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Abstract

Harvest index is a measure of success in partitioning assimilated photosynthate. An improvement of harvest index means an
increase in the economic portion of the plant. Our objective was to identify genetic markers associated with harvest index
traits using 203 O. sativa accessions. The phenotyping for 14 traits was conducted in both temperate (Arkansas) and
subtropical (Texas) climates and the genotyping used 154 SSRs and an indel marker. Heading, plant height and weight, and
panicle length had negative correlations, while seed set and grain weight/panicle had positive correlations with harvest
index across both locations. Subsequent genetic diversity and population structure analyses identified five groups in this
collection, which corresponded to their geographic origins. Model comparisons revealed that different dimensions of
principal components analysis (PCA) affected harvest index traits for mapping accuracy, and kinship did not help. In total, 36
markers in Arkansas and 28 markers in Texas were identified to be significantly associated with harvest index traits. Seven
and two markers were consistently associated with two or more harvest index correlated traits in Arkansas and Texas,
respectively. Additionally, four markers were constitutively identified at both locations, while 32 and 24 markers were
identified specifically in Arkansas and Texas, respectively. Allelic analysis of four constitutive markers demonstrated that
allele 253 bp of RM431 had significantly greater effect on decreasing plant height, and 390 bp of RM24011 had the greatest
effect on decreasing panicle length across both locations. Many of these identified markers are located either nearby or
flanking the regions where the QTLs for harvest index have been reported. Thus, the results from this association mapping
study complement and enrich the information from linkage-based QTL studies and will be the basis for improving harvest
index directly and indirectly in rice.
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Introduction

In food production, optimizing grain yield, reducing production

costs, and minimizing risks to the environment have been the

primary objectives since the beginning of the twentieth century

[1]. Food crops grow by developing a vegetative canopy that

transpires water and carries out photosynthesis, and a root system

that takes up water and nutrition, which leads to the production of

biomass. Following the reproductive stage, a portion of the plant

biomass is partitioned to various yield components and determines

harvest index [2] Harvest index is the ratio of grain yield to total

biomass and is considered as a measure of biological success in

partitioning assimilated photosynthate to the harvestable product

[3,4,5]. In cereal crops, dramatic improvements in harvest index

have made commercial cultivars greatly different from their wild

ancestors [6]. Rice (Oryza sativa L.) is one of the most important

staple foods [7]. It can be highly productive if high harvest index

genotypes are grown with optimal management practices [2].

Harvest index of rice is the result of various integrated processes

with an involvement of the number of panicles per unit area, the

number of spikelets per panicle, the percentage of fully ripened

grains, and the weight of 1,000 mature kernels [8]. Marri et al. [9]

found that harvest index was negatively correlated with plant

height, but positively correlated with grain number/panicle, grain

number/plant, percentage spikelet fertility, test grain weight and

yield/plant in rice. Sabouri et al. [10] verified the negative

correlation of harvest index with plant height and positive

correlation with spikelet number and grain weight per panicle,

and reported the impact of some flag leaf characteristics on harvest

index in rice. In maize, harvest index is negatively correlated with

plant height, but positively correlated with grain yield both

phenotypically and genotypically [11]. In sorghum, harvest index

is negatively correlated with forage yield [12], but positively

correlated with growth rate and grain filling rate [13]. Usually, the

correlated traits are interrelated, so that increases in one

component may lead to decreases or increases in others.
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Therefore, scientists aim to identify genes/QTLs that directly

improve a target trait without negatively affecting others, or

improve the target trait indirectly through the improvement of its

associated characteristics.

Crop harvest index is also highly influenced by environmental

factors [14], such as soil condition [15,16] and temperature

[17,18]. However, genetic control of harvest index plays important

role in crop production. Large variation was observed for harvest

index in rice: about 0.25 among wild species, 0.30 among tall

cultivars and more than 0.40 for semi-dwarf cultivars [19]. The

intrinsic regulation of harvest index is controlled by many genes. A

few reports in the literature have examined QTLs in rice

associated with harvest index. Mao et al. [20] reported four

main-effect QTLs for harvest index on chromosome (Chr) 1, 4, 8

and 11 and other epistatic interaction between two QTLs

respectively on Chr 1 and Chr 5. Sabouri et al. [10] identified

three QTLs mapped on Chr 2, 3 and 5, and two QTLs close to

each other on Chr 4. Lanceras et al. [21] described harvest index

QTLs on Chr 1 and 3. However, a recurring complication of the

QTL data showed that different parental combinations and/or

experiments conducted in different environments often result in

partly or wholly non-overlapping sets of QTLs [22]. Therefore,

it is necessary to explore constitutive QTLs across different

environments and adaptive QTLs specifically for a given

environment [23].

