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Abstract

Background: High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles
prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and
biofilm states of selected isolates.

Methodology: Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for
microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of
350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three
ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two
different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and
biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed
using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm
destruction were assessed by colony counting and electron microscopy.

Principal Findings: A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment
at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition
of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed
that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High
hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if
antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is
a lower risk of re-infection after re-insertion.
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Introduction

Cholesteatoma is defined as the presence of keratinizing

squamous epithelium in the tympanic cavity. As a result of

decreased clearance, this growth is macroscopically visible [1–2].

Chronic or recurrent infection of the middle ear cavity including the

auditory bones (ossicles) is a common complication of cholesteato-

ma. A visible clinical manifestation of ear infection is otorrhea.

The initial steps in the pathogenesis of acquired middle ear

cholesteatoma are still unknown and have been a matter of some

controversy. Among the factors discussed are molecular dysreg-

ulation of keratinocytes and external stimulation by pro-inflam-

matory cytokines, growth factors and/or bacterial toxins. Inflam-

matory mediators such as histamine and platelet-activating factor

(PAF) also appear to be involved in disease progression since they

can cause eustachian tube dysfunction resulting in decreased

mucociliary clearance. Another possible mechanism is that

inflammatory mediators such as tumor necrosis factor alpha

(TNF-a), interleukin 1 (IL-1), and PAF induce mucin secretion in

the middle ear epithelium. This would lead to increased viscosity

of middle ear effusions and decreased mucociliary clearance. As a

result of both mechanisms, retained bacterial products such as

lipopolysaccharide and cell wall fragments can cause a chronic

inflammatory reaction in the middle ear cleft with continual

release of cytokines and arachidonic acid metabolites resulting in

further inflammation and host cell damage [3–4].
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There is strong anatomic evidence for the presence of bacterial

biofilms in experimental and human cholesteatomas. This form of

organization impairs clearance since bacteria within biofilms are

more resistant to host defense mechanisms and topical or systemic

antibiotics [3,5].

For this reason, chronically inflamed ossicles must often be

removed during cholesteatoma surgery. Although modern allo-

pastic implants show good biocompatibility and biostability, they

cannot regularly achieve full restoration of hearing. The re-

insertion of autologous ossicles is therefore a common procedure

[6–8]. If, however, there is evidence of an easily removable coat of

cholesteatoma cells or even infiltration of cholesteatoma matrix

into bone tissue, ossicles should not be re-inserted [9–10]. The use

of fixed heterologous ossicles from an ossicle bank is no longer

recommended because of the potential risk of slow virus or prion

transmission [11]. For this reason, devitalization of cholesteatoma

cells and biofilm bacteria on ossicular surfaces should precede the

re-insertion of ossicles.

Devitalization can possibly be achieved by high hydrostatic

pressure (HHP) treatment. HHP can effectively disrupt or even

completely destroy eukaryotic cell membranes, elements of the

cytoskeleton, and enzyme systems [12–14]. It devitalizes bone

tissue without adverse effects on the bone matrix [15–16].

Pressures of up to 600 MPa in particular do not alter the

biomechanical properties of bone and tendon material [17–18].

In a previous study [19], our research group was able to show

that a pressure of 400 MPa caused extensive membrane damage

and thus led to a thorough inhibition of cholesteatoma cell growth

on ossicles. Similar results were obtained with other types of bone

[20–22]. In these studies, HHP treatment inactivated cells on bone

surfaces without affecting rigid bone structures and thus destroyed

harmful cell components on bone tissue.

The re-insertion of microbially contaminated ossicles, however,

carries the risk of infectious complications. In this context, it is

interesting to note that HHP can also inactivate microorganisms.

In the food industry, for example, HHP has been used as a

substitute for pasteurization. In this case, the level of pressure

required for microbial inactivation depends on the target species

[23–24].

Against this background, the primary aim of our study was to

determine whether pressures that devitalize cholesteatoma cells

can also inactivate microorganisms on ossicles. As a secondary

aim, we analyzed differential effects of HHP on the planktonic and

biofilms states of selected patient isolates.

Materials and Methods

Patients
Twenty-five patients with chronic atticoantral suppurative otitis

media were recruited for this study. The inclusion criterion was a

definitive need for the surgical removal of the ossicles from one

middle ear cavity because of a highly destructive growth and

impending complications such as hearing loss, facial nerve paresis,

vertigo or hemorrhage.

Preparation and transportation of ossicles
Tissue specimens were immediately transferred to 2 ml of a

sterile 0.9% NaCl solution at a pH of 7.4. They were transported

to a diagnostic laboratory within two hours after surgery and kept

at a temperature of 8uC.

Assessment of microbial colonization of patient material
Microorganisms that colonized the 5 untreated ossicles were

directly processed on the basis of the standard operating

procedures that are established at the routine diagnostic laboratory

of the University of Rostock Hospital accredited according to DIN

EN ISO 15183.

