intensities and
resolution between X-ray and CT images.

Even though few studies have been conducted on frac-
ture detection from pelvic CT scans, several segmentation
techniques have been created for medical images of various
regions of human body, that is, brain, abdomen, and so forth.
These methods include threshold-based techniques, region
growing, classifiers, clustering, Markov random field models,
artificial neural networks, deformable models, atlas-guided
methods, knowledge-based methods. Thresholding tech-
niques segment an image by creating a binary partition on
the basis of the image intensities [15]. The drawback is that
they cannot be effectively applied to multichannel images.
The deformable model approaches start with the initial con-
tour placement near the desired boundary, and then, the con-
tour is improved through an iterative relaxation process [16—
18]. The disadvantage is that these methods require manual
interaction for the selection of initial position and appropri-
ate parameters of the model. Atlas-guided methods utilize a
standard atlas or template for segmentation [19]. The atlas
used as the reference frame is generated on the basis of the
previously known anatomical information. However, due to
anatomical variability across individuals, accurate segmenta-
tion of complex structures remains as a challenging task.
Clustering algorithms, also referred to as unsupervised meth-
ods [20, 21], while successful in some applications, they can
be sensitive to noise and variations in intensity. In addition,
the calculation can become computationally expensive when
the clusters have a large number of pixels.

This study develops an automated hierarchical algorithm
to detect fracture in pelvic bones using a hierarchical method
combining several of the above-motioned methods in differ-
ent steps. Fracture detection is performed using the proposed
automated segmentation method, called registered active
shape model (RASM), along with wavelet transformation,
adaptive windowing, boundary tracing, and masking.

The rest of the paper is organized as follows. Section 2
provides the methods used for pelvic bone segmentation and
fracture detection. Section 3 includes the results obtained us-
ing the proposed methods and discusses the obtained results.
Section 4 concludes the proposed methods and provides the
future work of the study.

2. Methods

Automated fracture detection is important for making fast
and accurate decisions and treatment planning. In order
to successfully detect pelvic bone fractures, utilizing the
bone information contained in pelvic CT images is crucial.
Figure 1 illustrates the overall process of the proposed auto-
mated fracture detection. The proposed fracture detection
method involves automated bone segmentation using reg-
istered active shape model (RASM), adaptive windowing,
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FIGURE 1: Schematic diagram of pelvic bone fracture detection.

2D stationary wavelet transform, masking, and boundary
tracing. Each step in the process is explained in detail in the
following subsections.

2.1. Multilevel Segmentation of Bone in Pelvic CT Scans. Seg-
mentation is a vital step in analyzing pelvic bones in CT
images and the first step in fracture detection. Specifically,
bone segmentation helps extract the bones from the images
that are later used for detecting fractures. Our previous work
was focused on the segmentation of pelvic bones in CT
scans [22]. In this paper, a new segmentation algorithm for
multilevel pelvic CT scans was developed. This is shown in
Figure 2. This new segmentation technique consists of four
main parts: preprocessing, edge detection, shape matching
and Registered Active Shape Model (RASM) with automatic
initialization.

The presence of surrounding artifacts and noise in the
original pelvic CT images make bone segmentation a chal-
lenging task. Therefore, preprocessing is performed to re-
move the surrounding artifacts (e.g., CT table, cables, hands,
and lower extremities) present in the original image. This is
the first step in segmentation. The preprocessing is carried
out using blob analysis. Later, high-frequency speckle noise
is removed from the images using a 2D Gaussian filter. The
image is then enhanced to emphasize the features of interest,
that is, pelvic bones. This enhancement is done using bright-
ness contrast stretching. Later, the bone edges are detected
using Canny edge detection technique. However, some weak
edges may remain unconnected, and as such, morphological
operations are applied to remove spurious edges and subedge
connections and removal.

The obtained preliminary segmentation results are then
used to detect the best matching template using a shape
matching algorithm [23]. This helps with the automation of

Original image

l
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matching . .
. template Final segmentation
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F1GURE 2: Schematic diagram of pelvic bone segmentation.

the segmentation process and therefore contributes to min-
imizing human errors during the diagnostic process. 100
bone templates are created from the Visible Human Project
dataset manually. These templates are then compared to each
CT slice in order to determine the best-matched template.
Determining best-matched template enables the application
of corresponding training shape models of each best-
matched template to the preprocessed image during bone
segmentation phase.