Classical QTL mapping reveals only a portion of the genetic

control of a trait because there are only two alleles that can differ

at any locus between the two parental lines. More comprehen-

sive analyses of genetic architecture require consideration of a

larger sample of the genetic variation in the species. One

approach is association mapping, which maps the QTLs either

among extant breeding lines with known pedigree relationships

or in a diverse germplasm collection. Given pedigree and marker

information, the probability for different lines in complex

populations to share identity by descent QTLs can be defined,

permitting estimation of the effects of each QTL [24].

Association mapping provides an alternate route into identifying

the QTLs that have effects across a broader spectrum of

germplasm, if false-positives caused by population structure can

be minimized [25]. Whole-genome association scans are

expected to be effective when linkage disequilibrium (LD) and

marker density are sufficiently high, so that the random markers

could have a greater chance of being in disequilibrium with

QTLs across diverse genetic materials [26]. Huang et al. [27]

successfully performed genome-wide association study (GWAS)

in a rice landrace collection of China for 14 agronomic traits and

identified a substantial number of loci at close to gene resolution.

Many other studies have minimized the large-scale population

structure effects by analyzing associations separately for each

heterotic group, and controlled the finer-scale population

structure by explicitly incorporating pedigree relationships

between lines in the analysis [25,26,28,29,30,31,32].

Recently, the USDA rice mini-core (URMC) subset was

developed and serves as a genetically diversified panel for mining

genes of interest to various users [33]. The URMC was derived

from 1,794 accessions in the USDA rice core collection using

PowerCore software based on 26 phenotypic traits and 70

molecular markers [34]. The core collection represents over

18,000 accessions in the USDA global genebank of rice [35]. The

URMC contains 217 accessions originating from 76 countries and

covering 14 geographic regions worldwide plus some of unknown

origin. The URMC has a great genetic diversity and well

represents the five sub-populations found in O. sativa [33]. As a

result, it is an ideal population for exploring QTLs responsible for

harvest index traits with the powerful approach of association

mapping.

We genotyped 203 O. sativa URMC accessions with 155

molecular markers and phenotyped 14 traits contributable to

harvest index in both temperate (Stuttgart, Arkansas) and

subtropical (Beaumont, Texas) locations. Our objectives were to

identify the traits significantly correlated with harvest index per se

and the markers significantly associated with component traits of

harvest index. To control spurious associations, i.e., Type I error,

we analyzed the genetic structure and familial relatedness in the

collection. Different mapping models were tested for best fit of

each trait. The chosen model was used to map markers associated

with harvest index and associated traits phenotyped in two

environments.

Results

Markers profile
The set of 154 SSRs and an indel with genome-wide distribution

detected a total of 1993 alleles among 203 O. sativa accessions. The

average number of alleles per locus was 12.86 ranging from 2 for

RM338 to 57 for con673. Polymorphic Information Content (PIC)

varied from 0.25 for AP5625-1 to 0.97 for con673 among the 155

markers with an average of 0.71. Nei’s (1983) [36] genetic

distances ranged from 0.0181 to 0.9667 with an average 0.7464

among each pair of 203 accessions in the URMC.

Population structure and geographic origin
Using STRUCTURE software with multi-loci genotype data, a

five-group model was identified to sufficiently explain genetic

structure among 203 accessions. Ancestry of each of these

accessions was inferred for assignment into a genetic group

(Figure 1A). A dendrogram tree created with PowerMarker had five

main branches for the 203 accessions as well (Figure 1B). The

principal components analysis (PCA) also displayed the pattern of

genetic structure with five groups. The first three components of

PCA for 45.07% of total variation were used to visualize the five

groups derived from ancestry analyses (Figure 1C).

The resultant five groups of O. sativa categorized by the Q value

(ancestry index) belong to indica (IND), temperate japonica (TEJ),

tropical japonica (TRJ), aus (AUS) and aromatic (ARO) (Figure 1A),

based on reference cultivars reported previously by Garris et al.

[37], Agrama and Eizenga [38] and Agrama et al. [34]. Each

accession with ancestry information was plotted on a world map

using its latitude and longitude of geographic origin (Figure 2).

TEJ accessions were mainly distributed between latitudes 30 and

50 degrees north and south of the equator (i.e. temperate zone)

while the other four groups scattered between latitude N 30 and S

30 degrees (i.e. tropical and subtropical zone).

Morphological analysis
Statistical analysis using a mixed model demonstrated that the

differences due to genotypes and genotype6location interactions

were highly significant at the 0.001 level of probability for all of the

14 traits (Table 1). The differences due to location were also

significant for 12 traits except for panicle branches and seed set.

Heritability was very high for all of these 14 traits. Heading had

the highest heritability which was close to 100%. Although seed set

had the lowest heritability, it was still above 70%. Heritability

ranged from 77 to 97% among the other 12 traits. Harvest index

had a heritability of 83% at Stuttgart and 90% at Beaumont.

