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Abstract
Substance abuse typically begins in adolescence; therefore, the impact of alcohol during this
critical time in brain development is of particular importance. Epidemiological data indicate that
excessive alcohol consumption is prevalent among adolescents and may have lasting
neurobehavioral consequences. Loss of cholinergic input to the forebrain has been demonstrated
following fetal alcohol exposure and in adults with Wernicke-Korsakoff syndrome. In the present
study, immunohistochemistry for choline acetyltransferase (ChAT) was determined to assess
forebrain cholinergic neurons (Ch1–4), and behavioral changes following periadolescent alcohol
exposure. Wistar rats were exposed to intermittent ethanol vapor (14 hrs on/10 hrs off/day) for 35
days from PD 22-PD 57 (average blood alcohol concentration (BAC): 163 mg%). Rats were
withdrawn from vapor and assessed for locomotor activity, startle response, conflict behavior in
the open field, and immobility in the forced swim test, as adults. Rats were then sacrificed at day
71/72 and perfused for histochemical analyses. Ethanol vapor exposed rats displayed: increased
locomotor activity 8 hrs after the termination of vapor delivery for that 24 hr period at day 10 and
day 20 of alcohol vapor exposure, significant reductions in the amplitude of their responses to
prepulse stimuli during the startle paradigm at 24 hrs withdrawal, and at two weeks following
withdrawal, less anxiety-like and/or more “disinhibitory” behavior in the open field conflict, and
more immobility in the forced swim test. Quantitative analyses of ChAT immunoreactivity
revealed a significant reduction in cell counts in the Ch1–2 and Ch3–4 regions of the basal
forebrain in ethanol vapor exposed rats. This reduction in cell counts was significantly correlated
with less anxiety-like and/or more “disinhibitory” behavior in the open field conflict test. These
studies demonstrate that behavioral measures of arousal, affective state, disinhibitory behavior and
ChAT+IR, are all significantly impacted by periadolescent ethanol exposure and withdrawal in
Wistar rats.
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1.0 Introduction
Adolescence is a transition period between childhood and adulthood, that is defined both
biologically and behaviorally, that has been suggested to encompasses the entire second
decade of life (10–20 yrs) (Spear, 2000). It has been suggested that during this time period
social and emotional fluency is acquired as well as the ability to function independently
(Dahl and Spear, 2004). While there has been a tendency to define adolescence by endocrine
events such as puberty, it actually involves changes in a number of organ systems, including
the brain that may occur in a separate time frame from endocrine events associated with
puberty (Spear and Varlinskaya, 2010). During this developmental period alterations in
neurobiological organization and behavior are seen that have been notably conserved during
evolution with a number of similarities seen across mammalian species. In the rat it has been
suggested that the periadolescent period may as a conservative estimate span postnatal days
28–42 (Spear and Brake, 1983; Varlinskaya et al., 1999; Ojeda and Skinner, 2006).
However depending on gender and the measures used to define adolescence, early
harbingers of adolescence may be seen as early as P22 in females, and it may last until P55
or so in males (Spear, 2000).

Adolescence is a critical stage of brain development when humans are initially exposed to a
number of potentially toxic external stimuli such as ethanol and other drugs of abuse
(Johnston, 1995; Clark et al., 2008; Squeglia et al., 2009a). Given that the brain continues to
develop before and throughout the adolescent period into early adulthood (Markus and Petit,
1987; Sowell et al., 1999a,b), ethanol exposure during that time period may have unique
deleterious consequences including changes in disinhibitory, cognitive, and affectively
driven behaviors. Several studies in humans have provided data showing that early alcohol
exposure is associated with behavioral deficits as measured by MRI scans and psychological
testing (McQueeny et al., 2009; Squeglia et al., 2009b; Hanson et al., 2011; Schweinsburg et
al., 2011). However, is still not clear whether all such deficits are the result of alcohol usage
or represent pre-existing conditions (Nagel et al., 2005). The use of animal models of
adolescent and young adult alcohol exposure allows for the control necessary to evaluate the
effects of alcohol on the developing brain and separate such effects from genetic
background.

Alcohol exposure during the adolescent period in rodents has been demonstrated to produce
some effects that differ from adults (Jain and Balhara, 2010; Spear and Varlinskaya, 2010).
Attenuated sensitivity to the acute effects of alcohol has been demonstrated in adolescent
rats as compared to adults in measures of: sedation (Moy et al., 1998; Silveri and Spear,
1998; Draski et al., 2001; Pian et al., 2008a), motor impairment (White et al., 2002a,b) and
electrophysiological responses (Pian et al., 2008b). However, adolescent rats appear to be
more sensitive to ethanol induced impairments in spatial learning and inhibition of long-
term potentiation than adults (Swartzwelder et al., 1995; Rajendran and Spear, 2004). Some
measures of both short and long term withdrawal from ethanol have also been demonstrated
to differ between adolescents and adults. Electroencephalographic (EEG) signs of increased
arousal and behavioral signs of hypoactivity during early withdrawal have been found in
adolescent rats as compared to adults (Slawecki and Roth, 2004; Slawecki et al., 2006).
Additionally, it has been demonstrated that adolescents show an attenuated sensitivity to
acute withdrawal related anxiogenesis in the elevated plus maze (Doremus-Fitzwater and
Spear, 2007). Enhanced prepulse inhibition of the startle response has also been
demonstrated to occur in rats exposed to alcohol during adolescence as compared to
comparable exposure during adulthood, at 6 days following cessation of ethanol exposure
(Slawecki and Ehlers, 2005). Fewer studies have compared the longer-term consequences of
alcohol exposure in adolescents and adults. However, preliminary studies suggest that
alcohol exposure during adolescence appears to cause: increased vulnerability to ethanol-
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induced spatial memory impairments (White and Swartzwelder, 2005), reductions in the P3
component of the event-related potential in hippocampus (Slawecki et al., 2001) and
changes in the frequency of slow waves during sleep (Criado et al., 2008).