For the mobilization of biofilm bacteria, all specimens were

subjected to ultrasound treatment (Sonorex 10P, Bandelin, Berlin,

Germany) for 4 minutes at 80% of maximum energy in their

transport media under sterile conditions prior to their transfer to

culture media. Subsequently, 100 mL aliquots were spread on

Columbia agar with 5% sheep blood, chocolate agar, Schaedler

agar, Schaedler KV agar (supplemented with kanamycin and

vancomycin) (BD), brain-heart infusion (BHI) broth, and thiogly-

colate broth. All media were obtained from BectonDickinson,

Heidelberg, Germany. The media were incubated either in an

atmosphere of 20% O2 and 5% CO2 or in an anaerobic

atmosphere (Schaedler media, thioglycolate broth) at 36uC for

14 days. The media were inspected for microbial growth on days

1, 2, 4, 7 and 14. When visible growth was detected in the liquid

media, aliquots were transferred to all types of agar plates and

incubated as described above. For semi-quantification, growths on

directly inoculated agar plates were assigned into 2 categories (few

colonies = light growth, more than two dozen colonies = heavy

growth). When these results were combined with growth results

from liquid media, there were a total of 4 categories (‘‘2’’ no

growth in liquid media and on solid media; ‘‘+/2’’ growth only in

liquid media, no growth on solid media; ‘‘+’’ growth in liquid

media and light growth on solid media; ‘‘++’’ growth in liquid

media and heavy growth on solid media).

After obligate anaerobic and facultative aerobic organisms had

been identified, differentiation of all visible colonies was performed

using commercial biochemical identification systems (VITEK 2

[bioMérieux, Nürtingen, Germany)] APIH [bioMérieux] or

RapIDTM [remel, Thermo Fisher Scientific, Lenexa, KS, United

States]). Results were confirmed for each isolate by 16S rDNA

sequencing using the primers AGAGTTTGATCMTGGCTCAG

and CCGTCAATTCMTTTRAGTTT (bases 1–917 of the E. coli

16S rDNA gene, NCBI accession no. NC_009085.1) or, if

appropriate, by 18S rDNA sequencing using the primers

ACTGCGAATGGCTCATTAAATCAG and CAAGGCCAT

GCGATTCG (bases 86–279 of the V1 region of the C. albicans

18S rDNA gene, GenBank accession no. AY251634).

Where possible, antibiotic resistance patterns of isolates were

determined using a commercial system (VITEK 2, bioMérieux).

For fastidious facultative aerobes, specific antibiotics were tested

using E-test strips (AB Biodisk, Solna, Sweden) according to the

standard operating procedures used at the accredited laboratory.

The differentiated strains were stored at 280uC using the

Microbank Tube system according to the manufacturer’s instruc-

tions (Pro-Lab Diagnostics, Round Rock, TX, United States).

The biofilm-forming capacity of all isolates was assessed by

growing the strains in 96-well microtiter plates using BHI broth or

thioglycolate broth for anaerobic isolates according to the protocol

of Standar et al. [25]. After safranin staining, biofilm mass was

measured on the basis of photometric extinction at 600 nm

(OD600 nm). Previous measurements showed that OD600 nm

values above 0.05 indicate the presence of a multi-layered biofilm

[26]. Measurements were performed in triplicate (technical

replicates) on three independent occasions (biological replicates).

Biofilm formation was recorded as positive when at least two

positive technical replicates were obtained on at least two

occasions.

High pressure treatment of patient material
For an assessment of the effects of high pressure treatment on

human ossicles colonized by cholesteatoma cells, the bones were

High Hydrostatic Pressure Effects on Ossicle Flora
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cut into two equally sized pieces under sterile conditions. One

piece was immediately treated with high hydrostatic pressure

(HHP) while the other piece was kept in a sterile humid chamber.

HHP treatment was performed in closed 2.7 ml cryovials (Greiner,

Nürtingen, Germany) that were completely filled with Dulbecco’s

modified Eagle medium (DMEM) with 10% fetal calf serum, 100

units/ml penicillin, 100 mg/ml streptomycin, and 25 mg/ml

amphotericin (GIBCO, Invitrogen, Darmstadt, Germany). Care

was taken to prevent bubble formation.

Pressure treatment was performed at 350 MPa for 10 minutes

using a high pressure unit (HDR 100-20, Schurter-Retrofit

GmbH, Königsee, Germany) at the Biomechanics and Implant

Technology Research Laboratory (FORBIOMIT) of the Depart-

ment of Orthopedics at the University of Rostock Hospital. After

the completion of HHP treatment, the two pieces of each ossicle

were analyzed for microbial colonization as described above.