Correlation coefficients for each pair of the 14 traits were

calculated using Spearman rank for each location and presented

in Table S1A and S1B, respectively. To visualize the complex
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relationship among the 14 traits, PCA was used to construct plots

with the first two axes accounting for more than 50% phenotypic

variation (Figure 3A, B). At Stuttgart, 47 out of 91 correlations

among the 14 traits were significant (,0.0001) (Table S1A,

Figure 3A), and 40 correlations were significant at Beaumont

(Table S1B, Figure 3B). Thirty four correlations were uniformly

significant across two locations and their correlation directions

(positive or negative) were also same across two locations (Table

S1A, S1B).

Six traits were significantly correlated with harvest index and

these correlation directions were the same across the two locations.

The correlations with harvest index were negative for heading

(20.46 at Stuttgart and 20.61 at Beaumont), plant height (20.50

and 20.50), plant weight (20.36 and 20.30), panicle length

(20.45 and 20.32), while positive for seed set (0.52 and 0.61) and

grain weight/panicle (0.32 and 0.40) (Figure 3A, B). In the PCA

based on phenotypic traits of 203 mini-core accessions, four traits

negatively correlated with harvest index were plotted on opposing

Figure 1. Structure analysis of USDA rice mini-core collection using A: STRUCTURE, B: Unrooted UPMGA and C: PCA. ARO: aromatic in
red; AUS: aus in green; IND: Indica in purple; TRJ: Tropical japonica in yellow; TEJ: Temperate japonica in blue; ARO-TEJ-TRJ: admixture of ARO with TEJ
and TRJ; AUS-IND: admixture of AUS with IND; AUS-TRJ-IND: admixture of AUS with TRJ and IND; TEJ-TRJ: admixture of TRJ with TEJ; TRJ-IND:
admixture of TRJ with IND.
doi:10.1371/journal.pone.0029350.g001

Figure 2. Geographic distribution of 203 accessions based on their latitude and longitude. ARO: Aromatic; AUS: aus; IND: Indica; TRJ:
Tropical japonica; TEJ: Temperate japonica; ARO-TEJ-TRJ: admixture of ARO with TEJ and TRJ; AUS-IND: admixture of AUS with IND; AUS-TRJ-IND:
admixture of AUS with TRJ and IND; TEJ-TRJ: admixture of TEJ with TRJ and TRJ-IND: admixture of TRJ with IND. w: Stuttgart AR, q: Beaumont TX.
doi:10.1371/journal.pone.0029350.g002
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Table 1. Statistical analysis of 14 traits generated at Stuttgart, Arkansas and Beaumont, Texas in 2009 in the USDA rice mini-core
collection.

Trait Location Mean ± SD Range
Heritability
(%) Genotype Location Genotype*Location

F value Pr.F F value Pr.F F value Pr.F

Heading (days) Stuttgart 99.33621.31 34.00,181.67 98.08 341.53 0.000000 2634.77 0.000001 12.45 0.000000

Beaumont 87.55622.63 38.00,182.00 98.64

Plant height (cm) Stuttgart 109.73620.20 61.08,153.92 97.11 127.48 0.000000 1676.50 0.000002 45.63 0.000000

Beaumont 124.74622.45 67.00,178.78 95.73

Plant weight (g) Stuttgart 168.71679.88 27.83,548.42 86.33 30.87 0.000000 122.48 0.000376 9.94 0.000000

Beaumont 219.02687.70 35.93,558.02 86.83

Tillers Stuttgart 23.95611.20 6.42,67.75 86.53 35.27 0.000000 818.76 0.000009 7.10 0.000000

Beaumont 41.13615.83 13.00,85.89 87.16

Grain yield (g) Stuttgart 60.02625.51 8.54,127.27 87.05 29.06 0.000000 98.37 0.000568 8.33 0.000000

Beaumont 76.67630.05 5.64,165.97 84.03

Harvest index (%) Stuttgart 30.4467.02 3.40,45.06 82.75 35.79 0.000000 2174.76 0.000000 6.10 0.000000

Beaumont 38.98610.51 6.25,60.02 89.98

Panicle length (cm) Stuttgart 26.6663.81 14.21,37.19 89.86 46.56 0.000000 293.26 0.000060 3.68 0.000000

Beaumont 24.7563.44 16.84,38.40 88.34

Panicle branches Stuttgart 10.9762.15 5.44,17.78 85.65 29.97 0.000000 31.18 0.004559 2.40 0.000000

Beaumont 10.6462.06 5.56,16.33 81.68

Kernels/panicle Stuttgart 194.97657.49 68.56,399.00 86.48 29.94 0.000000 367.90 0.000041 4.45 0.000000

Beaumont 155.77645.46 50.00,318.33 86.92

Seed set (%) Stuttgart 78.15615.23 25.48,96.97 78.39 15.39 0.000000 14.26 0.019138 4.39 0.000000