Adolescent brain development also involves dramatic changes in a number of brain
neurochemical systems including dopaminergic, cholinergic, and serotonergic innervation of
forebrain systems (Kalsbeek et al., 1988; Kostovic, 1990; Gould et al., 1991; Rosenberg and
Lewis, 1994; Giedd, 2004; Giedd et al., 2008). All of these systems are potentially
influenced by alcohol exposure during development. Chronic ethanol exposure in adults that
leads to amnesia associated with Wernik's encephalopathy and Korsakoff's psychosis is
known to cause a dramatic reduction in neurons in the nucleus basalis (Ch4) in the basal
forebrain (Arendt et al., 1983; Cullen et al., 1997). These findings of reduced cholinergic
tone in alcoholic dementia are not unlike the brain pathology seen in the basal forebrain in
Alzheimer's disease, which may account for the difficulty that has occurred in establishing
alcoholic dementia as a distinct disorder (Lishman, 1986). A loss of muscarinic cholinergic
receptors from the temporal cortex of alcohol abusers, who had histologically normal brains
and no signs of significant atrophy and/or dementia, has also been reported (Freund and
Ballinger, 1989). This suggests that cholinergic loss may precede the development of
significant alcohol encephalopathy in adulthood. Whether alcohol exposure during early
adolescence, in humans, might cause specific loss of cholinergic signaling is not known.
However, a recent study in mice has demonstrated that alcohol exposure, that mimicked
binge drinking during adolescence, causes reduced volumes in the olfactory bulb and basal
forebrain in magnetic resonance imaging (MRI) scans as well as fewer basal forebrain
cholinergic neurons in immunohistochemical (IHC) analyses (Coleman et al., 2011).

The present study was designed to extend the study of Coleman et al. (2011) to rats and to
test whether adolescent alcohol vapor exposure, at a high/moderate level (< 200 mg%)
produced specific and persistent (weeks) effects on IHC measures of cholinergic neurons in
the basal forebrain. Additionally, behavioral measures of: affect (anxiety and depression),
arousal (prepulse inhibition of the startle) and disinhibition that have been demonstrated
previously to be sensitive to periadolescent alcohol vapor exposure (Slawecki et al., 2003,
2004; Slawecki and Ehlers, 2005; Pian et al. 2008b), were also tested and correlations made
to the IHC analyses.

2.0 Experimental procedures
2.1 Subjects

Male Wistar rats who were received at postnatal day (PD) 23 (n = 42; 36 juveniles, 6 dams,
Charles River, USA) were used in this study. The adolescent animals (PD 23) were housed 3
per cage respectively in standard cages for the duration of the experiment. Animals were
kept in a light/dark (12 hrs light/12 hrs dark, lights on at 06:00 a.m.) and temperature-
controlled environment. Food and water were available ad libitum throughout the
experiment, except where noted. All experimental protocols were approved by the
Institutional Animal Care and Use Committee at The Scripps Research Institute and were
consistent with the guidelines of the NIH Guide for the Care and Use of Laboratory Animals
(NIH Publication No. 80–23, revised 1996).

2.2 Ethanol vapor exposure
Ethanol vapor exposure has been shown to reliably allow for the titration of blood alcohol
concentrations (BACs) that are sufficient for inducing ethanol physical dependence (Roberts
et al., 1996, 2000). The ethanol vapor inhalation procedure and the chambers used in this
study were previously described (Rogers et al., 1979; Slawecki et al., 2001; Slawecki, 2002;
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O'Dell et al., 2004; Funk et al., 2006; Gilpin et al., 2008; Zahr et al., 2011). Ethanol vapor
chambers were calibrated to produce high to moderate BACs between 150–225 mg/dL. In
brief, adolescent (n = 36) were randomly divided into two groups each (ethanol-exposed
group, n = 24; control group, n = 12). Ethanol-exposed rats were housed in sealed chambers,
which were infused with vaporized 95% ethanol from 6 p.m. to 8 a.m. For the remaining of
the 10 hrs of the day, ethanol vapor was not infused into the chambers. This pattern of daily
ethanol exposure does not mimic the typical pattern of ethanol drinking in human
adolescents who are more likely to experience intermittent binge drinking. However,
adolescence in the human may span a 10 year period whereas in the rat periadolescence is
condenced into a period of 35 days. At the start of the ethanol exposure, adolescent rats were
23 days old and the exposure continued until they were 58 days old. This exposure period,
although not directly translatable to humans, was selected to ensure that the animals were
exposed during the entire rat's extended periadolescent period (Spear, 2000). Age-matched
controls were handled identically to ethanol-exposed rats. Food and water were always
available. Blood samples were collected from the tip of the tail approximately 8 times during
the 5 week exposure period in order to assess BACs (target: 150 to 200 mg/dl). Control
animals also had blood removed from the tail at the same time points. BACs were
determined in the alcohol exposed animals using the Analox micro-statGM7 (Analox Instr.
Ltd., Lunenberg, MA). Following the 5 week exposure animals were tranferred to standard
vivarium cages for the duration of the experiment. Figure 1 shows graphical representation
of the timing of the experimental protocol.

