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Brain activity can be measured with several non-invasive neuroimaging modalities,
but each modality has inherent limitations with respect to resolution, contrast and
interpretability. It is hoped that multimodal integration will address these limitations by
using the complementary features of already available data. However, purely statistical
integration can prove problematic owing to the disparate signal sources. As an alternative,
we propose here an advanced neural population model implemented on an anatomically
sound cortical mesh with freely adjustable connectivity, which features proper signal
expression through a realistic head model for the electroencephalogram (EEG), as well
as a haemodynamic model for functional magnetic resonance imaging based on blood
oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic
predictions of EEG and fMRI BOLD from the same underlying model of neural activity.
As proof of principle, we investigate here the influence on simulated brain activity of
strengthening visual connectivity. In the future we plan to fit multimodal data with
this neural population model. This promises novel, model-based insights into the brain’s
activity in sleep, rest and task conditions.
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1. Introduction

Non-invasive recording of human brain activity has a long history, beginning
with the electroencephalogram (EEG) [1]. The EEG remains prominent both
in research and in clinical practice [2] owing to its excellent time resolution,
which allows, for example, the tracking of evoked potentials. In the meantime,
functional magnetic resonance imaging (fMRI) based on blood oxygen level
dependent (BOLD) contrast has become a standard for researching cognition
[3,4], largely because fMRI BOLD can locate brain activity with millimetre
accuracy. However, progress in neuroimaging is slowing, owing to fundamental
restrictions in acquisition methods. For example, volume conduction limits the
spatial resolution of EEG to the centimetre range, whereas fMRI BOLD relies on
vascular changes with latencies of half a second or more.

A promising way forward lies in combining already available neuroimaging
modalities [5–9]. Each modality provides a particular and distinct representation
of the brain’s state via its specific signal sources. For example, EEG relies on
electrical and fMRI BOLD on haemodynamic sources, which relate to different
aspects of neural activity, as we shall see. Furthermore, data from different
modalities often have complementary characteristics. This is the case for EEG and
fMRI BOLD concerning spatiotemporal resolution, as discussed above. Finally, it
is possible to record EEG and fMRI BOLD simultaneously [10]. This avoids the
question whether data obtained in different sessions really refer to the same brain
state. Hence EEG and fMRI BOLD present a convenient test case for developing
multimodal approaches. An example for the ‘added value’ that simultaneous
EEG/fMRI can provide is the connection of fMRI resting-state networks to EEG
cortical microstates recently discovered by Britz et al. [11] and Musso et al. [12]
(cf. the commentaries by Laufs [13] and Lehmann [14]).

There are three basic approaches to multimodal integration [15], which are
all ‘model-based’ in some sense. When using converging evidence, a researcher
combines data argumentatively against a backdrop of established expert opinion.
Clearly, such an implicit ‘human mind’ model is powerful, but qualitative and
idiosyncratic. Data fusion combines the various recorded data directly using
statistical methods. This is quantitative and repeatable, but implies some model
of relations between signal sources. Such relations may be less simple than
commonly assumed (e.g. [16]). Computational modelling makes explicit prior
knowledge and assumptions through the process of model specification. In
principle, this allows the fully objective assessment of theory in terms of a model
fit to data. In practice, realistic models are often too complex for a comprehensive
validation or unequivocal falsification. Nevertheless, the explication of theory
through a computational model generally allows more rigorous testing.

We present here a complete model chain from neural activity to detector signal,
based on a neural population model (NPM). Pioneered by Wilson & Cowan [17]
and others, such neural population modelling approaches have attracted much
attention—see the recent reviews by Deco et al. [18] and Coombes [19]. They
can successfully describe epileptic seizures [20–23], evoked potentials [24,25],
cognitive activity [26,27], drug effects [28,29] and—of particular significance for
this Theme Issue—sleep [30–33]. NPMs for the magnetoencephalogram [34,35]
and fMRI BOLD [36] are popular, in particular, when considering network
dynamics [37]. Here, we use a discretization of an anatomically folded cortex,

Phil. Trans. R. Soc. A (2011)



Model-based integration of EEG/fMRI 3787

with activity propagation instantiated not with approximate partial differential
equations (PDEs) [38,39], but by explicitly keeping track of all signal delays. This
allows the introduction of realistic cortical connectivity. Similar approaches have
been developed by Sotero et al. [40] and Valdes-Sosa et al. [41].