For an assessment of combined effects of HHP and antimicro-

bial treatment, six pieces of ossicles were exposed to HHP

(parameters see above) either with or without the addition of

antibiotics. Three pieces were immersed in a solution containing

cefuroxime 11.1 mg/ml, gentamicin 44.4 mg/ml and imipenem

3.7 mg/ml. The other three pieces were placed in a solution

containing vancomycin 11.1 mg/ml, clindamycin 0.75 mg/ml and

imipenem 3.7 mg/ml. After treatment, microbial colonization was

again assessed as described above.

In vitro studies of patient isolates
After all patient isolates were analyzed for in vitro biofilm

formation in BHI broth after incubation for 3 days at 37uC and

30uC [25,26], one patient strain of Staphylococcus epidermidis and one

patient strain of Neisseria subflava that were strong biofilm formers

in vitro were selected for differential pressure tests.

For an analysis of the planktonic state, Staphylococcus epidermidis

was grown in tryptic soy broth (CASO, heipha, Eppelheim,

Germany) for 24 hours and Neisseria subflava in BHI broth

(BectonDickinson, Heidelberg, Germany) for 48 hours. Using

the specific growth media, optical density was adjusted to give an

extinction of 0.35 at 600 nm, which corresponded to a bacterial

density of 16108 colony forming units (CFU) per ml. The cell

suspensions were further diluted to 16106 CFU/ml. Aliquots of

1 ml were transferred into an appropriate number of cryovials and

kept on ice until further processing.

The vials were subjected to pressures of 100, 250, 400 and

540 MPa on four independent occasions (biological replicates).

After HHP treatment, bacterial suspensions were serially diluted

and 100 ml aliquots were spread on tryptic soy agar (S. epidermidis)

or BHI agar (N. subflava). The media were incubated in an

atmosphere of 20% O2 and 5% CO2 for 24 hours (S. epidermidis) or

48 hours (N. subflava). Visible colonies were then counted.

Incubation was continued for another 48 hours and colonies were

counted again with a view to excluding delayed growth as a result

of HHP treatment.

For an analysis of the biofilm state, N. subflava and S. epidermidis

were grown and adjusted to a concentration of 16106 CFU/ml as

described above. From these suspensions, 1 ml aliquots were

transferred to 24-well plates containing polystyrene cover slips.

The cover slips, which had a diameter of 15 mm, were cut to the

size and shape required to fit the cryovials and were disinfected

before being used in the experiments.

Incubation time was 3 days under the conditions described

above. Then the cover slips were gently washed once with 0.9%

NaCl solution to remove non-adherent cells. They were then

transferred into cryovials (Greiner) that were filled with either

H2O or 0.9% NaCl solution and kept on ice until further

processing. The cryovials were subjected to HHP treatment by

using pressures of 100, 250, 400, and 540 MPa on four

independent occasions. After pressure treatment, the cover slips

were transferred into glass tubes filled with 1 ml of phosphate

buffered saline (PBS) and biofilm cells were mobilized by

ultrasound treatment as described above. For comparison,

untreated controls were processed in the same way, except for

HHP treatment. Viable counts were performed as described for

planktonic cells.

One Gram-positive strain (Staphylococcus epidermidis, ATCC 12228)

and one Gram-negative strain (Pseudomonas aeruginosa, ATCC 27853)

served as independent controls for planktonic cells and were subjected

to the same experimental conditions, except for the pressure

parameters (only pressures of 100 and 540 MPa were used).

Electron microscopy
During every step of HHP treatment, 200 ml aliquots of

planktonic patient isolates and untreated controls were taken and

fixed for electron microscopy as described earlier [25]. The samples

were subjected to critical point drying, sputter coated with gold [25]

and documented with a scanning electron microscope (SEM) (Zeiss

DSM 960A, Carl Zeiss, Jena, Germany) at 10 representative sites.

For transmission electron microscopy (TEM), the samples were

washed with PBS (pH 7.4) for 24 hours and then fixed with 1%

osmium tetroxide. After they were washed with PBS (pH 7.4) and

dehydrated in increasing concentrations of acetone (30%, 50%,

75%, 90%), the samples were embedded in acetone/araldite.

Ultrathin sections were cut on a Leica microtome Ultracut S

(Leica, Solms, Germany), placed on copper grids and contrasted

with lead citrate and uranyl acetate. Finally, each grid was

documented at 10 representative sites using TEM (Libra 120, Carl

Zeiss, Oberkochen, Germany).

Table 1. Microbial colonization of untreated ossicles.

Sample
number Species

1 Veilonella parvula

Clostridium bifermentans

2 Neisseria sicca

Streptococcus sanguinis*

3 Staphylococcus auricularis*

Streptococcus mitis

Neisseria subflava*/**

Proprionibacterium acnes

Aeromonas salmonicida

4 Staphylococcus epidermidis**

Ralstonia pickettii**

Sphingomonas paucimobilis*

5 Staphylococcus hominis

Sphingomonas paucimobilis*

Brevundimonas diminutiva*

Pseudomonas fluorescens*/**

All bacterial strains listed above were detected by conventional culture
techniques.
*Strains that were able to form biofilms in vitro at 37uC.
**Strains that were able to form biofilms in vitro at 30uC.
doi:10.1371/journal.pone.0030150.t001
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Ethics
The present study did not require ethical approval. All analyzed

specimens were explanted human ossicles or parts thereof that had

been irreparably damaged by cholesteatoma cells. This excess

material would have otherwise been discarded without further

routine analysis. Decisions in relation to surgical management

were made independently of the study. Prior to the study, the

authors had been informed by the ethics committee of the

University of Rostock Hospital that the use of excess material

required neither ethical approval nor informed patient consent.