2.3 Locomotor activity
Locomotor activity has been demonstrated to be a sensitive measure of alcohol vapor
exposure levels and withdrawal (Ehlers and Chaplin, 1987; Slawecki et al., 2005). In the
current study locomotor activity was measured at 3 time points, at PD 32, 10 days after
ethanol exposure, at PD 42–44 at 20 days following ethanol exposure and at PD 58, 35 days
following ethanol exposure. At PD 32 and 42 the animals' locomotion was measured 8 hrs
after the vapor was terminated for that 24 hr period and at PD 58 locomotion was measured
24 hrs following the final withdrawal of alcohol vapor. Locomotion was measured in
individual wire cages (20cm × 25 cm × 36 cm). Each cage was equipped with two infrared
photocell beams placed 2 cm above the floor. Activity was initially quantified by totaling
photocell beam interruptions which were recored on electromechanical counters for 5
minute epochs over the entire test session.

2.4 Acoustic startle response/prepulse inhibition
Acoustic startle response (ASR) and prepulse inhibition (PPI) has been previously
demonstrated to be sensitive to adolescent alcohol adminitration (Slawecki and Ehlers,
2005; Pian et al., 2008b). In the present study ASR/PPI was assessed at 3 different time
points both during and after ethanol exposure on the same days as the locomotor
measurements immediately following the locomotor sessions, (e.g. PD 35–36, PD 49–51,
PD 58). Acoustic startle responses were measured in SR LAB Startle chambers (San Diego
Instruments, San Diego, CA). A speaker mounted in the ceiling of the chamber produced
background noise and the acoustic stimuli. Within each test chamber, a single Plexiglas
cylinder (9 cm diameter, 16 cm length) was housed. A piezoelectric accelerometer (San
Diego Instruments, San Diego, CA) mounted on the bottom of each cylinder detected
movement and transduced this movement into a voltage signal. The voltage signal was
collected and analyzed using software developed for the laboratory by Dr. James Havstad.
This software also controlled the timing and generation of the auditory stimuli. After the
recording was started, each session contained 45 trials and consisted of randomly presented
pulse trails (120 dB auditory pulse burst for 40 msec) or prepulse + pulse trials (120 dB
auditory pulse burst with preceded 100 msec by a 85 dB auditory prepulse burst for 20 msec
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duration). The Plexiglas cylinders were cleansed with alcohol and water between each test.
The outcome variables assessed included: ASR and pre-pulse magnitude on prepulse + pulse
trials and ASR magnitude on pulse trials. The order of assessment on the test day was
counterbalanced across treatment groups to minimize any potential influence of time of day
during testing.

2.5 Modified open field conflict
Assessment of anxiety-like behavior/ disinhibition was accomplished in the modified open
field at PD 64, 6 days following final withdrawal from ethanol vapor. This procedure has
been demonstrated previously in our lab to be highly sensitive to periadolescent drug
exposure (Slawecki et al., 2003). The test apparatus was constructed from a standard 32
gallon trash can. A single 5 g food pellet was fixed in place at the center of the apparatus
prior to each test. The apparatus was illuminated by a single white light (50 lux) located 3.5–
4 feet above the floor of the apparatus. Twenty-four hours prior to the test, all subjects were
food deprived. To start each test, a rat was placed in the center of the apparatus. Since the
animals have been food deprived they would be motivated to approach and eat the food
pellet, however, the presence of a bright light shining on the food pellet will also produce a
reluctance to approach the food, thus producing a behavioral conflict situation. Increased
contact with the food by treated rats suggests disinihibited behavior and/or less “anxiety-
like” behavior as compared to controls. Rats were given 5 minutes to freely explore the
apparatus. The number of food contacts, the time of contact with food and the amount of
food eaten were recorded during each test. The average time spent in contact with food
during each approach was also assessed (i.e., total food contact time/number of food
approaches). At the conclusion of the test, the rat was returned to its home cage. The
apparatus was cleaned with alcohol and water prior to assessing the next subject. Tests were
run between 9 a.m. and 12 p.m. On the test day, an individual selected ethanol and control
rats to be run in an alternating fashion. A separate individual, who was blind to treatment
group, scored behavior in the modified open field (Slawecki et al., 2003).

2.6 Forced swim test
Immobility in the forced swim test (FST) has been demonstrated to be enhanced in animals
that experience periadolescent alcohol vapor exposure (Slawecki et al., 2004) as well as
adults exposed to alcohol vapors (Walker et al., 2010). In the present study animals were
tested in the force swim test at PD 69–70, 11–12 days following termination of ethanol
exposure. The FST apparatus was a white plastic tub (diameter = 34 cm, height = 66 cm).
The tub was filled to a level of 48 cm with 24±2° C water. Illumination at the surface of the
water was approximately 60 lux. One day prior to the initial acute withdrawal test, rats were
placed in the apparatus for 10 minutes but behavior was not recorded. On the day of the test,
behavior in the apparatus was assessed during a 5 minute test session. Each test session was
videotaped and later analyzed by two researchers that were blind to the exposure conditions.
The behaviors that were measured in the 5 minute FST consisted of latency to immobility
once being placed in the apparatus, swim time, immobility time and defecation. Immobility
time was defined as a lack of active swimming and floating/ and or sinking. Inter-rater
reliability was very high, with less than 10% deviation between scorers on all parameters
that were evaluated.