The last step in the segmentation process is the extraction
of pelvic bones. Standard active shape model (ASM) is one
of the popular techniques that is generally used for bone seg-
mentation. Standard ASM uses training images labeled with
landmark points to generate statistical shape and intensity-
level models of a desired object. The shape model can be
iteratively deformed to locate the object in a test image [24].
The landmarks are points selected by an expert for the bone
region in each registered image during the training phase.
The pelvic bones in each original training image have dif-
ferent sizes, rotation angles, and locations which may lead
to unstable and unreliable shape models for inaccurate bone
segmentation. In addition, standard ASM is highly sensitive
to initialization and requires an initial position to be correctly
assigned to the training model in order to detect a target
object in the image. The algorithm then attempts to fit the
shape model to the object. If the shape model is not accu-
rately placed, the standard ASM may fail to detect the target
object accurately.

In order to overcome these shortcomings, a new image
registration algorithm, that is, registered active shape model
(RASM), is developed using enhanced homogeneity feature
extraction [15], correlation coefficient calculation for simi-
larity measure, affine transformation, and Powell algorithm
application [25]. This algorithm, that is, RASM, is developed
to create a set of more robust training models which will re-
sult in more accurate segmentation. This includes two stages:
training stage in which registered training models are created
and testing stage which includes automatic initialization.
Figure 3. provides the flowchart for the RASM algorithm.
After the creation of training models, segmentation is per-
formed on the test images. As mentioned earlier, manual
initialization may fail to segment the targeted objects accu-
rately. Hence, an automated hierarchical initialization algo-
rithm is used in the study. The proposed initialization process
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FIGURE 3: RASM Algorithm.

involves image registration, bone extraction, and edge detec-
tion to automatically and sequentially place the training
models of each individual object for the test images to extract
the bone from the background.

2.2. Fracture Detection in Pelvic CT Images. After bone seg-
mentation, a multistage process is used for fracture detection
in pelvic CT scans. Fracture detection of pelvic bones in-
cludes several steps. First, pelvic bone segmentation is con-
ducted using the proposed RASM algorithm, as described
in Section 2.1. The extracted bone boundaries are utilized
to create a series of adaptive windows. Later, 2D stationary
wavelet transform (SWT) is applied to each window to test
the contour discontinuities in each window using boundary
tracing. If there is a contour discontinuity in a window, then
it is considered as a potential bone fracture.

2.2.1. Adaptive Window Creation. Discontinuities around
the bone boundary help identify the presence of fracture.
Therefore, a detailed view of bone boundary is required
through the formation of windows around the bone whose
sizes are adaptively adjusted to include the bone borders.
Creation of these adaptive windows around the bone bound-
ary will facilitate the process of identifying the discontinu-
ities. In this study, a systematic method is proposed to form
adaptive windows around the bone boundary to include and
detect possible discontinuities associated with fractures. The
appearance of bone fractures in a pelvic CT scan depends on
the injury severity. Major fractures are usually visible, while
minor fractures may not severely distort the edge of the bone;
instead, they may appear as dual edges or a single subedge
that is slightly blurred compared to the neighboring edges.
Therefore, it is important to refine the blurred boundary of
each bone in order to achieve accurate fracture detection.
The refinement is done using a wavelet transform which is
later described in the following subsections. However, due
to local intensity variations, it may be difficult to achieve
practical and desirable results by applying wavelet transform
to the entire bone structure. Hence, the detected bone
boundary is divided into a series of windows. The size and

location of each window is determined by the area of the
bone and boundary detected using the RASM. This is called
adaptive windowing. The adaptive windowing algorithm is
explained in detail as follows.

On the basis of the segmentation formed by the RASM
algorithm, the landmarks are placed on the boundary of each
segmented bone. The windows are created starting from the
first segmented pelvic bone region. The adaptive window is
created on the basis of each landmark placed on the seg-
mented bone boundary.

Let {(-xpl)ypl)> (xp2>yp2))- B (pr ypl)}: P = 1,2,...,N,
be the coordinates of the landmarks of each bone in the
image. N is the number of bones, and / is the number of
landmarks for each pelvic bone. The landmarks are located
at the center position (Cp, D)) of each window. The area of
the window W; is determined using

A
wi="2, (1)
where A, is the area of the corresponding piece of bone,
The determined empirical constant 1/6 has been selected to
ensure that the size of the window is appropriately selected.
The side length of the each leg of the cubicle (square) window

is identified using
[A
S = El .

Since the area of each adaptive window is small, in order
to obtain more suitable virtualization effects, each window
is scaled to the size of 256 x 256 by applying the bilinear
interpolation technique [14]. As shown in Figure 4, sample
adaptive windows are created. Each landmark is located at
the center of each window.