Beaumont 73.55612.65 35.07,95.29 72.66

1000 Seed weight (g) Stuttgart 25.7765.07 11.17,44.74 91.79 69.00 0.000000 75.18 0.000477 3.94 0.000000

Beaumont 24.4164.66 12.32,43.86 95.52

Kernels/cm panicle Stuttgart 7.3061.80 3.25,14.61 84.71 28.72 0.000000 218.17 0.000104 3.60 0.000000

Beaumont 6.3161.63 2.80,12.27 87.02

Kernels/branch panicle Stuttgart 17.8864.24 11.56,37.10 82.66 19.90 0.000000 353.27 0.000058 4.31 0.000000

Beaumont 14.6762.98 9.61,23.23 77.42

Grain weight/panicle (g) Stuttgart 3.7961.18 0.68,8.62 82.29 21.86 0.000000 241.69 0.000075 3.94 0.000000

Beaumont 2.7560.95 0.63,6.27 80.72

doi:10.1371/journal.pone.0029350.t001

Figure 3. Relationship map constructed by PCA for 14 traits at A: Stuttgart, AR and B: Beaumont, TX. The distance between traits is
inversely proportional to the size of the correlation coefficients. Solid and dashed lines indicate positive and negative correlations, respectively. Trait
names are T1:Heading; T2:Plant height; T3:Plant weight; T4:Tillers; T5:Grain yield; T6:Harvest index; T7:Panicle length; T8:Panicle branches; T9:Kernels/
panicle; T10:Seed set; T11:1000 Seed weight; T12:Kernels/cm panicle; T13:Kernels/branch panicle; T14: weight/panicle. The variation explained by the
principal components is showed in the brackets.
doi:10.1371/journal.pone.0029350.g003
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axis from harvest index (Figure 3A,B). Conversely, two traits

positively correlated with harvest index were plotted in the same

axis relatively close to harvest index.

Model comparison and marker-trait associations
Dimension determination for PCA indicated that different

dimensions should be included for testing associations for these

traits. Further, relative performance of the association mapping

models was also evaluated based on the criterion BIC (Table S2).

The smaller BIC indicated the better model fit [25]. Among all

possible models (naive, kinship, PCA, Q, PCA+kinship and

Q+kinship), naive and kinship models showed the highest BIC

value. The four other models (PCA, Q, P+kinship and Q+kinship)

had a better performance, indicated by smaller BIC values. The

model installed with kinship had a slightly higher BIC than the one

without kinship. The PCA models containing different dimensions

for different traits had the lowest BIC value. Thus, the PCA model

was selected to conduct association mapping for harvest index

traits.

At Stuttgart, a total of 36 markers were identified to be

significantly associated with harvest index traits at the 6.4561023

level of probability (the Bonferroni corrected significance level)

(Table S3). Among 36 markers, seven were associated with harvest

index per se, five with heading, three with plant height, six with

plant weight, five with panicle length, nine with seed set and one

with grain weight/panicle. Eight of these trait-marker associations

have been reported previously (Table S3). Additionally, seven

markers were consistently associated with two or more harvest

index traits [39]. Out of the seven consistent markers, RM600,

RM5 and RM302 were co-associated with harvest index and seed

set, RM431 with heading and seed set, RM341 with plant height

and panicle length, RM471 with heading and plant weight, and

RM510 with three traits, plant height, harvest index and seed set.

At Beaumont, we identified 28 markers significantly associated

with harvest index traits (Table S3). Among these, two were

associated with harvest index, three with heading, nine with plant

height, six with plant weight, four with panicle length, three with

seed set and one with grain weight/panicle. At Stuttgart, eight of

the trait-marker associations have been identified in previous QTL

studies. Two consistent markers were RM208 co-associated with

harvest index and seed set, and RM55 co-associated with plant

height and plant weight.

Across two locations, the associations of RM431 with plant

height, Rid12 and RM471 with plant weight, and RM24011 with

panicle length were consistently true. The four markers that

associated with the same trait across both locations are called

‘‘constitutive QTL’’ markers, while others that associated with a

certain trait only at one location are called ‘‘adaptive QTL’’

markers [23].

Allelic effects
The allelic effects of the constitutive markers associated with

their traits were estimated using the least square mean (LSMEAN)

of phenotypic values and are presented in Figure 4 and Table S4.

For RM431, allele 253 bp had a significantly larger effect than all

other 6 alleles at Beaumont and than 4 others at Stuttgart to

reduce plant height. For RM24011, allele 390 bp had the greatest

effect on decreasing panicle length while allele 411 bp had the

largest effect on increasing panicle length at both locations.