2.7 Perfusion, brain tissue preparation and immunohistochemistry and image analyses
Rats were sacrificed on postnatal day 71 and 72. They were first anesthetized with
pentobarbital (100 mg/kg, intraperitoneal) and then killed by perfusion as described
previously (Crews et al., 2004). The animals were perfused transcardially with 0.1 M
phosphate buffered saline (PBS, pH 7.4), followed by 4% paraformaldehyde in PBS. Brains
were removed and postfixed in 4% paraformaldehyde (PFA) after perfusion for 24 hours at
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4°C, and then were transferred to PBS solution until they were sectioned. The brains were
sliced coronally on a vibratome into 40 μm thick sections and stored in cryoprotectant at
−20°C until use. Every twelfth section was used for immunohistochemistry. Free-floating
sections were incubated in mouse anti-ChAT monoclonal antibody (1:200, Millipore MAB
305, Temecula, CA) for 2 hrs at room temperature and then for 16 hrs at 4°C. Sections were
rinsed in PBS, and incubated with biotinylated secondary anti-mouse antibody for 1 hr.
Subsequently, avidin-biotin complex (Vector ABC kit, Vector Laboratories) was applied for
1 hr at room temperature, and ChAT positive neurons were visualized using nickel-enhanced
diaminobenzidine (DAB) reaction. The number of positive neurons was quantified by a
modified stereological procedure for labeled cells within a specified region of interest
(Crews et. al., 2004). Bioquant Nova Advanced Image Analysis (R&M Biometric,
Nashville, TN) was used for image capture and analysis. Images were captured by using an
Olympus BX50 Microscope and Sony DXC-390 video camera linked to a computer. ChAT
+IR neurons were counted within the region of interest and expressed as cells per square
millimeter (mm). Ch1 and Ch2 are contained in the medial septal nucleus (MS) and the
nucleus of vertical limb of the diagonal band (VDB) respectively. Ch3 is mostly in the
lateral portion of the horizontal limb nucleus of the diagonal band, and Ch4 is the nucleus
basalis, and also parts of the diagonal band nuclei. For Ch1 and Ch2 sectors, coronal
sections were from bregma 0.7 to 0.2 mm; for Ch3 and Ch4, from 0.7 to −0.40 mm. Both
left and right hemisphere of an individual brain subregion of each animal was counted, and
the average value was used.

2.8 Data Analysis
Statistical analyses were performed by using SPSS (SPSS, Inc., Chicago, IL). Analysis of
variance (ANOVA) was used to determine the effects of chronic ethanol exposure on body
weight and BACs. Independent ANOVAs (1- way or 2-way) were also used to assess the
effects of ethanol exposure on locomotion, startle, and open field conflict data. Mann-
Whitney U for continuous variables (due to non normality of the distribution of the data
points) and Chi-Square for discrete variables were used to analyze behavior in the swim test.
ANOVA was used to evaluate ChAT+IR. Spearman correlations were used to determine
significance between the behavioral and measures of ChAT+IR neuronal density.
Significance was taken at p<0.05.

3.0 Results
3.1 Body weight and BACs

As seen in figure 1, all rats gained weight over the course of the experiment. Rats grew in
both groups from about 50 g at PD 22 to about 360 g being 373.6(± 9.4) and 352.1 (± 6.8)
for control and ethanol at PD 72 respectively. Ethanol vapor exposed rats showed parallel
increases in weight gain to controls, although ethanol vapor rats had slightly reduced body
weights at 3 of the 27 weightings, e.g. at ages PD 48, PD 52 and PD 55 (p<0.05) as seen in
figure 1. Both groups had similar body weights during all behavioral tests and at sacrifice.
Blood alcohol was measured 8 times during the 5 week vapor exposure period as graphically
represented in figure 1. Mean blood alcohol levels (±S.D.) over the 5 week period were
162.8 (± 7.85) mg/dL. These blood alcohol levels are consistent with this protocol being a
model of adolescent binge drinking.

3.2 Locomotor behavior
Locomotor behavior was assessed during the alcohol exposure period at 2 time points, PD
32, 10 days into vapor exposure and PD 42–44, 20 days into vapor exposure, 8 hrs after the
termination of vapor delivery for that 24 hr period. Locomotor activity tended to decrease in
controls, consistent with a decline in activity during maturation within adolescence. Ethanol
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treated animals were almost twice as active, as assessed by the number of beam breaks, at
both 10 days of vapor treatment and 20 days of vapor treatment. ANOVA with repeated
measures revealed that in the first locomotor measurement session, at 10 days into vapor
exposure, ethanol exposed animals exhibited significantly more locomotor activity than air
exposed controls (group effect: F=17.9, df=1,35, p<0.0001) as seen in figure 2. As also seen
in figure 2 enhanced locomotor activity was also found in ethanol vapor treated animals in
the second test session that occurred 20 days following alcohol exposure (group effect:
F=9.28, df=1,35, p<0.004). However at 24 hrs after the final withdrawal of ethanol vapor,
ethanol exposed animals did not differ from controls in their locomotor activity levels.

3.3 Startle and Pre-pulse inhibition of the startle
ASR and PPI were assessed at 3 different time points during and after the ethanol exposure
period on PD 35–36, PD 49–51, and 24 hrs after final withdrawal from ethanol vapor at
PD58. One way ANOVA revealed that there were no significant differences in the response
to the pulse tone of the startle response between ethanol exposed animals and controls at any
of the 3 time points. Additionally there were no significantly different values for the
response of the pulse tone following presentation of the prepulse between ethanol and
control animals at any of the 3 time points. However, response to the prepulse alone, 100
msec prior to the pulse tone, was found to be significantly diminished in ethanol-exposed
animals as compared to controls at the P35, 13 day time point (F=3.94, df=1,35, p<0.05) and
at 24 hrs following withdrawal (F=4.79, df=1,35, p<0.05) as seen in figure 3.

3.4 Behavior in the modified open field conflict test
Behavior in the modified open field was assessed at PD 64, 7 days after ethanol exposure
ended. Although on the test day, there were no differences in body weight between ethanol
and control rats, ethanol exposed rats approached the food 50% more (F = 9.37, df=1,35,
p<0.004, Fig 4B), and ate almost twice as much food as controls (F = 6.15, df=1,35, p<.018,
Fig 4A). They also spent significantly more time in contact with food (F= 6.12, df=1,35,
p<0.018, Fig 4C). Spending more time in contact with food in the open field conflict test
suggests that the ethanol exposed animals may be displaying more disinhibitory behaviors or
less “anxiety-like” behaviors as compared to control animals.