(2)

2.2.2. The 2D Stationary Wavelet Transform. After adaptive
windowing, 2D stationary wavelet transform (SWT) is ap-
plied on each window in order to refine the blurred boundary
of pelvic bone. The classic discrete wavelet transform (DWT)
suffers a shortcoming that the DWT of a translated version
of a signal/image is not, in general, the translated version
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FiGure 4: Example windows around the boundary of pelvic bone,
positioned according to landmarks.

of the DWT of the signal/image. To overcome this, SWT is
applied in our work, as it is designed to overcome any shift
variation [26]. The wavelet transform algorithm is explained
as follows.

The wavelet transform decomposes an input signal into
different frequency components using a series of filtering
operations. A wavelet ¢,(¢) is a function with a zero average

f y(B)dt = 0. 3)

The wavelet generates a family of wavelets by scaling /() by
a and translating it by 0:

a

9p.alt) = %q)(“e). (4)

The wavelet transform of a signal s(¢) at time 6 and scale a
can be represented as

Ws(6,a) = (s(t), 9g.a(t)) ,

W.(6,a) = j: S(t% o ( %) “ (5)

The convolution computes the wavelet transform of the in-
put signal with dilated band-pass filters. Two sets of coef-
ficients are obtained through wavelet transform, one is
approximation coefficients, cA;, and the other is detail coef-
ficients, cD;, where j is the level of decomposition, including
horizontal, vertical, and diagonal coefficients. Decimation
makes wavelet transform a shift-variant process. To over-
come this, a stationary discrete wavelet transform is used in
this study.

The scaled window W is first decomposed using a 2D
Stationary Discrete Wavelet Transform. The classical Discrete
Wavelet Transform (DWT) is not a space-invariant trans-
form. The SWT is an algorithm which does not decimate the
coefficients at every level of decomposition [26]. The filters at

level i are upsampled versions of those at level (i — 1). As with
the 2D DWT, decomposition outputs approximation, hori-
zontal, vertical, and diagonal coefficients. In this application,
three levels of decomposition are applied to window W using

the Haar wavelet. The level 3 detail coefficients, cDj+1(h),

cDjH(”), and cDj+1(d), are then extracted and used to recon-
struct detail arrays Dy, D,, and Dy of horizontal, vertical, and
diagonal coefficients. Figure 5 represents decomposition of
2D SWT.

The accuracy and running speed of the SWT algorithm
are compared when extracting the upsampled coefficients
separately at 1st, 2nd, 3rd, and 4th levels. The algorithm runs
on the computer with 2.80 GHz Intel(R) Core(TM) i7 pro-
cessor, 64-bit Operating System, 6.0 GB memory. For each
CT slice, it takes approximately 0.15 seconds more for the
2nd level of stationary wavelet decomposition than the 1st
level decomposition. While the 3rd level of decomposition is
only 0.1 second slower than the 2nd level of decomposition
in terms of running speed, more noise is filtered out, and
edges are clearer in the 3rd level of decomposition compared
to other two levels; this improves the accuracy of the fracture
detection algorithm. Going to the 4th level adds another 0.15
second of additional delay while not adding much to the
filtering performance. Hence, in order to achieve a suitable
balance between the running speed and accuracy, the 3rd
level of SWT is used in this work.

2.2.3. Masking. The next step in the fracture detection is to
create a binary version of the chosen detail array W, from
the wavelet transform. This binary version not only contains
the pelvic bone contour, but also includes other redundant
and unnecessary edges. A mask is formed to filter these
redundant edges out. The mask W, is formed by converting
the smoothed window to a binary image using Otsu’s thresh-
old [27]. The threshold is computed to minimize the intra-
class variance, defined as a weighted sum of variances of two
classes, black and white pixels.

o3 (t) = wi(t)ai(t) + wa(t) o3 (1). (6)

Weights w; are probabilities of the two classes separated by
a threshold ¢ and o7 variances of these classes. Minimizing
the intraclass variance is the same as maximizing interclass
variance

ot (t) = 0> = a2(t) = wi(t)ma (D[ (1) — w(O]’, ()

where w; are probabilities of the two classes and y; is the class
mean.

The contour is then extracted from the binary image.
The unwanted edges are removed from the binary image to
create an edge window. Later, a precise edge window W, is
obtained by removing the extra edges in the image using the
pelvic bone contour and the mask. The process is defined as
a combination of W}, and W,,. This edge window is used for
the boundary tracing as described in next step

W, = Wj, X W,,. (8)
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FiGURE 6: Example of pelvic bone segmentation results via RASM.
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F1GURE 7: Example results of pelvic bone segmentation via standard ASM without initialization.

(a) (b) (c) (d)

FiGure 8: Example of a detected broken boundary of pelvic bone, which may indicate a fracture.