Our NPM has been introduced previously in Bojak et al. [42]. Here, we add
considerable technical detail necessary for implementing such a model. The paper
is organized as follows. The following section explains how we extract the head
model from structural MRI. Section 3 explains our NPM and signal expression.
Section 4 presents new results for variations of specific connectivity strength. We
then conclude with a discussion and outlook.

2. The head model

(a) Surfaces extracted from structural MRI

Surface approximations for the interfaces between grey matter (GM),
cerebrospinal fluid (CSF) and white matter (WM) were obtained using the CIVET
software pipeline [43]. This involves a series of processing steps. Firstly, field non-
uniformity artefacts are removed from T1-weighted structural images with the N3
algorithm [44]. T1-weighting is a standard MRI acquisition protocol that provides
optimal intensity contrast between the tissue types of interest here. Secondly, the
corrected images are normalized to stereotaxic space, and subsequently skull-
stripped and classified into GM, WM and CSF. Thirdly, the GM/WM interface
is constructed by deforming a spherical surface mesh subject to optimization
constraints. Fourthly, Laplacian GM fields are computed, and CSF skeletons are
constructed in deep sulci, as guides for an expansion of the GM/WM surface to
the GM/CSF interface. The resulting meshes represent the borders of cortical
GM, and we use an intermediate surface for modelling; see figure 1a.

To estimate volume conduction for EEG predictions, it is also necessary to
obtain skull and scalp surfaces. Using the same images, and the obtained cortical
surfaces as a starting point, T1 intensities can be sampled along rays extending
outwards until a voxel containing ‘air’ is found, indicating the edge of the scalp.
In such a T1-weighted image, skull tissue produces little signal, and thus its inner
and outer boundaries can be determined as the edges of a ‘dip’ along the ray.
Figure 1b illustrates this method. More details will be provided in a forthcoming
publication.

(b) Pruning the cortical mesh

The CIVET mesh consists of 81 920 triangles with 40 962 vertices per
hemisphere, but cortical folding can be represented faithfully with much fewer
vertices. This is essential to reduce the NPM computation time, which scales
linearly with the number of vertices. We will see below that ‘background
connectivity’ scales roughly with the surface area, hence with the square of the
number of vertices, and that longer edges between vertices reduce significantly the
overall data transfer during the simulation. Thus, it is particularly advantageous
to prune short edges. Furthermore, inspection of the CIVET mesh shows that
many small triangles are ‘wasted’ on relatively flat parts. In other places there
appear unnatural ripples, typical evidence for ‘over-fitting’. These issues also are
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Figure 1. (a) Neural population model surface (blue) between the CIVET interfaces of grey matter
with white matter (yellow) and cerebrospinal fluid (orange). (b) Skull and scalp boundaries (blue)
from intensity profiles (black) along outward vectors (green). (c) Visual connectivity used in this
study. ‘Regional map’ areas are indicated by colours on an average cortical surface. FEF, frontal
eye field; VACd and VACv, dorsal and ventral anterior visual cortex.

dealt with by removing short edges. Hence in each iteration of our algorithm, the
shortest edge of the mesh is found. Subsequently, it is removed in a manner that
we will detail next.

The two triangles that previously shared the shortest edge are removed, and
their other two sides collapsed to a single edge terminating in a new vertex; see
figure 2a. If the new vertex were to be positioned halfway on the former edge,
the curvature of the cortex would be poorly preserved. Instead, the new vertex
is positioned on a circle segment that approximates the surface (cf. figure 2b): p1
and p2 are the vertices to be removed, and n1 and n2 are the surface normals at
these vertices, which are defined as the average over the area-weighted normals
of the triangles they belong to. First p0 = 1

2(p1 + p2) and n0 = 1
2(n1 + n2) are

computed. Next, n1 and n2 are projected onto the plane through p0 that is
spanned by n0 and p1 − p2, resulting in n ′

1 and n ′
2, respectively. Point c is

the intersection of the lines through p1 with direction n ′
1 and through p2 with

direction n ′
2. Then dk is defined as the distance between c and pk for k = 1, 2, and

d3 = 1
2(d1 + d2). Finally, p3 is defined on the line from c towards p0 at a distance

d3 from c. The new vertex is placed at v = p0 + b(p3 − p0) with a fixed parameter
0 ≤ b ≤ 1, where b = 1 would be perfect for a sphere and b = 0 for a plane.