3.5 Behavior in the Forced Swim test
Behavior in the forced swim test was assessed at PD 69–70, 12 days after ethanol exposure
ended. On the test day, there were no differences in body weight between ethanol and
control rats. Air-exposed controls did not differ from the vapor-exposed animals on: latency
to immobility, or amount of time spent swimming in the test. However Mann-Whitney U
revealed that ethanol exposed animals had significantly more episodes of immobility and/or
number of sinkings that controls (ethanol exposed=9.0 ± 1.9, controls=3.42 ± 1.37; U=84.5,
p<0.045) and also were significantly more likely to defecate during the test session (ethanol
exposed=23/24, control=8/12; Chi-Square: 5.69, p<0.034). Thus, the ethanol vapor-exposed
animals displayed behavioral signs indicative of “increased stress” also interpreted as an
increased “depressive-like” state in the forced swim test.

3.6 Immunohistochemistry (IHC) for choline acetyltransferase (ChAT)
IHC for ChAT was used to assess the density of cholinergic neurons in the four major
cholinergic nuclei in the basal forebrain (Ch1–4) on day 71–72 14 to 15 days following
termination of 35 days of ethanol vapor exposure. The Ch 1,2 and Ch 3,4 sectors were
combined for analyses. Figure 5 gives a representative photomicrograph of the location of
the four regions. Figure 6 displays the cell density of ChAT+IR in the ethanol vapor exposed
and control rats and demonstrates that vapor exposed rats have significantly decreased cell
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density in the Ch1, Ch2 sectors at the 0.70 mm (F=9.7, df=1,10, p<0.01), 0.48mm (F=6.86,
df=1,10, p<0.026) and 0.2 mm (F=8.79, df=1,7, p<0.02) from bregma locations. The density
of ChAT+IR neurons was also significantly decreased in the Ch3, Ch4 sector regions at 0.48
mm (F=10.60, df=1,9, p<0.01), 0.02 mm (F=23.88, df=1,9, p<0.001) and −0.30 mm (F=8.6,
df=1,11, p<0.013) from bregma locations as seen in Figure 7. This reduction in ChAT+IR
cell counts was significantly correlated with the increase in disinhibitory behavior (increased
time spent in contact with food) in the open field conflict test in Ch1,2 at the 0.2 mm from
bregma position (Spearmans rho= 0.75, p<0.02), and at Ch3,4 at the 0.48 mm (r=0.78,
p<0.004), 0.20 mm (r=0.78, p<0.004) and −0.30 mm (r=0.56, p<0.046) from bregma
position.

4.0 Discussion
In the present study, rats were exposed to ethanol vapors during the periadolescent period in
order to examine ethanol's effects on cholinergic neurons in the basal forebrain and
correlated behavioral changes. Ethanol vapor exposed rats displayed: increased locomotor
activity 8 hrs after the termination of vapor delivery for that 24 hr period at day 10 and day
20 of alcohol vapor exposure, significant reductions in the amplitude of their responses to
prepulse stimuli during the startle paradigm at 24 hrs withdrawal, and at 2 weeks following
withdrawal, less anxiety-like and/or more “disinhibitory” behavior in the open field conflict,
and more immobility in the forced swim test. Quantitative analyses of ChAT
immunoreactivity (+IR) revealed a significant reduction in cell counts in the Ch1–2 and
Ch3–4 regions of the basal forebrain in ethanol vapor exposed rats. This reduction in cell
counts was significantly and selectively correlated with less anxiety-like and/or more
“disinhibitory” behavior in the open field conflict test. These studies demonstrate that
behavioral measures of arousal and affective state, and ChAT+IR, are all significantly
impacted by chronic adolescence ethanol exposure and withdrawal in Wistar rats, and
further suggest that adolescent ethanol induced loss of ChAT could underlie persistent
changes in adult disinhibitory behaviors.

Consistent with our previous studies (Slawecki and Ehlers, 2002), alcohol administration via
vapor produced a transient lag in weight gain during the exposure period. In the present
study, this weight reduction was only present for a short period (PD-48–55) during the end
of vapor exposure and was not significant after vapor was terminated. The increase in motor
activity, seen 8 hrs after the termination of vapor delivery for that 24 hr period, at day 10
and day 20 of alcohol vapor exposure, is also consistent with previous studies in adolescents
(Slawecki et al., 2005) and adults (Ehlers and Chaplin, 1987) following ethanol vapor
exposure and acute withdrawal. By monitoring motor activity during ethanol exposure, it
was also demonstrated that ethanol reached physiologically relevant levels able to induce
signs of early withdrawal.

The ASR is a neurobehavioral measure that is known to be affected by chronic ethanol
exposure. The ASR is decreased after ethanol administration/ consumption in rodents and
humans (Pohorecky et al., 1976; Rassnick et al., 1992; Grillon et al., 2000; Hutchison et al.,
2003). During the early phases of ethanol withdrawal, ASR is increased (Pohorecky et al.,
1976; Macey et al., 1996; Krystal et al., 1997; Chester et al., 2004). It has been suggested
the enhanced ASR during the early phases of withdrawal from drugs is an index of increased
anxiety (Harris and Gewirtz, 2004). As such, assessment of the ASR can provide an index of
persistent anxiety-like behavior after adolescent ethanol exposure. Prepulse inhibition (PPI)
is a measure that is derived from the ASR. It measures the ability of low-intensity acoustic
stimuli presented just before the startle eliciting stimulus to reduce the magnitude of the
ASR. It is considered to be an index of sensorimotor gating (Koch and Schnitzler, 1997;
Swerdlow et al., 2001). As such, selective alterations in PPI after adolescent ethanol
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exposure could influence subsequent cognitive function. It has been reported that acute
ethanol administration or consumption of ethanol reduces PPI (Jones et al., 2000; Hutchison
et al., 2003). In addition, decreased PPI has been reported during the acute phase of ethanol
withdrawal in rats treated as adults (Rassnick et al., 1992). In the present study, a reduced
behavioral response to the PPI tone was observed, in rats exposed to alcohol vapor during
adolescence, at 24 hrs following withdrawal. These data suggest adolescent alcohol
treatment reduces sensorimotor gating during alcohol withdrawal.