However, for Rid12, the allelic effects were opposite between two

Figure 4. Comparisons of allelic effects of four constitutive marker loci. A: RM431 associated with plant height, B: RM471 and C: Rid12
associated with plant weight, D: RM24011 associated with panicle length constitutively at both Stuttgart, Arkansas and Beaumont, Texas.
doi:10.1371/journal.pone.0029350.g004
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locations. Allele 151 bp of Rid12 had a decreasing effect on plant

weight at Stuttgart, but an increasing effect at Beaumont instead.

The 165 allele of Rid12 had an opposite effect to 151 bp on plant

weight. For RM471, the allelic effects on plant weight were not

consistent from one location to another. The 109 bp allele was

associated with one of the lowest means for plant weight at

Stuttgart, but one of the largest means for plant weight at

Beaumont.

Discussion

Genetic diversity and genetic structure
The average number of alleles per locus was 12.86 among 203

accessions in the URMC genotyped with 155 markers. The allele

number per locus is the highest among the rice collections that

have been reported to date [37,40], including an Indian

germplasm collection [41], an Indonesian landrace collection

[42] and a Brazilian rice core collection [43], with an exception of

an Indonesian traditional and improved rice collection with 13

alleles per locus reported by Thomson et al. [44]. The average

polymorphic information content (PIC) value in this study was

0.71, which is also the highest among previous studies for rice

populations [37,40,41,42,44,45] with an exception of 0.75 PIC

value in a study reported by Borba et al. [43]. The wide range of

genetic diversity along with the manageable number of accessions

in the URMC makes it one of the best collections for mining

valuable genes in rice.

Population structure is an important component in association

mapping analyses because it can be a source of Type I error in an

autogamous species such as barley and rice [46,47,48]. In this

study, the 203 O. sativa accessions in the URMC were divided into

five model-based groups from ancestry analysis (Figure 1A). Both

the dendrogram tree (Figure 1B) and the PCA analysis (Figure 1C)

reached similar conclusions regarding population structure in this

collection. The results obtained from these three separate analyses

supported each other. The classification agreed with the previous

study [33] except for the group of wild relatives of rice having a

high rate of rare alleles. The high rate of rare alleles was suggested

by its high percentage of private alleles and the small size of the

group [33]. The wild rice accessions were not integrated into

association mapping since low frequency alleles are known to

inflate variance estimates of linkage disequilibrium and produce a

greater chance of Type I error [46,47,49]. In addition, the

population structure was observed to be tied with geographic

origins, e.g. TEJ mainly distributed in the temperate zone

(Figure 2) and wild rice relatives were from a relatively isolated

area (data not shown). The distinctive geographic origins

corresponding to the difference of ecological environments could

be partially responsible for the genetic differentiation, which in

turn contributes to the different responses to environmental factors

and rare alleles in the germplasm accessions of wild relative

species.

Morphological environment-sensitivity and trait-trait
correlation

All 14 traits were significantly affected by environment and

environment X genotype interaction, which suggested genotypic

sensitivities to differences in environmental conditions at the two

locations (Table 1). The sensitivity of panicle heading to

temperature change and the variation of harvest index in response

to photoperiod were previously observed in rice [50]. Others have

reported that rice accessions derived from different geographic

regions react to environmental signals differently as well [51,52].

Information on germplasm and environmental interaction is

helpful for parental selection for a specific or broad adaptation

to environments.

The correlations among the 14 traits exhibited a complex

relationship between pairs of traits. At both locations, the harvest

index increased with an increase of seed set and grain weight/

panicle, while decreased with an increase of heading, panicle

length, plant height and plant weight. The negative and significant

correlation between heading and harvest index was also reported

in spring wheat [53], rice [54] and sorghum [11]. These studies

concluded that harvest index could be easily influenced not only

during the grain filling period [55,56], but also during the period

from panicle initiation to heading [54] as affected by planting

dates and temperature during the growing season [57]. Plant

height is another important agronomic trait that is directly linked

to harvest index [9,58]. Yoshida et al. [15] also reported a similar

result to this study where harvest index was inversely correlated

with plant height, which may be due to lodging in the tall varieties

[54], or greater translocation of photosynthate from the vegetative

tissues to grain in semi-dwarf varieties [59]]. The positive

correlation between harvest index and grain weight/panicle was

also reported by Sabouri et al. [10]. However, panicle length was

not found to be correlated with harvest index in Marri’s study [9].

Similarly, plant weight was not correlated with harvest index in

Sabouri’s study [10]. These different results are understandable

since different materials were used in those studies. In practice,

highly correlated traits, such as heading, can be used to obtain

indirect estimates of harvest index when direct estimates are

difficult or impractical to obtain. Thus improvement of harvest

index can be manipulated indirectly. In theory, the correlation of

harvest index with its related traits determined in this study,

indicates an interrelationship of physiological pathways controlling

these traits.