The method fails for cases like edge 1–2 in figure 2c, since removing it would
collapse two triangles onto each other. We refer to this as the ‘tetrahedron’,
since the configuration resembles one if vertex 4 is not in the same plane, cf.
figure 2d. Note that the base triangle 1–2–3 is empty, i.e. not itself part of the
cortical surface. Tetrahedra are detected and removed by replacing them with
single triangles; see figure 2d. We use a linear factor 0 ≤ l < 1, where l = 0 indicates
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Figure 2. (a) Before (top) and after (bottom) pruning. (b) The bold edge between p1 and p2 is
replaced by a vertex between p0 and p3. (c) If edge 1–2 is removed, triangles 2–3–4 and 1–4–3
collapse. The shaded region is replaced by the 1–2–3 triangle; or (d) a lifted one. (e) Cortical
surface before (left) and after (right) pruning to a minimum edge length of 2.5 mm.

the edge base points 1, 2 or 3, and l = 1 the peak 4. Thus, the tetrahedron is
replaced by the base triangle for l = 0 and with lifted ones for 0 < l < 1. While
l > 0 compensates better for loss of volume, it distorts the surrounding triangles.
Figure 2e shows an original CIVET mesh (left) pruned to a minimum edge length
of 2.5 mm (right). We have used here b = 1 and l = 0. The pruned surface has
32 408 triangles with 17 208 vertices. The overall shape and surface area remain
well preserved.

(c) Parcellation and specific connectivity

Tractography based on diffusion MRI is popular for determining connectivity
[45], but has significant drawbacks. Firstly, it is biased towards short-range
connections and has problems where tracts are densely packed. Secondly, it
does not determine the direction of activity propagation. Thirdly, it cannot
find precise termination points in the GM. Data obtained through histological
tract tracing methods are free of these problems, but only available from animal
studies. We use here a connectivity matrix for macaque monkey (available on
request), based on tracer data in the COCOMAC database [46], together with a
‘regional map’ (RM). This RM is a parcellation of cortex, which is sufficiently
generalized to accommodate anatomical homology across primate species and
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uses area names that are widely recognized and convenient to use [47]. Since the
CIVET pipeline is designed to obtain optimal correspondence between individual
vertices of meshes extracted from different human brains, it is sufficient to map
macaque brain regions to a CIVET mesh once. The assignment of vertex number
to equivalent brain region stays the same for all CIVET meshes. The RM was
manually delineated onto a template macaque cortical surface (F99-UA1) and, by
using two landmark-based deformations included in the CARET software [48], first
mapped to the human PALS-B12 surface and then to our CIVET template surface.
The resulting parcellation is shown in figure 1c, and is also available on request.

3. Neural activity model and signal expression

(a) The neural population model

Our software is flexible concerning the employed model of neural activity. We
compute here at each vertex the NPM of Liley et al. [49], as extended by Bojak &
Liley [28]. It contains one excitatory (e) and one inhibitory (i) NPM neuron, which
represent those populations of real neurons whose coherent activity dominates the
macroscopic signal of interest. For example, one can speculate that the EEG is
largely due to pyramidal layer V ‘output neurons’, which form long dendritic
bundles [50] that can act as dipolar current sources. The NPM neurons are
locally connected to each other (e → i, i → e) and to themselves (e → e, i → i); see
figure 3c. NPM self-connections model real neurons of the same type connecting
to each other.