Adolescent alcohol exposure was also found to produce more long lasting effects on
measures derived from the open field test. In the standard open field, decreased time and/or
entries into the center squares have been suggested to serve as indices of enhanced anxiety
whereas; increased time spent in the center of the open field can indicate disinhibitory
behavior (Sarbadhikari et al., 1996; Blokland et al., 2002; Bowman et al., 2002; Yilmazer-
Hanke et al., 2002). In the modified open field, an anxiety-like profile is characterized by
decreased time spent in contact with food, decreased approaches to food and decreased food
eaten whereas the opposite responses would indicate more disinhibitory behavior (Britton
and Britton, 1981; Britton et al., 1982; Rex et al., 1998). A disinhibitory profile of behaviors
was observed in rats exposed to alcohol vapors during adolescence. Food contact time, in
the modified open-field test, is not influenced by overall activity levels suggesting that these
behaviors are not likely related to simply an increase in overall activity levels and/or
increased level of arousal. In fact, it has been previously demonstrated that long term
alcohol drinking (6 months) and 3 weeks of withdrawal produce reductions in measures of
“anxiety” in the: open field, the plus maze, and in a punished drinking paradigm (Blokland
et al., 1992). Therefore, increases in the average amount of time spent in contact with food
during each approach in the modified open-field test in rats exposed to ethanol vapors
during periadolescence suggests an increased “motivation” to enter the center of the open
field, and/or less fear of open spaces or a combination of the two. Such behaviors may be a
reflection of increased motivation to eat, perhaps driven by a greater hunger drive in ethanol
exposed animals, resulting in more disinhibitory behavior. However, taken together, it seems
reasonable to hypothesize that one of the protracted neurobehavioral effects of adolescent
ethanol exposure may include disinhibition. Further assessment of disinhibitory behaviors
using additional operant paradigms such as tasks requiring withholding an action to receive
a reward (Flagel et al., 2010), will strengthen this hypothesis.

In the present study, we confirmed our previous findings that ethanol vapor exposed animals
show differential behavior in the Forced swim test (FST) when compared with air-exposed
controls after multiple weeks of withdrawal (Slawecki et al., 2004; Walker et al., 2010).
Specifically, in the present study more immobility/sinking was seen following 2 weeks of
withdrawal between air- and vapor-exposed animals. Furthermore, during protracted
withdrawal, not only was differential immobility seen but vapor exposed animals also
displayed more defecation during the test suggesting they may have been more “stressed” by
the procedure. Thus, indices of depressive-like behavior changed for the ethanol vapor
exposed group in a manner consistent with increased “depression”. The present data also
lends support to clinical data showing that a proportion of individuals diagnosed with
comorbid depression and alcohol dependence have a substance-induced disorder (Schuckit
et al., 1997; Hasin and Grant, 2002). In clinical studies, it has been shown that major
depressive symptoms generally last for 2 to 4 weeks after abstinence is initiated (Brown and
Schuckit, 1988). However, individuals with symptoms of clinical depression after 1 month
of abstinence also had a significantly greater incidence of withdrawal symptoms (Brown and
Schuckit, 1988), suggesting that they may have had a greater severity of ethanol dependence
before abstinence. Although the present study only tested for depressive-like behavior at two
weeks abstinence, in a previous study depressive-like behavior was observed in adult rats
after ethanol exposure for up to 8 weeks into abstinence (Walker et al., 2010) suggesting that
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substance-induced depression may potentially be long lasting. Taken together these studies
suggest that ethanol exposure during adolescence can lead to increases in depressive-like
behavior well into protracted abstinence.

Molecular and cellular adaptations to drug exposure are believed to lead to persistent
changes in transcription, translation, synaptic morphology and function that are extremely
long-lived and are analogous to the plastic processes that underlie learning and memory
(Nestler, 2001; Ron and Jurd, 2005). In the present study, long-lasting changes in ChAT+IR
were found after chronic ethanol exposure during adolescence in the basal forebrain in areas
Ch1,2 and Ch 3,4. These data are consistent with previous studies using gene array
methodology that found decreases in the expression of many cholinergic-specific genes
including ChAT as well as all 5 subtypes of the muscarinic cholinergic receptors in young
adult mice following adolescent binge alcohol treatment (Coleman et al., 2011). In those
studies, reduced forebrain histologic areas and cholinergic neuron density were found using
IHC in ethanol treated mice as compared to controls (Coleman et al., 2011). These findings
are also consistent with previous studies in adult rats where prolonged chronic alcohol
treatment has been shown to produce cholinergic hypoactivity in hippocampal and basal
forebrain cholinergic structures (Arendt et al., 1988a,b, 1989, 1995; Hodges et al., 1991;
Floyd et al., 1997; Savage et al., 2000; Cadete-Leite et al., 2003).

