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Plasmalogens are ether-linked lipids that may influence oxidative stress resistance of eukaryotic cell membranes. Since bacterial
membrane composition can influence environmental stress resistance, we explored the prevalence of plasmalogens in the cyto-
plasmic membrane of Bifidobacterium animalis subsp. lactis. Results showed plasmalogens are a major component of the B. ani-
malis subsp. lactis membrane.

Evidence suggests several species of bifidobacteria have pro-
biotic properties (18), and two commercially important

species are Bifidobacterium longum and Bifidobacterium anima-
lis subsp. lactis. One of the challenges associated with the use of
bifidobacteria probiotics involves the loss of viability due to the
unfavorable environmental conditions that are encountered
during the manufacture and storage of most food-based deliv-
ery systems (19). One potential mechanism to enhance cell
survival involves manipulation of bacterial cell membrane fatty
acid (CMFA) composition (12, 22). Several studies have shown
that CMFA composition influences membrane fluidity, proton
permeability, and the activity of a variety of transport proteins
(6, 10, 21, 26). Cell exposure to acidic pH, for example, can
trigger an increase in the level of saturated, branched, or cyclo-
propane fatty acids in the cell membrane (1a, 2, 4, 7, 9, 11).
These changes render the cell membrane more rigid and result
in greater cell membrane stability in acidic environments.
Among bifidobacteria, a bile salt-resistant B. animalis subsp.
lactis mutant has been shown to increase the unsaturated/sat-
urated fatty acid ratio of its composition during bile salt expo-
sure, whereas wild-type cells showed a decrease in the unsatu-
rated/saturated fatty acid ratio (20). This study also showed
that in both strains there was a large decrease in the amount of
C19:0 cyclopropyl fatty acid in response to bile salt exposure.

Plasmalogens are phospholipids that contain a vinyl ether
bond at the SN1 position instead of an ester bond, and they display
physical properties distinct from those of diacyl analogs. Plas-
malogens are widespread among eukaryotes, accounting for up to
one-fifth of the total phospholipid pool of humans (24). In eu-
karyotes, cells with high CMFA plasmalogen content are associ-
ated with oxidative environments and display lower membrane
ion permeability and surface potential and an increase in cell
membrane fluidity (24). Additionally, the vinyl ether bond is
more easily oxidized than the carbon-carbon double bond of un-
saturated fatty acids, and in contrast to oxidized unsaturated fatty
acids, plasmalogens do not propagate free radicals in response to
peroxides (3, 15). Because of these characteristics, plasmalogens
have been proposed to act as antioxidants in membrane physiol-
ogy via protection of unsaturated fatty acids and membrane pro-
teins from harmful oxidation (5, 27). Several Clostridium, Myco-
bacterium, and methanogenic archaea species have also been
found to possess vinyl ether-linked lipids in their membrane, but
little is known about the role of these lipids (8, 11, 13, 16, 25). Very

few studies on the membrane composition of bifidobacteria have
noted vinyl ether-linked lipids (1); more commonly, these lipids
are grouped with their esterified analogs (20). Because of the
unique properties of vinyl ether-linked lipids, plasmalogen con-
tent should be considered in research that seeks to explore the role
of CMFA composition in environmental stress resistance among
bifidobacteria. Here, we use a previously described and simple
methodology for derivatization of plasmalogens to isolate these
lipids and provide mass spectra lacking in the literature but nec-
essary for identification. Results reveal that plasmalogens are a
significant component of the cytoplasmic membrane of B. anima-
lis subsp. lactis.

Two industrially important B. animalis subsp. lactis strains,
DSM10140 and BL-04 (1b), were maintained as glycerol freezer
stocks at �80°C, and working cultures were prepared by two suc-
cessive transfers (1% inoculum, vol/vol) into peptonized milk me-
dium (MP5) (17) and incubated at 37°C for 18 h in anaerobic
chambers (Becton Dickinson Microbiology Systems, Cock-
eysville, MD). Batch cultures of each strain were prepared by di-
lution of the working culture to an absorbance at 600 nm (A600) of
1.0 in MP5 medium, inoculated at 1% (vol/vol) into 1 liter of MP5
in a New Brunswick BioFlo III fermentor (New Brunswick Scien-
tific, Edison, NJ), and finally incubated at 37°C with an agitation
rate of 100 rpm to prevent sedimentation. A gas mixture of 5%
CO2 and 95% N2 was continuously passed over the headspace of
the fermentor to achieve anaerobic conditions, and the pH was
maintained at 6.5 by automatic addition of 15% (vol/vol)
NH4OH. The cultures were incubated until the cells reached early
stationary phase (approximately 12 h) (17).

Twenty milliliters of cells was centrifuged and washed twice
with phosphate-buffered saline (PBS). Total fatty acids were
extracted from cell pellets by acid hydrolysis and methylation
according to the MIDI laboratory protocol described by Sasser
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(23). To inhibit oxidation, butylated hydroxytoluene was
added to each sample, and the GC vial headspace was flushed
with nitrogen gas. The samples were then analyzed on a GCMS-
QP2010S (Shimadzu Scientific Instruments, Columbia, MD)
mass spectrometer equipped with a flame ionization detector
and fitted with a 10-m guard column and a 30-m DB5 capillary
column. The injector temperature was held at 250°C, and 1 �l
of the sample was injected splitless. The temperature of the
oven was held at 50°C for 1 min, increased to 150°C at 20°C/
min, and then increased to 250°C at 4°C/min, with the final
temperature of 250°C held for 1 min. Helium was used as the
carrier gas at a column flow rate of 1.79 ml/min. Electron im-
pact ionization at 70 eV was used for fragmentation. A bacterial
acid methyl ester mix (Supelco, Bellefonte, PA) was used as a
standard to identify derivatized methyl esters in the samples.
The data were normalized, and the percentage of the total
membrane composition was determined for each fatty acid.
Because ion fingerprints for plasmalogens are not available in
the standard or the literature, samples containing suspected
plasmalogens were collected as described and sent to the Uni-
versity of California, Riverside, Analytical Chemistry Instru-
mentation Facility for GC-accurate mass measurements of ion-