The NPM consists of the following ordinary differential equations (ODEs):

tk
dhk

dt
= hr

k − hk(t) +
∑
l=e,i

heq
lk − hk(t)
|heq

lk − hr
k |

Ilk(t), (3.1)

(
tlk

d
dt

+ 1
) (

t̃lk
d
dt

+ 1
)

Ilk(t) = QlkAlk(t), (3.2)

with tlk ≡ dlk

klk
, t̃lk ≡ dlk

klk + elk
, Qlk ≡ qlk

eklk−1

klk
, klk ≡ elk

eelk − 1

and Alk(t) = N b

lkS
max
l

1 + exp{[ml − hl(t)]/(sl/
√

2)} + plk(t) + flk(t), (3.3)

where l , k = e, i and klk |elk=0 ≡ 1 is continuous in elk . The model parameters could
vary from vertex to vertex, but we choose here uniformly those of [51] and set elk =
0 throughout.1 Equation (3.1) gives the response of the mean soma membrane
potential hk to a sum of post-synaptic potentials (PSPs) Ilk . In the absence of
input, hk decays exponentially to hr

k with characteristic time tk . PSP impact is
weighted, with a sign change at the Nernst potentials heq

lk . Equation (3.2) responds
to a pre-synaptic Dirac pulse Alk(t) = d(t) with an alpha PSP qlk t exp(−t/dlk)/d2

lk
for elk = 0, and a bi-exponential PSP Qlk [exp(−t/tlk) − exp(−t/t̃lk)]/(tlk − t̃lk)
otherwise. Qlk is proportional to the total charge transferred, dlk is the rise time
to maximum PSP amplitude, and elk prolongs the characteristic PSP decay time.
1The paper provides glk and Glk at elk = 0, where dlk = 1/glk and qlk = Glk exp(1)/glk .
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Figure 3. (a) Head model as extracted from structural magnetic resonance imaging. (b) For one
vertex, the two kinds of long-range connectivity are illustrated. (c) The neural activity model with
excitatory (black) and inhibitory (white) populations and connections.

Equation (3.3) collects the sources for pre-synaptic spikes. The first term
corresponds to the local firing rate, limited to Smax

l , multiplied by the number
of local synapses N b

lk . The second term, plk , allows for extracortical input. Here,
one could insert thalamocortical loops [52] or specific sensory inputs. We assume
simply that extracortical input is noise-like in pee [28,49]. As a continuous average
of neural signals, pee should be low-pass filtered. We use the spline variant of
Catmull & Rom [53] with noise innovations as control points to construct such
an input. This allows us to minimize the computational expense for random
number generation and spline coefficient computation, which is important since
the noise input is computed for every node independently. Catmull–Rom splines
are unbiased, interpolating cubic splines with zero local tension and C 1 (first
derivative) continuity [54]. The following pseudo-code illustrates how one can
interpolate pee at time steps s = 0, 1, 2, . . ., where time t = s Dt, from the Gaussian
white noise randn sampled every uth time step.

y = mod(s, u) cyclic time step y = 0, . . . , u − 1
if y = 0: i = 0, 1, 2 : ci = ci+1 shift control points to the past

c3 = randn(p̄ee, s̃ee) insert noise at new time edge
f1,2,3 = { 1

2(c2 − c0), c0 − 5
2c1 + 2c2 − 1

2c3, 3
2 (c1 − c2) + 1

2(c3 − c0)
}

pee = c1 + y
u

[
f1 + y

u

(
f2 + y

u
f3

)]
interpolate value for pee

if pee < 0: pee = 0 avoid unphysiological values
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Setting up-sampling u = round[0.40449/(Dt fcut)] achieves an intended −3 dB
frequency, chosen here as fcut = 75 Hz. The spline output has mean p̄ee and
standard deviation see if s̃ee = 1.1115see.

(b) Connectivity and propagation of activity

The third term of equation (3.3), flk , supports long-range connectivity. We
distinguish two kinds; cf. figure 3b. Background connectivity is roughly isotropic,
homogeneous and diminishes exponentially with distance [55–57], typically
leading to waves of cortical activity [58]. This type of connectivity has been
commonly used, since it can be approximated by PDEs [38,39]. Background
connections from vertices b to a particular vertex a are modelled here by

w̃lk,ba = exp(−Llk,baDba), Dba < Dc, wlk,ba = w̃lk,ba∑
b w̃lk,ba

, (3.4)

sl ,b(t) = Smax
l ,b

{
1 + exp

[
ml ,b − hl ,b(t)

sl ,b/
√

2

]}−1

(3.5)

and fback
lk,a = N a

lk,a

∑
b

wlk,basl ,b(t − Dba/vlk,ba). (3.6)