The basal forebrain, through widespread projections to cerebral cortex, plays an important
role in the regulation of cortical processes and behavioral states such as sleep, learning, and
memory (Everitt and Robbins, 1997; Sarter et al., 2003; Weinberger, 2003; Jones, 2004).
Impairments in working and reference memory on the radial arm maze task seen following
chronic ethanol treatment in adult rats (Hodges et al., 1991) and alterations in reversal
learning seen in young adult mice after adolescent alcohol (Coleman et al., 2011) are
congruent with reduced ChAT activity in the basal forebrain. Adolescent vapor treatment in
rats has also been demonstrated to disrupt adult sleep and electrophysiology consistent with
altered cholinergic systems (Ehlers and Criado, 2010). The “cholinergic deficit” in the
reversal of maze performance produced by chronic ethanol exposure also appears to be
reversed by cholinergic agonists and/or transplantation of ACh-rich fetal tissue (Arendt et
al., 1989; Hodges et al., 1991). This has led some authors to suggest that the forebrain
cholinergic system may be an important therapeutic target for the treatment of cognitive
deficits associated with ethanol exposure (Vetreno et al., 2011).

In humans, chronic ethanol exposure that leads to amnesia associated with Wernike's
encephalopathy and Korsakoff's psychosis (WKS) is also known to be associated with a
dramatic reduction in neurons in the nucleus basalis (Ch4) in the basal forebrain (Arendt et
al., 1983; Cullen et al., 1997). Animal models of WKS have been developed and reduced
levels of AChE have been found in the cortex and hippocampus (Nakagawasai et al., 2000;
Pires et al., 2001, 2005; Savage et al., 2007; Roland and Savage, 2009) and the forebrain
(Zhao et al., 2008) in those models. These reductions in cholinergic tone have also been
associated with deficits in passive avoidance and in the forced swim test (Nakagawasai et
al., 2000, 2001), as well as deficits in memory on the Morris water maze (Pires et al., 2005).
Some of the deficits seen in the WKS animal model can also be partially reversed by
increasing hippocampal acetylcholine levels (Roland et al., 2008) or administering
acetylecholinesterase inhibitors (Roland et al., 2010).

Loss of muscarinic cholinergic receptors from the temporal cortex of alcohol abusers with
histologically normal brains in the absence of significant atrophy/and or dementia has also
been reported (Freund and Ballinger, 1989). This suggests that cholinergic loss may precede
the development of significant alcohol encephalopathy in adulthood. It has been suggested
that mental dysfunction associated with alcohol-induced degeneration of the cholinergic
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pathway of the ascending activation system may cause a “syndrome of partial cholinergic
deafferentation of the cortical mantle” (Arendt, 1994). Human studies using functional MRI
(fMRI) to follow basal forebrain activation during cognitive tasks find alcoholic patients do
not show normal basal forebrain activation (De Rosa et al., 2004). Our studies in animal
models are consistent with the hypothesis that alcohol exposure during adolescence might
also cause a selective loss of cholinergic signaling that, over time, may lead to significant
cognitive deficits.

In the present study reductions in ChAT+IR were specifically found to be correlated with
measures of behavioral disinhibition (food time, food approach) in the open field conflict
test. Why the loss of cholinergic tone was found to be selectively associated with behavioral
disinhibition in the present study is not known. Nicotine has been shown to produce
disinhibitory behavior in the rats after subchronic peripheral nicotinic acetylchline receptor
blockage (Ericson et al., 2000). It has also been suggested that response disinhibition in the
variable-interval differential reinforcement of low rate responding and stop signal tasks are
related in a systematic manner to nicotinic-acetylcholine receptor activation (Kirshenbaum
et al., 2011). Thus it is possible that the loss of cholinergic tone produced by adolescent
alcohol exposure seen in the present study could result in a “sensitization” of nicotinic
receptors that promote the expression of disinhibitory behaviors under the conditions of
stress/ food restriction such as those that occur in the modified open field conflict test.

Several authors have posited that acute and chronic effects of alcohol may cause toxic
effects on developing brain systems that may result in an increase in affective, impulsive and
or disinhibitory behaviors, which may in turn may facilitate further alcohol use (Crews and
Boettiger, 2009; de Wit, 2009; White et al., 2011). Our data support the hypothesis that
adolescent alcohol exposure can have significant effects on brain and behavior in an animal
model where control of alcohol exposure can help delineate environmental effects from
genetic background. However, the model of alcohol exposure used in the present study, 14
hours of daily vapor exposure, does not mimic the typical pattern of ethanol drinking in
human adolescents who are more likely to experience intermittent binge drinking at weekly
or monthly intervals. However, adolescence in the human may span a 10 year period
whereas in the rat periadolescence is condenced into a period of 35 days. This exposure
period, although not directly translatable to humans was selected to ensure that the animals
were exposed during the entire extended periadolescent period (Spear, 2000). However,
additional studies will be necessary to determine whether shorter intermittent periods of
exposure produce similar effects, and to test whether such effects are persistent or represent
a more transitory developmental phenomenon.

5.0 Conclusions
Our data suggest that rats exposed to daily ethanol vapor for 5 weeks over the adolescent
period display: increased locomotor activity 8 hrs after the termination of vapor delivery for
that 24 hr period at day 10 and day 20 of alcohol vapor exposure, significant reductions in
the amplitude of their responses to prepulse stimuli during the startle paradigm at 24 hrs
withdrawal, and at two weeks following withdrawal, less anxiety-like and/or more
“disinhibitory” behavior in the open field conflict, and more immobility in the forced swim
test. Quantitative analyses of ChAT immunoreactivity revealed a significant reduction in
cell counts in the Ch1–2 and Ch3–4 regions of the basal forebrain in ethanol vapor exposed
rats. This reduction in cell counts was significantly correlated with less anxiety-like and/or
more “disinhibitory” behavior in the open field conflict test. These studies demonstrate that
behavioral measures of arousal, affective state, disinhibitory behavior and ChAT+IR, are all
significantly impacted by chronic adolescence ethanol exposure and withdrawal in Wistar
rats.
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Abbreviations

a.m. ante meridiem

ANOVA analysis of variance

ASR Acoustic startle response

BACs blood alcohol concentrations

C degree Celsius

ChAT choline acetyltransferase

Ch1-4 forebrain cholinergic neurons

cm centimeter

dB decibels

FST Force swim test

g grams

hr hours

IHC immunohistochemical

IR immunoreactivity

mg/dl milligrams per deciliter

mg/kg grams per kilogram

mg% milligrams percent

msec milliseconds

mm millimeters

MS Medial Septum

NIH National Institutes of Health

p.m. post meridiem

PBS phosphate buffered saline

PD postnatal day

PPI Prepulse inhibition

VDB nucleus of the vertical limb of the diagonal band
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Highlights