ized lipid fragments. Samples were also sent to the University of
Utah Mass Spectrometry and Proteomics Core Facility for pre-
cise mass measurements of the intact parent species using GC-
electrospray ionization accurate mass measurements on a Wa-
ters GCT Premier lock mass.

The vinyl ether bond of plasmalogens is easily hydrolyzed under
acidic conditions to form an aldehyde, which rapidly reacts to form
dimethyl acetals (DMA) in the presence of methanol (Fig. 1) (14).
The isolated DMA elute at a lower rate on the GC column than their
methyl ester analogs, allowing separation. Figure 2 shows a chro-
matogram of the membrane fatty acids of B. animalis subsp. lactis
strains DSM10140 and BL-04. After analysis and comparison to the
standard, peaks of interest were identified based on their elution time
and the presence of a strong ion peak of 75 (Fig. 3). Under electron
impact ionization, DMA fragments extensively, with the most abun-
dant ion (m/z � 75) resulting from the loss of the DMA head group.
This ion peak is the principal identifier of DMA and is unique to these
molecules (25). The extracted mass spectrum of each peak (Fig. 3)
was analyzed to determine its empirical formula.

Another important fragmentation product is the parent ion
molecular mass minus 31 (M�31) that results from the loss of
a methoxy group (Fig. 3). These peaks reveal the numbers of

FIG 1 Acid hydrolysis of plasmalogens and derivatization to dimethyl acetals. A, plasmalogen; B, phosphoglycerol; C, fatty aldehyde; D, dimethyl acetal. HA,
Bronsted acid; R1/R2, fatty acid carbon tail; R3, phospholipid head group.

FIG 2 Gas chromatogram of cytoplasmic membrane lipid extracts from Bifidobacterium animalis subsp. lactis DSM10140 (A) and BL-04 (B) showing peaks for
dimethyl acetal-derived plasmalogens. Peaks of interest include C14:1 (a), C14:0 (b), C16:1 (c), C16:0 (d), C17:0 cyclopropyl (e), C18:1 (f), and C19:0 cyclopropyl
(g). y axis, signal intensity; x axis, time (min).
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carbons and levels of saturation in the alkenyl moieties of the
DMA. Table 1 shows the measured accurate mass-to-charge
ratio (m/z) of M�31 for each peak and compares them to the
calculated m/z. A parts-per-million (ppm) error was calculated
for each m/z, with each error under the threshold value for
significance (5 ppm). Under electron impact ionization, these
molecules fragment easily and do not produce a detectable par-
ent ion. Electrospray ionization was used to measure the m/z of

the parent ion peaks to confirm the empirical formulas of our
samples. This is a soft ionization method which allows for the
addition of an electron without fragmenting the molecule. The
measured accurate m/z of the parent ion peaks were also com-
pared to the calculated m/z, with all having a ppm error of less
than 5 (Table 1). Together, these mass spectrometry (MS) data
provide positive identification of the DMA in B. animalis
subsp. lactis membrane samples.

FIG 3 Mass spectra of dimethyl acetal-derived plasmalogens. Spectra are shown for C14:1 (A), C14:0 (B), C16:1 (C), C16:0 (D), C17:0 cyclopropyl (E), C18:1
(F), and C19:0 cyclopropyl (G). y axis, relative abundance; x axis, mass-to-charge ratio (m/z).
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Previous research in our laboratory (17) showed that B. animalis
subsp. lactis BL-04 has significantly greater intrinsic resistance to
H2O2 than strain DSM10140. Data collected in this study show that
plasmalogens make up a significant proportion of the total mem-
brane composition of B. animalis subsp. lactis DSM10140 and BL-04
(26.34% � 4.73% and 30.35% � 5.21%, respectively). Although the
amounts of plasmalogens in DSM10140 and BL-04 as a percentage of
total CMFA are not significantly different (P � 0.05), levels of C19:0
cyclopropyl vinyl ether lipids are significantly higher (P � 0.05) in
strain BL-04 (15.48% � 7.01%) than in DSM10140 (6.71% �
1.74%). A previous study (1) reported that oxygen-tolerant fecal iso-
lates of Bifidobacterium had a high content of plasmalogens in the
CMFA, and data from that work also support a direct correlation
between oxygen tolerance and higher CMFA concentrations of
C19:0 cyclopropyl plasmalogens. Because plasmalogens have been
shown to have physical attributes that affect membrane physiology
differently from those of the ester-linked analogs, it is important to
consider these lipids when characterizing the membrane composi-
tion of bifidobacteria. The high concentrations of plasmalogens in B.
animalis subsp. lactis membranes, together with strain-specific differ-
ences in lipid species correlated with H2O2 sensitivity, suggest that
these lipids may play an important role in environmental stress resis-
tance. Further study is required to determine and understand the role
of plasmalogens in membrane physiology and environmental stress
adaptation of bifidobacteria.
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