Background synaptic weights wlk,ba sum to one and are multiplied by N a
lk,a , the

number of synapses formed at vertex a. The firing rates sl ,b from vertices b
arrive with delays Dba/vlk,ba , where Dba indicates the distance along the cortical
surface and vlk,ba the conduction velocity; Dba is estimated as the shortest path
through the cortical mesh. We consider here only distances up to a cut-off Dc,
where exp

(−Llk,baDc
) = 0.1, in order to limit the number of connections to those

with significant impact. Long-range connectivity is here considered as exclusively
excitatory (N a

ik,a ≡ 0), with characteristic decay (1/Lek,ba = 2.5 cm) and cut-off
(Dc � 5.76 cm) distances in the right range for the loss of coherence measured with
subdural electrodes [59]. Note that other synaptic footprints can be introduced
simply by changing the functional form of w̃lk,ba .

Specific connectivity is implemented by adding further synaptic weights ŵba :

f
spec
lk,a = N a

lk,a

∑
b

ŵlk,basl ,b(t − tlk,ba), (3.7)

where the conduction delays tlk,ba must be given. We will explain our estimation
method below. For example, a specific synaptic weight ŵba = 0.1 means that
the added connectivity from vertex b to vertex a has 10% of the strength of
the total background connectivity that a is receiving, since

∑
b wba = 1. Specific

connectivity can accommodate arbitrary connections between brain regions, and
typically will be constructed according to some experimental connectivity matrix.
Since the conduction delays Dba/vlk,ba and tlk,ba are not known with great accuracy,
we discretize both internally as multiples of the time step Dt = 5 × 10−5 s. This
makes delay bookkeeping much easier. The flk,a represent averaged and hence
continuous signals, for which we again use the spline approach detailed above.
Let us consider fcut = 1.6 kHz as sufficient, then up-sampling u = 5 follows. Thus,
we actually need to transmit flk,a values only every uDt = 0.25 ms. However,
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Figure 4. (a) Direct connections 1 → 2, 2 → 3, 3 → 4 and 4 → 5 within the cortical volume are
concatenated to the shortest route 1 → 5. (b) Examples of shortest routes so determined.

the spline needs four control points spaced by three time steps, hence we can
only spline delays greater than 3uDt = 0.75 ms. For vee,ba = 3 m s−1, the minimum
allowed distance is Dba = 2.25 mm. This demonstrates the connection between
data transfer and shortest edge length: if we reduce the latter, then we must
lower the up-sampling and hence transmit flk more often.

For parallel computation, we divide up the cortical mesh between compute
nodes. To minimize the communication overheads, we compile data into chunks
for transmission between nodes. Assume a compute node B has been assigned
vertices vb with b ∈ B. A different node A contains vertices va with a ∈ A. Call
B → A ⊂ B the list of vertices for which connection strengths wlk,ba or ŵlk,ba , or
both, are non-zero. The compilation of values {sl ,b(t)} with b ∈ B → A is what gets
transmitted from B to A. To simplify our explanation of how node A distributes
the received data, we will assume that data are exchanged at every time step Dt.
In reality, only the spline control points are sent. This leads to a significant
reduction of traffic, here by a factor u = 5. Every vertex has its own ‘delay buffer’
for accumulating inputs, with a size set by the maximum (discretized) delay of
incoming connections. A pointer indicating ‘current time’ advances in this buffer
and at its end cycles back to the beginning. Distributing {sl ,b(t)} now simply
reduces to adding N a

lk,a

∑
b ŵlk,basl ,b(t) to the position tlk,ba/Dt steps ahead of the

‘current time’ pointer (modulo the buffer length), and likewise for background
connections. When the ‘current time’ pointer has advanced to a new position in
the buffer, the sum of equations (3.6) and (3.7) will have been built up there.
The buffer entry is hence added to the system as the current input flk,a , and
then reset to zero, ready to accumulate input again.

The RM does not provide an estimate for fibre length and hence time delays
tlk,ba . To calculate an estimate, we assume that vertices are connected by the
shortest possible route, which minimizes conduction delays in the brain. Our
algorithm first determines all those straight lines between pairs of vertices, which
are completely contained within the cortical volume. This yields a network of
allowed paths. At this stage any pair of vertices is connected at least via the
surface edges, but ‘shortcuts’ through the volume generally exist. The optimal
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Figure 5. (a) Projection vectors for vertex si and voxel vj , and resulting weights from high (red)
to low (blue). (b) Vertex to voxel projection of fMRI BOLD in horizontal section.

route is computed by means of a standard ‘all pairs shortest path’ algorithm like
Floyd–Warshall [60]; cf. figure 4a. Examples of routes so determined are shown in
figure 4b. For route finding, we prune the cortical surface further to only several
thousand vertices. This limits the computation time for, and final size of, the
distance matrix. Vertices of the NPM surface are then matched by Euclidean
proximity.