Prior to hospital admission, the patients had given general written

consent for excess material to be used for research purposes. For

this reason, no further informed consent was required or obtained.

Results

Patient data
The mean age of the patients included in this study was 37.6

years (range: 19 to 56 years). All patients showed clinical signs and

audiometric test results typically associated with unilateral

atticoantral suppurative otitis media. Likewise, all patients

underwent middle ear surgery for the first time.

The patients’ medical histories revealed that the time between

onset of symptoms and definitive diagnosis ranged from 6 months

to 7 years. No patient received antibiotic treatment prior to

surgical intervention. No patient underwent surgery during an

acute episode of the disease.

Characterization of microbial colonization
Using established culture techniques, a total of 20 ossicles were

analyzed either directly after their removal (Tables 1 and 2) or

after pressure treatment (Table 2). The vast majority of ossicles

were found to be colonized by microorganisms. More than one

species were detected in 70% (14 of 20 ossicles) and at least one

species was found in another 20% (4 of 20 ossicles). Forty-three

isolates belonging to 31 bacterial species and one yeast species

were differentiated. Nineteen percent (8 of 43 isolates) belonged to

the group of aerotolerant anaerobes. Gram-positive species

Table 2. Microbial colonization of ossicle specimens with and without exposure to HHP treatment (350 MPa, 10 minutes).

Sample
number Species

Semi-quantification without
pressure treatment

Semi-quantification after pressure
treatment

1 Staphylococcus capitis ++ 2

Neisseria subflava*/** ++ 2

Candida albicans ++ 2

Haemophilus somnus* ++ 2

Burkholderia cenocepacia ++ ++

2 Pseudomonas aeruginosa*/** ++ 2

Bacteroides urealyticus ++ 2

3 Corynebacterium pseudodiphtheriticum 2 +

4 Pseudomonas aeruginosa*/** ++ 2

Propionibacterium acnes 2 +

5 No bacterial growth 2 2

6 Pseudomonas aeruginosa*/** ++ 2

7 Turicella otidis* +/2 ++

Bacillus licheniformis ++ +/2

8 Eubacterium limosum +/2 2

9 Propionibacterium granulosum** +/2 +/2

Propionibacterium acnes 2 +

Staphylococcus hominis 2 +

10 Staphylococcus aureus* ++ ++

Staphylococcus aureus* (morphologically distinct) ++ ++

11 Kocuria rosea* +/2 2

12 No bacterial growth 2 2

13 Staphylococcus aureus ++ ++

Staphylococcus simulans* ++ ++

14 Staphylococcus auricularis* ++ 2

Propionibacterium acnes + 2

15 Staphylococcus caprae ++ ++

Staphylococcus aureus* +/2 2

Propionibacterium acnes ++ 2

All bacterial strains listed above were identified using semi-quantitative culture techniques. ‘‘2’’ No growth in liquid media and on solid media. ‘‘+/2’’ Growth only in
liquid media. ‘‘+’’ Growth in liquid media plus light growth on solid media. ‘‘++’’ Growth in liquid media plus heavy growth on solid media;
*Strains that were able to form biofilms in vitro at 37uC.
**Strains that were able to form biofilms in vitro at 30uC.
doi:10.1371/journal.pone.0030150.t002
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dominated with 62% (26 of 43 isolates versus 16 Gram-negative

ones). The majority of isolates belonged to species currently

regarded as part of the opportunistic human microflora as opposed

to 3 Pseudomonas aeruginosa and 4 Staphylococcus aureus strains.

Two of 6 ossicles subjected to pressure treatment with or

without exposure to antibiotics were colonized with 7 isolates (6

Gram-positive and 1 Gram-negative isolates), two of which

belonged to species that had not been identified in the previous

experiments. These species too were regarded as part of the

opportunistic flora.

When relative microbial quantities were assessed before HHP

treatment (Table 2), 23 isolates were initially detected on native

ossicles and 17 showed heavy growth.

Antibiotic resistance patterns of the isolates were determined

using a commercial automated system or E-tests. The results are

shown in Table S1. Except for one S. epidermidis strain, one S.

paucimobilis strain and two P. aeruginosa strains, none of the isolates

demonstrated resistance against more than two antibiotics. At least

in the planktonic state, these isolates should thus be susceptible to

conventional empirical antibiotic regimens.