2.2.4. Boundary Tracing. After masking, the last and final
step in fracture detection is the detection of discontinuities.
This is achieved by tracing the extracted bone edges. Small
artifacts surrounding the extracted bone edges may interfere
with the boundary tracing. Therefore, these artifacts must be
removed. These are removed by applying morphologic open-
ing to all the objects in the image with area below a specific
threshold, which is predefined as 1% of the window area in
the testing step. The remaining edges are then traced using
the 8-neighborhood of each pixel and are returned as a ma-
trix of pixel positions. The traced edges represent the pelvic
bone contours. The window will therefore contain a single
continuous boundary if there is no fracture. In the presence
of fracture, multiple boundaries are present in the window,
depending on the type and severity of fracture.

3. Results and Discussion

3.1. Dataset. The dataset has been obtained from the Vir-
ginia Commonwealth University Medical Center. Data have
been collected from twelve patients with traumatic pelvic
injuries. Forty-five to seventy-five images are collected from
each patient. Axial CT images with five millimeter slice thick-
ness are used for the study. Images collected from five pa-
tients are used for training, and the other seven patients’
images are used for testing. For fracture detection, a total of
12 patients are used, out of which 8 patients exhibit small to
very severe bone fractures.

3.2. Results of Bone Segmentation. Figure 6 shows a sam-
ple segmentation of pelvic bones using RASM. Figure 7
shows the compared results of pelvic bone segmentation via

standard ASM without initialization. The main reason of
inaccurate bone segmentation is that the initial positions of
training models are not correctly assigned. As given in [8],
total segmentation accuracy for both good and acceptable
classes is 95.77%. These results were evaluated by expert ra-
diologist as ground truth for assessment.

3.3. Results of Fracture Detection. Figures 8 through 10 show
the results obtained at various stages of fracture detection.
In these figures, (a) is the original image, (b) is the extracted
adaptive window after being scaled, and (c) is the enhanced
window after brightness contrast stretching. This is done for
better visualization effect. And, (d) shows the final fracture
detection results. In Figure 8, the patient suffers from a mi-
nor fracture in right iliac wing. Figure 8(d) indicates the frac-
ture detected in the right iliac wing. Figure 9 is the “no frac-
ture” case. The result in Figure 9(d) shows that the bone
appears smooth with no fracture. Figure 10 illustrates a pa-
tient with a very severe fracture in the right ilium bone.
Fractures are detected from the windows of this bone region.
Example of detected fractures shown in Figure 10(d) indi-
cates fractures in three different regions of the right ilium
bone. These results are evaluated by an expert radiologist and
are considered acceptable. For 8% of the cases, the method
was unable to capture the fracture. The few cases that the
algorithm gave false alarms in fracture detection may be
either due to the algorithm needing further refinement or
other factors such as the poor quality of these particular CT
images.

The results show that the method can successfully detect
bone fracture. Table1 presents the performance of the
method detecting fractures. The proposed method is highly
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(d)

F1Gure 9: Example of a detected nonbroken boundary of pelvic bone, which may indicate no fracture.
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(d)

FiGgure 10: Example of a detected broken boundary of pelvic bone, which may indicate three fractures.

TasLE 1: Performance of pelvic bone fracture detection.

Statistical Results
Rate %

Accuracy
91.9821

Sensitivity
93.3333

Specificity
89.2617

sensitive to the discontinuities present in the bone and is
capable of detecting fractures.

3.4. Discussion. The results were validated on the basis of the
assessment and evaluation made by radiologists on the CT
scans in the above mentioned database. As shown in the re-
sults, the designed algorithm is able to detect the fractures

relatively accurately. Using the proposed algorithm, fractured
bone may be further highlighted in the processed images;
this could help the radiologists better analyze the scans and
increase the chances of capturing the fractures. Additionally,
as it can be seen in the results, our designed method may
help quantify the fracture separation distance and the angle
between the broken bone pieces as well as other quantitative
assessment of the fractures, which may not be easily accessi-
ble and measurable through visual inspection. The designed
algorithm provides these clues and recommendations on the
fracture detection in an automated fashion and with relative-
ly high speed (the processing time is less than one second for
each slice). This helps physicians reduce the decision-making
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and diagnostic time, which is highly important for traumatic
pelvic injuries.

4. Conclusion and Future Work

This paper presents a method for detecting fractures in pel-
vic bones using automated bone segmentation, adaptive win-
dowing, boundary tracing, and 2D stationary wavelet Trans-
form while including anatomical information. The results
show that the proposed method is capable of detecting frac-
tures in pelvic bones accurately. Automated fracture detec-
tion, once verified with more data, will be an important com-
ponent of a larger modular system to extract features from
CT images for a computer-assisted decision-making system.
Future work will focus on the quantitative measurement of
fracture on the basis of a larger dataset, for example, hori-
zontal displacement, as well as the determination of fracture

type.
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