Model comparison for association mapping of harvest
index’s traits

For harvest index traits, the number of dimensions in PCA was

tested for each trait, and the appropriate number of dimensions

was determined on the basis of BIC. Our simulated experiments

showed that the dimension of PCA can exhibit phenotypic

specificity. As an example with heading, the PCA model required

a higher dimension number to capture the true population

structure effects. Traditionally, the number of dimensions has been

generally determined on the basis of random marker information

without considering phenotypic information. However, the effects

of population structure on different complex traits vary dramat-

ically [60,61] and it is logical to hypothesize that the numbers of

dimensions required for cofactors in detecting marker–trait

association are not necessarily the same [62].

Comparing with other five models (naive, kinship, PCA+Kin-

ship, Q and Q+Kinship model), the PCA showed the best fit with

the smallest BIC value for harvest index traits. Interestingly,

correction of the kinship model was not observed to be better than

the naive model. Similarly, the models with Q+kinship or

PCA+kinship did not perform better than the ones with only Q

or PCA, either. Shao et al. [63] also found that Q+kinship model

performed similarly to the Q model alone in a rice panel. The

result did not agree with some other studies on cross-pollinated

plants and humans [25,62], where the relatedness among

accessions in a population is quite complex because of the mating

style. The low complex relatedness in the URMC rice collection

could be attributable to the restricted gene flow among these self-

pollinated accessions and the diverse global origination of these

accessions. Moreover, the low complex relatedness may be a result

of the M strategy based on 26 phenotypic traits and 70 molecular
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markers [48] being used to develop this collection. This strategy is

a powerful approach for selection of accessions with the most

diverse alleles because it eliminates redundancies resulting from

noninformative alleles that arise from co-ancestry [64]. The low-

complexity relatedness was also confirmed by few secondary

branches in the UPMGA tree (Figure 1B). In summary, different

populations may have their own best fit model for a specific trait,

which makes it necessary to compare different models.

Genetic dissection of harvest index
Harvest index is an integrative trait including the net effect of all

physiological processes during the crop cycle and its phenotypic

expression is generally affected by genes responsible for non-target

traits, such as heading [20,65], plant height [20] and panicle

architecture [66]. The magnitude and direction of these gene

functions on different phenotypes would bear heavily on the utility

of such genes for improvement of these traits. In the current study,

the traits like heading, plant height, plant weight and panicle

length had a strong negative correlation with harvest index, while

seed set and grain weight/panicle were positively correlated with

harvest index. These phenotypic correlations were consistently

reflected in the identification of molecular markers associated with

harvest index and related traits. For example, four consistent

markers at Stuttgart, RM600, RM302, RM25, and RM431, were

associated with not only harvest index itself, but also for one or

more traits consistently correlated with harvest index. Another

consistent marker, Rid12, associated with both heading and plant

weight, was close to a reported QTL ‘‘qHID7-1’’ responsible for

harvest index [67] and the gene ‘‘Ghd7’’ having major effects on

grains per panicle, plant height and heading in rice [68]. At

Beaumont, the consistent marker RM55, associated with both

plant height and plant weight, was adjacent to a QTL ‘‘qHID3-2’’

for control of harvest index [67]. RM431 co-associated with plant

height and harvest index in this study has been reported to be

closely linked to gene ‘‘sd1’’ [69,70]. The sd1 that is involved in

gibberellic acid biosynthesis decreases plant height, thus increases

harvest index. The decreased height reduces lodging susceptiblity,

is tolerant to heavy applications of nitrogen fertilizer, and can be

planted at relatively high density, all contributing to improved

grain yield that has resulted in the Green Revolution in cereal

crops including rice [71].

Other markers were associated with the traits correlated with

harvest index, but not with harvest index directly in this study.

These markers have been reported either nearby or flanking the

QTLs for harvest index. RM5, which was associated with plant

height in the Stuttgart study, was close to a reported QTL for

harvest index on Chr 1 [9]. RM471 associated with plant weight

was close to the reported qHID4-1 and qHID4-2 for harvest index

[67]. Furthermore, RM257 and RM22559 associated with seed set

were co-localized with a known QTL on Chr 9 [9], and with

qHID8-1 [67] for harvest index, respectively. Similarly, at

Beaumont, RM44 associated with plant height was close to

qHID8-1 [67], and RM263 associated with heading was adjacent

to hi2.1 [9]. The chromosomal regions where numerous correlated

traits are mapped indicate either pleiotropy of a single gene or

tight linkage of multiple genes. Fine-mapping of such chromo-

somal regions would help discern the actual genetic control of

these congruent traits. Development of markers for such traits in

specific regions could lead to a highly effective strategy of marker-

assisted selection for improving harvest index.

Environmental sensitivity and marker-assisted selection
Quantitative traits show a range of sensitivities to environmental

changes [67]. In this study, 32 marker-trait associations were

identified specifically adaptive to Stuttgart, whereas 24 marker-

trait associations were adaptive to Beaumont. More importantly,

we identified four constitutive markers associated with harvest

index traits in both environments.