Twenty-two (51%) of 43 isolates displayed multi-layered biofilm

formation when tested in vitro (Tables 1 and 2). Strong biofilm

formation was more prominent among Gram-negative (11 of 16

isolates) than among Gram-positive bacteria (11 of 26 isolates).

Only 9 strains (8 Gram-negative and 1 Gram-positive strains)

formed biofilms at 30uC. All but 3 biofilm-positive isolates

produced biofilms at 37uC.

Effects of pressure treatment
HHP treatment was reported to successfully kill eukaryotic cells

covering ossicular surfaces [19]. The question addressed here is

whether this also applies to bacteria colonizing ossicular surfaces

and especially to bacteria within biofilms. For this reason, 15

ossicles were exposed to a pressure of 350 MPa for 10 minutes.

Two ossicles were found to be initially sterile and 13 were

colonized. All detected microbes were completely inactivated in 5

samples and relative quantities were reduced in 3 further samples.

No obvious reduction of relative quantities, however, was observed

in 5 samples (Table 2). When the effect was analyzed with regard

to single isolates, HPP completely eliminated 14 isolates, reduced

Table 3. Microbial viability of Gram-positive bacteria, Gram-negative bacteria and yeasts after HHP treatment (350 MPa,
10 minutes).

Number of isolates Species Semi-quantification after HHP treatment

Gram-positive bacteria

1 Bacillus licheniformis +/2

1 Staphylococcus capitis 2

1 Corynebacterium pseudodiphtheriticum +

1 Eubacterium limosum 2

1 Kocuria rosea 2

1 Leuconostoc mesenteroides ssp. cremoris 2

1 Micrococcus luteus +

2 Propionibacterium acnes 2

2 Propionibacterium acnes +

1 Propionibacterium granulosum +/2

3 Staphylococcus aureus ++

1 Staphylococcus aureus 2

1 Staphylococcus auricularis 2

1 Staphylococcus auricularis +/2

1 Staphylococcus capitis +/2

1 Staphylococcus epidermidis ++

1 Staphylococcus hominis ++

1 Staphylococcus hominis +

1 Staphylococcus simulans ++

Gram-negative bacteria

1 Acinetobacter baumannii ++

1 Burkholderia cenocepacia ++

1 Bacteroides urealyticus 2

1 Haemophilus somnus 2

1 Neisseria subflava 2

3 Pseudomonas aeruginosa 2

Yeasts

1 Candida albicans 2

See Table 2 for an explanation of the symbols used.
doi:10.1371/journal.pone.0030150.t003
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the relative quantity of 1 isolate and did not affect 8 isolates. Four

isolates were detected only after HHP treatment. A possible

explanation for this phenomenon may be the release of viable

bacteria from biofilms as a result of this vigorous treatment.

Differences in inactivation at 350 MPa for 10 minutes were

demonstrated at both the genus level – as shown for Propionibac-

terium spp. and Staphylococcus spp. – and the strain level within a

defined species – as detected for Propionibacterium acnes, Staphylococcus

aureus, Staphylococcus auricularis and Straphylococcus hominis (Table 3).

Whereas HHP treatment successfully inactivated Eubacterium

limosum, Kocuria rosea, and Leuconostoc mesenteroides ssp. cremoris

(Gram-positive bacteria), Bacteroides urealyticus, Haemophilus somnus,

Neisseria subflava, Pseudomonas aeruginosa (Gram-negative bacteria)

and Candida albicans (a yeast strain), it failed to kill Bacillus

licheniformis, Corynebacterium pseudodiphtheriticum and Micrococcus luteus

(Gram-positive strains) and Acinetobacter baumannii and B. cepacia

complex (Gram-negative strains) under experimental conditions

(Table 3).

An analysis of in vitro biofilm formation showed that HHP

treatment successfully inactivated 9 of 15 strains that were strong

biofilm formers and only 5 of 13 strains that formed no biofilm or

a single biofilm layer in vitro.

Effects of a combination of HPP and antibiotic treatment
Since HHP treatment was not sufficiently effective in one third

of the treated ossicles, we combined HPP treatment with antibiotic

therapy in order to investigate whether this combination treatment

can enhance the disinfecting effect. For this reason, 6 ossicles were

specifically exposed to HHP and a combination of 3 antibiotics.

Four ossicles were found to be initially sterile. The other 2 ossicles

were colonized by a total of 7 isolates, 6 of which were not affected

by pressure treatment. After the addition of antibiotics, however,

none of these isolates were detectable by culture techniques. Only

a Leuconostoc mesenteroides ssp. cremoris strain that was not detected

after HHP treatment without antibiotics grew in liquid culture

after exposure to antibiotics during HHP treatment (Table 4). This

particular strain was resistant to vancomycin and clindamycin.

Vancomycin resistance was reported to be a general characteristic

of the Leuconostoc genus [27].