(c) EEG and fMRI BOLD signal sources

The details of extracting EEG and fMRI BOLD signals from the NPM
simulation have been described in our previous publication; see Bojak et al. [42]
for details. Electric dipole strength is here assumed to be roughly proportional
to the average excitatory membrane potential he [61]. A volume conductor model
with three compartments was constructed, representing the scalp (conductivity
0.2 S m−1), the skull (0.03 S m−1 [62]) and the inside of the skull (0.2 S m−1).
For piecewise homogeneous volume conductors such as this, the boundary
element method can be used to compute the EEG transfer matrix. We assume
that fMRI BOLD is driven by glutamate release [63,64]. The neural drive z
is hence proportional to the sum feAee + fiAei of excitatory inputs only, cf.
equation (3.3). Values fe � 0.85 and fi = 1 − fe represent the fraction of excitatory
and inhibitory neurons, respectively. We implement a ‘balloon–windkessel’ model
of haemodynamics at every vertex with four ODEs according to Friston et al. [65].
This predicts the local fMRI BOLD contrast y. For the results shown here, a
baseline of resting activity is subtracted by hand.

(d) Comparing voxel data with surface simulations

The prediction of voxel values from vertex ones must be informed by anatomy:
in the normal direction of the surface we assume here that fMRI BOLD is roughly
uniform across the cortical mantle. It is however straightforward to introduce a
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Figure 6. Dependence of the power spectral density of the ECoG on the strength of specific
connectivity ŵ. The power is shown in dB relative to the largest overall value.

gradient, e.g. to weigh contributions from the pial surface more strongly. The
weighting factors are then determined as follows (cf. figure 5a): if we designate
d ij as the vector between a given vertex si and voxel centre point vj , then nij is
its projection onto the surface normal at si ; and tij is a tangential vector uniquely
defined by being orthogonal to nij and coplanar with nij and d ij . Weights are
computed by the Gaussian dispersion

wN
ij = GN

[
max

(
0, |nij | − ti

2

)]
, wT

ij = GT(|tij |), (3.8)

where GN,T(x) = exp[−x2/(2s2
N,T)], and we use sN = 2.0 mm and sT = 1.66 mm.

The latter equates the Gaussian full width at half-maximum with the average
edge length of our cortical surface (3.9 mm). Finally, the projected fMRI BOLD
contrast y(vj) is

y(vj) =
n∑

i=1

wN
ij · wT

ij y(si), (3.9)

where n is the number of vertices in the surface mesh. A global normalization
restores the original range of fMRI BOLD values. The same approach can be used
as well to project fMRI BOLD voxel data onto surface vertices.

4. Results

The COCOMAC matrix provides basic information about connectivity strength
by assigning values 0 (absent), 1 (weak), 2 (moderate) and 3 (strong) based
on the reported histochemical staining. Here, we explore the relationship
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Figure 7. Predictions of (a) scalp EEG, (b) ECoG and (c) fMRI BOLD for different strengths
of specific connectivity: 0% (top), 30%, 60%, 85% and 90% (bottom). See also the video in the
electronic supplementary material.

between COCOMAC’s anatomical connectivity strength and the effective (causal)
connectivity of our model, gauge the strength of specific versus background
connectivity, and test the functional visibility of a cortical network consisting
of the dorsal (VACd) and ventral (VACv) anterior visual cortex and the frontal
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eye fields (FEF). As can be seen in figure 1c, these areas form a triangle of
connections, all with ‘moderate’ COCOMAC strength. We also include contra-
lateral connectivity from every vertex to the vertex nearest to its mirror position
in the other hemisphere. For the sake of simplicity, we employ only one universal
ŵ value for all specific connections. Varying this connection strength parameter
will provide a basic test for how significant current experimental and theoretical
uncertainties concerning (effective) connectivity are for model predictions of
brain dynamics.