Environment-specific QTLs can be used for marker-assisted

selection (MAS) at specific environments. For example, RM431

could be used to improve harvest index directly and indirectly

through decreasing plant height and increasing seed set in

Arkansas because it was co-associated with harvest index, plant

height, and seed set. However, the constitutive marker-trait

associations over multiple environments can be applied to MAS

programs in a wide area. For example, results suggest that the

constitutive markers Rid12 and RM471 could be used to improve

harvest index indirectly through decreasing plant weight in the

southern states of the USA.

Comparison of allelic effects of these constitutive markers can

classify the alleles within a marker locus into superior or inferior

ones, which helps decide which to use for MAS in the southern

states. For example, allele 253 bp of RM431 and allele 390 bp of

RM24011 had the largest effect on decreasing two traits, plant

height and panicle length, negatively associated with harvest

index. Thus, these superior alleles can be introduced for

improvement of harvest index indirectly through decreasing the

negative traits at both locations. Conversely, the allele 411 bp of

RM24011 had the largest effect on increasing the panicle length

and thus would not be useful for improving harvest index using

MAS at either location. Interestingly, the two alleles of Rid12

associated with plant weight had opposite effects at the two

locations. Allelic choice for this marker should be dependent on

the particular environment targeted for breeding.

Results of the present study demonstrated that genome-wide

association mapping in the URMC could complement and enrich

the information derived from linkage-based QTL studies. After

validation or fine mapping of these putative genomic regions, the

information will help secure food production through either direct

improvement of harvest index or indirect improvement via

changes in seed set, grain weight per panicle, heading, plant

height and weight, and panicle length using the MAS.

Materials and Methods

Rice association panel
Of 217 accessions in the URMC, 203 belong to O. sativa

whereas the remaining belongs to other species in Oryza. Pure seed

of these accessions were provided by the Genetic Stock Oryza

Collection (GSOR) (www.ars.usda.gov/spa/dbnrrc/gsor) with

cultivar name or designation, accession number, registration year,

place of origin, longitude and latitude of origin, pedigree or genetic

background (if available), morphological characteristics and

references. The GSOR supplies seeds for research purposes to

national and international users upon to request. In this study,

only 203 O. sativa accessions were used for the following analysis

because the wild relatives, O. glaberrima, nivara, rufipogon, glumaepatula

and latifolia, contain many rare alleles. Rare alleles are one of the

factors that increase the risk of Type I errors or spurious

associations [47].

Location and field experiment
Evaluations were conducted for 14 traits in two field locations,

USDA-ARS Dale Bumpers National Rice Research Center near

Stuttgart, Arkansas and USDA-ARS Rice Research Unit near

Beaumont, Texas during the 2009 growing season. The Stuttgart

test site is located at N 34u279440 and W 91u249590, representing a

temperate climate with a 243 d frost free period and average
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temperature of 23.9 C during the growing season. The Beaumont

test site is located at N 30u039470 and W 94u179450, representing a

subtropical climate with a 253 d frost free period and an average

temperature of 26.1 C during the growing season. The experi-

ments at both locations utilized a randomized complete block

design having three replications with nine plants spaced

0.360.6 m in each plot. Three seeds were sown in each of nine

hills in a plot using a Hege 1000 grain drill planter on April 23 and

May 6 of 2009 at Stuttgart and Beaumont, respectively. Each hill

was thinned to a single plant right after the permanent flood was

applied at five leaf stage. Before flooding, fertilizer at 55 kg ha21

of nitrogen as urea was applied. Weeds were controlled at both

pre-planting and pre-flooding stages with locally recommended

herbicides.

Phenotyping
Data collection followed procedures described by Yan et al.

[72,73] with modifications. Heading was recorded as the number

of days when 50% of the panicles in a plot had begun to emerge

from the boot. Meanwhile, three plants were selected from the 9 in

each plot and their main panicles were marked. Each plant was

then bagged at the top to avoid panicle damage and supported by

a bamboo pole to avoid lodging. Each plant was manually cut at

ground level when mature and air-dried for two months before

recording plant weight (g). Then, plant height (cm) was measured

from the base to the panicle tip, the main panicle was removed at

the panicle node and tillers of the plant were recorded before

being threshed. Grain yield (g) was measured as total weight after

the threshed grains were cleaned by an Almaco seed cleaner, plus

seed weight of the removed main panicle. Harvest index (%) was

calculated as the ratio of grain yield to plant weight. Each main

panicle was measured for its length (cm), counted for its primary

and secondary branches and manually threshed for kernels. All

kernels from the panicle were placed in a cup half full of water and

the cup was stirred with a spoon. Blank kernels floated to the top of

the water and filled kernels sank to the bottom. The number of

each was recorded after they were dried at 50uC for 12 hrs. Seed

weight (mg) was determined by the filled kernel weight divided by

its number, and seed set (%) was expressed by a ratio of the filled

kernels to the total kernels including both filled and unfilled in the

panicle. Panicle length and branch data were used to generate

kernels/cm panicle and kernels/branch panicle using the total

kernels.