In vitro analysis of differential pressure effects on
selected patient isolates

Since the results of the ex vivo studies demonstrated varying

effects of HHP treatment on Gram-positive and Gram-negative

bacteria and indicated a potential influence of biofilm structures,

we conducted a series of in vitro experiments to address these

issues. For this purpose, an S. epidermidis isolate and an N. subflava

isolate were selected (Table 1). Both isolates belonged to the

majority of opportunistic isolates, displayed a normal antibiotic

resistance pattern and were strong biofilm formers (Fig. 1). Since

they were taken from the first group of ossicles, their susceptibility

to HHP treatment had to be established. The killing effect of HHP

treatment was found to be a result of cell wall damage and the

destruction or alteration of cell membrane and intracellular

proteins. For this reason, HHP treatment was performed in

isotonic and hypotonic fluids.

When planktonic cells of both patient isolates were exposed to

increasing levels of pressure, a complete decrease in viability of up

Table 4. Microbial colonization of ossicles after HHP treatment (350 MPa, 10 minutes) with and without the addition of antibiotics
to the media.

Sample
number Species

Semi-quantification after pressure
treatment in the absence of
antibiotics

Semi-quantification after
pressure treatment in the
presence of antibiotics

1 No bacterial growth 2 2

2 No bacterial growth 2 2

3 Acinetobacter baumannii ++ 2

Leuconostoc mesenteroides ssp. cremoris 2 +/2

4 Staphylococcus hominis ++ 2

Micrococcus luteus +/2 2

Staphylococcus auricularis +/2 2

Staphylococcus capitis +/2 2

Staphylococcus epidermidis ++ 2

5 No bacterial growth 2 2

6 No bacterial growth 2 2

All bacterial strains listed above were detected by conventional culture techniques. A combination of vancomycin (11.1 mg/ml), clindamycin (0.75 mg/ml) and imipenem
(3.7 mg/ml) was added to samples 1 to 3. A combination of cefuroxime (11.1 mg/ml), gentamicin (44.4 mg/ml) and imipenem (3.7 mg/ml) was added to samples 4 to 6.
See Table 2 for an explanation of the symbols used.
doi:10.1371/journal.pone.0030150.t004

Figure 1. In vitro biofilms of clinical isolates before HHP
treatment. Biofilms of S. epidermidis (A) and N. subflava (B) after 4 days
of in vitro growth (SEM pictures, magnification 65000).
doi:10.1371/journal.pone.0030150.g001

High Hydrostatic Pressure Effects on Ossicle Flora

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e30150



Figure 2. Viability of planktonic Staphylococcus epidermidis cells after HHP treatment using increasing levels of pressure. Pressure
levels of 100 MPa, 250 MPa, 400 MPa and 540 MPa were used. For HHP treatment, planktonic S. epidermidis cells were suspended in 0.9% NaCl
(circles and small diamonds) or H2O (triangles and large squares). CFU: colony forming units as determined by viability counts. The figure shows the
results of two representative and independent assays.
doi:10.1371/journal.pone.0030150.g002

Figure 3. Viability of planktonic Neisseria subflava cells after HHP treatment using increasing levels of pressure. Pressure levels of
100 MPa, 250 MPa, 400 MPa and 540 MPa were used. For HHP treatment, planktonic N. subflava cells were suspended in 0.9% NaCl (circles and small
diamonds) or H2O (triangles and large squares). CFU: colony forming units as determined by viability counts. The figure shows the results of two
representative and independent assays.
doi:10.1371/journal.pone.0030150.g003
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to 6 decadic logarithmic units was demonstrated after 10-minute

exposure to 250 MPa for S. epidermidis and to 400 MPa for N.

subflava (Figs. 2 and 3). There was no difference between

hydrostatic pressure treatment in hypotonic (H2O) and isotonic

(0.9% NaCl) suspensions. Electron microscopic inspection of

individual cells revealed no changes in cell shape and structure

after exposure to 100 MPa for 10 minutes and substantial changes

in cell shape and structure after exposure to 540 MPa for

10 minutes (Fig. 4).

Even when considerably larger amounts of planktonic bacteria

($109 CFU/ml) were exposed to the highest pressure level,

survivors were observed for both the patient strains and

Staphylococcus epidermidis ATCC 12228 and Pseudomonas aeruginosa

ATCC 27853 controls in spite of cell damage that was visible by

electron microscopy (data not shown).

Under the aforementioned conditions for pressure treatment of

patient strains within biofilms, inactivation of both N. subflava and

S. epidermidis isolates required higher pressures. Ten minutes of

exposure to at least 400 MPa were necessary to completely kill 107

to 108 CFU/ml of S. epidermidis cells in hypotonic fluid (H2O).