Adolescence ethanol exposure produces disinhibitory behavior at 2 weeks
withdrawal

Adolescence ethanol exposure produces depressive-like behavior at 2 weeks
withdrawal

Adolescent ethanol exposure reduced cholinergic neurons in basal forebrain

Reduced cholinergic neurons were correlated with more disinhibitory behavior
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Figure 1.
Graphical representation of the timing of the experimental protocol. Blood alcohol levels
(BACs) were determined 8 times during the 5 week ethanol vapor exposure. Ethanol-
exposed (n=24) and control rats (n=12) showed parallel increases in body weight. Rats
exposed to ethanol showed reductions in body weights at ages PD 48, PD 52 and PD55,
compared to control rats. Ethanol-exposed and control rats showed similar body weights
during all behavioral tests and at sacrifice. * indicates P< 0.05 for significant difference
from control rats. Error bars = S.E.M (Body weights) and S.D. (BACs).
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Figure 2.
Effects of adolescent ethanol vapor exposure on locomotor behavior. Ethanol-exposed rats
(n=24) showed a significant increase in locomotor activity at both PD 32 (10 days of vapor
exposure) and PD 42–44 (20 days of vapor exposure), compared to controls (n=12).
Ethanol-exposed and control rats showed no difference in locomotor activity levels 24 hrs
after the final withdrawal from ethanol vapor exposure. Locomotor behavior is expressed as
activity obtained by quantifying beam breaks. * indicates P< 0.05 for significant difference
from control rats. Error bars=S.E.M.

Ehlers et al. Page 21

Neuroscience. Author manuscript; available in PMC 2012 December 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Effects of adolescent ethanol vapor exposure on the Acoustic Startle Response (ASR) and
Prepulse Inhibition (PPI). (Left) Representative grand averages of the Prepulse/Startle
response from ethanol-exposed (n=24) and control (n=12) groups at PD 35 (13 days of
vapor exposure) and PD 58 (24 hrs after the final withdrawal from ethanol vapor exposure).
(Right) Ethanol vapor exposure significantly reduced the amplitude of the startle response to
the prepulse tone during both PD 35 and PD 58 time points, compared to controls. Control
group = Dashed lines, Ethanol-exposed group = continuous lines. * indicates P< 0.05 for
significant difference from control rats. Error bars= S.E.M.
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Figure 4.
Effects of adolescent ethanol vapor exposure on the modified open field conflict test.
Ethanol-exposed (n=24) rats showed a significant increase in food consumption (A), food
approaches (B) and time in contact with food (C) at PD 64 (7 days after the final withdrawal
from ethanol vapor exposure). * indicates P< 0.05 for significant difference from control
rats (n=12). Error bars= S.E.M.
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Figure 5.
Representative photomicrograph of the locations of the four major cholinergic nuclei (Ch1-
Ch4) in the basal forebrain. The Ch1 and Ch2 nuclei are contained in the medial septal
nucleus and the vertical limb nucleus of the diagonal band, respectively. However, there are
no definite boundaries between Ch1 and Ch2 nuclei. The Ch3 sector is contained within the
horizontal limb nucleus of the diagonal band, and Ch4 is within the nucleus basalis, and also
in parts of the diagonal band, and these nuclei were combined for count. The darkened area
at −0.30 mm from bregma was measured as Ch3 and part of Ch4 nuclei. The numbers on the
right of each slice indicate distance (mm) from bregma.
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Figure 6.
Left side, Adolescent intermittent ethanol (AIE) exposure decreases cholinergic neurons
(ChAT+IR) in the Ch1 and Ch2 nuclei of the basal forebrain of adult rats. The cell density
of ChAT+IR is significantly decreased in the Ch1 and Ch2 sectors at 0.70 (ethanol n=6,
controls n=4) 0.48 (ethanol n=5, control n=4) and 0.20 (ethanol n=4, controls n=3) mm from
bregma after ethanol treatment. * indicates P< 0.05 for significant difference from control
rats. Error bars= S.E.M. Right side, Representative photomicrography ChAT+IR neurons in
the Ch1 and Ch2 nuclei from control and ethanol (bregma from 0.7 to 0.20 mm) are shown
on the right side. Scale bar=50 μm.
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Figure 7.
Left side, Adolescent intermittent ethanol (AIE) exposure decreases cholinergic neurons
(ChAT+IR) in the Ch3 and Ch4 nuclei of the basal forebrain of adult rats. The cell density
of ChAT+IR is significantly decreased in the Ch3 and Ch4 nuclei at 0.48 (ethanol n=5,
controls n=3), 0.20 (ethanol n=5, controls n=3) and −0.30 (ethanol n=6, controls n=4) mm
from bregma after ethanol treatment. ** indicates P< 0.01 for significant difference from
control rats. Error bars= S.E.M. Right side, Representative photomicrography ChAT+IR
neurons in the Ch3 and Ch4 nuclei from control and ethanol are shown on the right side.
Scale bar=100 μm
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