Genotyping
Bulk tissue from five plants was collected from each accession as

described by Brondani et al. [74] and total genomic DNA was

extracted using a rapid alkali extraction procedure [75]. The

bulked DNA allowed identification of the origin of heterogeneity,

which can result from the presence of heterozygous individuals or

from a mix of individuals with different homozygous alleles [76].

The 155 molecular markers covering the entire rice genome,

approximately one marker per 10 cM on average, were used to

genotype 203 accessions in the URMC. Among the markers, 149

SSRs were obtained from the Gramene database (http://www.

gramene.org/), and five SSRs (AP5652-1, AP5652-2, AL606682-

1, con673 and LJSSR1) were amplified in house [33]. The

remaining was an indel at the Rc locus, named Rid 12 and is

responsible for rice pericarp color. Polymerase chain reaction

(PCR) marker amplifications were performed as described in

Agrama et al. [34]. The genetic positions and physical positions of

these markers were estimated using the map of Cornell SSR 2001

and the map of Gramene Annotated Nipponbare Sequence 2009,

respectively (http://www.gramene.org/). Markers labeled with

different colored fluorescence and that amplified products with

size differences of 20 bp or more were multiplexed together post

PCR.

Statistical analysis
Marker and phenotype profile. Genetic distance was

calculated from the 155 molecular markers using Nei distance

[36]. Phylogenetic reconstruction was based on the UPGMA

method implemented in PowerMarker version 3.25 [77].

PowerMarker was also used to calculate the average number of

alleles, gene diversity, and polymorphism information content

(PIC) values. The tree to visualize the phylogenetic distribution of

accessions and ancestry groups was constructed using MEGA

version 4 [78].

Each of the 14 phenotypic traits was modeled independently

with the MIXED procedure in SASv.9.2, where genotype,

location and interaction of location with genotype were defined

as fixed effects while replication within a location (block effect) was

a random effect. Broad-sense heritability was calculated using

formula H2 =sg
2/(sg

2+se
2/n), where sg

2 as the genotypic

variance, se
2 as the environmental variance and n as the number

of replications [79]. Spearman rank correlation coefficients

between each pair of the 14 traits were calculated using the mean

of 9 plants, 3 in each of three replications for an accession, using

the CORR procedure in SASv.9.2. Correlation coefficients for the

traits that significantly correlated with harvest index were

displayed graphically using principal components analysis (PCA)

performed with NTSYSpc software version 2.11 [80].

Population structure. The model-based program

STRUCTURE [81] was used to infer population structure using

a burn-in of 100,000, a run length of 100,000, and a model

allowing for admixture and correlated allele frequencies. The

number of groups (K) was set from 1 to 10, with ten independent

runs each. The most probable structure number of (K) was

calculated based on Evanno et al. [82] using an ad hoc statistic

D(K), assisted with L(K), L9(K) and (L0K). The D(K) perceives the

rate of change in log probability of the data between successive (K)

values rather than just the log probability of the data.

Determination of mixed ancestry (an accession unable to be

clearly assigned to only one group) was based on 60% (Q) as a

threshold to consider an individual with its inferred ancestry from

one single group. Principal component analysis (PCA), that

summarizes the major patterns of variation in a multi-locus data

set, was performed with NTSYSpc software version 2.11 [80]. The

first three principal components were used to visualize the

dispersion of the mini core accessions in a graph. Each accession

was assigned into a group according to its maximum ancestry

index assessed by STRUCTURE for the following linkage

disequilibrium analysis.

Model comparison and association mapping. Following

the procedures previously recommended [25,62] for various mixed

models, we tested a subpopulation membership percentage (Q),

PCA as fixed covariates and kinship (K) as a random effect. The

kinship was calculated using SPAGeDi [83]. Phenotypic data were

also incorporated into the process to determine the final number of

dimensions for PCA based on Bayesian information criterion (BIC)

[62]. The best fit model for each trait was determined based on the

BIC among six models, naive, Kinship, PCA, PCA+Kinship, Q

and Q+Kinship [25,84]. The selected model was then used to map

the SSR markers significantly associated with harvest index’s traits.

The association analysis was conducted using the MIXED

procedure in SASv.9.2. For multiple testing, P values were

compared to the Bonferroni threshold (1/155 = 6.4561023) to

identify statistically significant loci. Allelic effects at marker loci
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were compared using the LSMEANS and pdiff option in the

MIXED procedure, using Saxton’s PDMIX800 SAS macro [85].
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