Exposure to a level as high as 540 MPa for 10 minutes was

necessary to inactivate a similar number of S. epidermidis cells in

isotonic fluid (0.9% NaCl solution) (Fig. 5). N. subflava isolates

within biofilms showed an even higher resistance to pressure

treatment. Maximum pressure of 540 MPa reduced the viability

count by only 3 to 5 decadic logarithmic units irrespective of

biofilm immersion in hypotonic or isotonic fluid. When all

parameters were taken into account, 103 cells per ml survived

treatment (Fig. 6).

Electron microscopic inspection of pressure-treated biofilms

demonstrated severe damage or alteration of cells and intercellular

matrix. Even at the highest pressure settings at which no viable S.

epidermidis cells were detectable, however, small islands of normally

shaped cells of both bacterial species were seen and were

surrounded by severely damaged neighboring cells (Figs. 7 and 8).

Discussion

High hydrostatic pressure (HHP) treatment has been thoroughly

investigated for its ability to inactivate bacteria [23–24,28] and

viruses [29] in food samples. There is, however, a paucity of

research addressing potential benefits of this technology in

medicine. To our knowledge, the present study is the first to

assess the effects of HHP treatment on microorganisms colonizing

human ossicles that were obtained from cholesteatoma patients.

The study had several objectives: i) to characterize typical

microbes colonizing the ossicles of cholesteatoma patients; ii) to

assess whether HHP treatment can effectively remove colonizing

microbes at settings previously shown to eradicate cholesteatoma

cell growth on human ossicles without harming the ossicle itself

[19]; iii) to investigate whether a combination of HHP and

antibiotics increases the effects of treatment on colonizing

microbes, and iv) to determine the potential influence of biofilm

organization on microbial survival during exposure to HHP

treatment.

An analysis of the microbial flora colonizing the ossicles of

cholesteatoma patients revealed the presence of a broad spectrum

of predominantly opportunistic Gram-positive and Gram-negative

bacteria and occasional yeasts growing under aerobic and

anaerobic conditions on the vast majority of the ossicles. This

finding is different from a previous study, according to which the

pathogen most frequently associated with cholesteatoma was

Pseudomonas aeroginosa followed by Staphylococcus aureus and Proteus

mirabilis [30]. Neither the type of patients included in the two

studies nor the culture techniques can explain this difference.

When 15 ossicles from cholesteatoma patients were treated

under HHP conditions that effectively inactivated cholesteatoma

cells, the procedure alone disinfected less than half of the clinical

samples. This result is consistent with previous studies addressing

the heterogeneous susceptibility of bacteria to high hydrostatic

pressure [24,31]. It is interesting to note that we observed different

inactivating effects on diverse strains of a species, for example

Propionibacterium acnes, Staphylococcus aureus, Staphylococcus auricularis

and Staphylococcus hominis. A possible explanation is that the

pressure level was close to the threshold for inactivation of these

species so that different bacterial cell numbers on the ossicles

might be the reason for the different inactivation results. Another

possibility is that individual strains of a species can in fact display

marked differences in susceptibility during HHP exposure [32–

33]. It is also possible that different numbers of resistant

subpopulations exist within a strain [34]. Compared with Gram-

negative strains, Gram-positive strains have thicker cell walls that

may provide more effective protection and may explain their lower

susceptibility to HHP treatment. As reported in previous studies

on bone samples, P. aeruginosa was effectively inactivated [35]

Figure 4. Effects of high hydrostatic pressure treatment on
planktonic bacteria in isotonic medium. REM [A–D] and TEM [E, F]
pictures (magnification 610 000). S. epidermidis (A, B, E, F) and N.
subflava (C, D) cells were exposed to 100 MPa for 10 minutes (A, C, E)
and to 540 MPa for 10 minutes (B, D, F). Whereas cell morphology
appears to be unaffected after exposure to 100 MPa, both isolates show
morphological changes after exposure to 540 MPa.
doi:10.1371/journal.pone.0030150.g004
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Figure 5. Viability of Staphylococcus epidermidis cells within biofilms after HHP treatment using increasing levels of pressure. Pressure
levels of 100 MPa, 250 MPa, 400 MPa and 540 MPa were used. S. epidermidis biofilms were grown for 3 days. For HPP treatment, the cells were
suspended in 0.9% NaCl (circles and small diamonds) or H2O (triangles and large squares). CFU: colony forming units as determined by viability
counts. The figure shows the results of two representative and independent assays.
doi:10.1371/journal.pone.0030150.g005

Figure 6. Viability of Neisseria subflava cells within biofilms after HHP treatment using increasing levels of pressure. Pressure levels of
100 MPa, 250 MPa, 400 MPa and 540 MPa were used. N. subflava biofilms were grown for 3 days. For HPP treatment, the cells were suspended in
0.9% NaCl (circles and small diamonds) or H2O (triangles and large squares). CFU: colony forming units as determined by viability counts. The figure
shows the results of two representative and independent assays.
doi:10.1371/journal.pone.0030150.g006
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whereas the Acinetobacter strain with its intermediate layer of the cell

wall [36] showed similar survival rates as staphylococci.