We have simulated 10 s of brain time for ŵ = 0%, 5%, . . . , 100%, i.e. from
no specific connectivity to one as strong as the background connectivity. The
only input here is the noise shaped as described above, hence all dynamical
features at frequencies well below fcut = 75 Hz emerge from the system. The power
spectral density of the excitatory mean soma potential he (simply called ‘ECoG’
henceforth) was computed for the last 4 s of brain time (2 s Hann window, 50%
overlap), avoiding initial transients and averaged over all vertices. The result is
shown in figure 6: a strong peak is evident in the delta/theta band, which drifts
from 5 to 4 Hz for increasing ŵ. There is also a weak alpha peak at 9.5 Hz, which
weakens further as it drifts to higher frequencies. Strikingly, upon moving from
ŵ = 85% to ŵ = 90%, suddenly a strong beta peak appears at around 16 Hz, which
for ŵ = 100% reaches three-quarters of the maximum power of the slow oscillation.
The power of the slow oscillation itself by then has more than doubled. All the
described features of the power spectra are due to self-sustaining oscillations, i.e.
can be elicited also without the noise drive. We have tested that these results are
stable for the simple (forward Euler) integration scheme used here by repeating
the calculations with a five times smaller time step.

In figure 7, we compare activity patterns for (a) scalp EEG, (b) ECoG and (c)
fMRI BOLD for ŵ = 0%, 30%, 60%, 85%, 90%, from top to bottom. In the EEG
column, we also see recordings from three ‘electrodes’ indicated in purple, which
show the last second of the simulation. Without specific connectivity, large waves
of activity dominate. fMRI BOLD contrast gets sufficiently strong to be detected
over experimental noise only between 30 and 60 per cent, and VACd, VACv
and FEF also become somewhat visible there. The transition from 85 to 90 per
cent appears less dramatic in the activity snapshots than in the power spectrum.
However, for 90 per cent and higher we can easily identify the regions of our
chosen cortical network, in particular with fMRI BOLD contrast. In summary,
our variation of ŵ identified large parameter regions for which brain dynamics
would appear qualitatively unchanged in simultaneous EEG/fMRI (30–85% and
greater than 90%, respectively), but with the possibility for a transition between
these regions induced by a small parameter change (from 85% to 90%).

5. Conclusions

In the present work and in Bojak et al. [42], we have outlined a complete
simulation pipeline for forward predictions of simultaneous EEG and fMRI
BOLD. It is based on a well-known NPM formalism [28,49], but uses a cortical
tessellation with correct anatomical geometry in a realistic head model. Our
software features a method for tracking conduction delays that allows the
implementation of arbitrary corticocortical connectivity. We have explained
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here our pruning procedure for surface meshes, Catmull–Rom splining in noise
generation and (multi-parallel) communication, the implementation of specific
connectivity and finally the projection of surface fMRI BOLD predictions to
voxel data. Furthermore, we have investigated the effects of strengthening specific
connectivity. We found that a dynamical regime of dominant slow oscillations that
allow the detection of functional networks with fMRI BOLD was qualitatively
stable over a large parametric range (specific connectivity strength 30–85%
relative to that of the homogeneous and isotropic ‘background connectivity’).
However, a further small parameter increase (by 5%) would then result in the
sudden appearance of additional strong beta oscillations. Consequently, for the
time being it appears necessary to adjust connectivity strength carefully with
respect to the resulting dynamics, since it is not guaranteed that predictions
will be qualitatively similar for two different, but reasonable, parameter choices.
We speculate that this difficulty generalizes beyond our current model, and
suggest that any dynamical implementation of a connectivity matrix has to be
accompanied by a careful exploration of the used connectivity strength.

With respect to frequency content, our simulations may already resemble stage
II sleep. However, since our model oscillations are of purely cortical origin, lacking
both realistic thalamic input and sleep cycle modulation, the current setup
provides no direct insight into the mechanisms of sleep. Importantly, however,
the NPM and connectivity can be easily modified or exchanged. Hence the sleep
NPMs mentioned in §1 (cf. also Robinson et al. [66] in this Theme Issue) could
be integrated with our software to allow realistic predictions of the activity of the
sleeping brain as observed with (simultaneous) EEG and fMRI BOLD.
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