The precise mechanisms leading to HHP resistance are

obviously complex and appear to vary between individual species.

HHP susceptibility was found to be associated with genetic

variability [37], the activation of several stress response pathways

[38], the expression or hydration of macromolecules [34,39], and

the production of dysfunctional proteins [40]. In addition,

assessments of the efficacy of HHP treatment can be affected by

technical factors associated with microorganisms such as initial cell

numbers and microbial growth phase, sublethal stress conditions

prior to exposure, medium composition and culture conditions

during recovery or by factors associated with the HHP protocol

such as the number of compression cycles [28,32,41–48]. Our

study found that osmotic pressure during HHP treatment had little

or no influence (Fig. 5). It, however, cannot identify the conditions

that were responsible for the variability of HHP susceptibility. This

is especially due to the fact that explanted ossicles from

cholesteatoma patients are rare materials so that it is impossible

for us to conduct larger and more standardized experimental

series.

In the few available studies on the use of HHP in medicine, this

treatment was found to be similarly effective or less effective in

disinfecting exposed material. When, for example, bone samples

from patients with chronic osteomyelitis were subjected to HHP

treatment at 600 MPa, complete disinfection was achieved in no

more than 2 of 37 cases [35]. In another study investigating HPP

treatment of bone samples, 71% of pressure-treated samples and

38% of untreated controls were culture-negative [49]. Complete

disinfection of bone samples contaminated in vitro was achieved in

about two thirds of the samples infected with S. aureus or P. aeruginosa

and in 0% of the samples infected with Enterococcus faecalis [35].

Our findings suggest that the addition of antibiotics to the

medium that is used for HHP treatment can improve the

disinfection efficacy of HHP treatment. Since only three samples

were used for each of the two combinations of antibiotics,

however, conclusions regarding the superiority of one combination

over the other cannot be drawn from this study.

One factor likely influencing the efficacy of HHP treatment is

the ability of bacteria to form biofilms [37]. In our study, 51% of

the strains isolated from the ossicles of cholesteatoma patients

formed biofilms in vitro. This percentage indicates the potential

relevance of this factor in the present study. This finding confirms

the results of another study in which biofilms formed by bacteria

that are occasionally present in the middle ear cavity were detected

in situ or ex vivo on the ossicles of chronically infected patients

[5,50,51] as well as on ossicular prostheses [52–53].

Two patient isolates identified as strong biofilm formers in vitro

were exposed to HHP treatment in both their planktonic and

biofilm states. A comparison of the two forms showed that the

killing of biofilm cells required at least twice as much pressure as

the inactivation of a similar quantity of planktonic cells. This

finding applied to both Gram-positive and Gram-negative isolates.

It is interesting to note that the Gram-negative bacterial species

was more resistant to HHP treatment than the Gram-positive one.

This suggests that cell wall thickness may play a minor role in

biofilms. The complete eradication of N. subflava on HHP-treated

ossicles (Table 2) at a much lower pressure level (350 MPa) than

that required in vitro may indicate, however, that it is possible that

this species does not form biofilms in vivo.

In conclusion, HHP treatment alone does not appear to be a

method that can reliably and completely disinfect ossicles during

middle ear surgery. It can, however, reduce the microbial load on

ossicles in the majority of cases. Additional procedures such as the

addition of antibiotics to the medium used during HHP treatment

Figure 7. Effects of high hydrostatic pressure treatment on an
in vitro S. epidermidis biofilm after 3 days of growth. SEM
pictures. A, B: intact cell and extracellular matrix morphology before
pressure treatment, magnification 6500 (A) and 65000 (B). C, D:
destruction zones with only few structurally intact cells after pressure
treatment at 540 MPa for 10 minutes, magnification 6500 (C) and
65000 (D).
doi:10.1371/journal.pone.0030150.g007

Figure 8. Effects of high hydrostatic pressure treatment on an
in vitro N. subflava biofilm after 3 days of growth. SEM pictures. A,
B: intact cell and extracellular matrix morphology before pressure
treatment, magnification 61000 (A) and 65000 (B). C, D: destruction
zones with only few structurally intact cells after pressure treatment at
540 MPa for 10 minutes, magnification 61000 (C) and 65000 (D).
doi:10.1371/journal.pone.0030150.g008
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have the potential to improve disinfection. Although even a

combination of different methods is perhaps not able to remove

the entire microbial load in all cases, it may be able to reduce the

bacterial load in such a way that HHP-treated ossicles can be re-

inserted successfully. Compared with the hygienic requirements of

bone and joint surgery [35], less demanding requirements apply to

the insertion of material into non-sterile body sites such as the

middle ear cavity. Unlike the hygienic requirements of bone and

joint surgery [35], the physiologically non-sterile environment of

the middle ear implies different minimum hygienic requirements

for implant material. Further studies should be conducted to assess

which combination of antibiotics is best suited to enhance the

effects of HHP treatment.
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