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Abstract

Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were
recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we
used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and
nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The
interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover,
the frequency of specific mitochondrial - nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant
reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions
correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions
represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA
plays a role in this process.
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Introduction

Mitochondria have a central role within the metabolic systems

of cells. In yeast (Saccharomyces cerevisiae), as in other organisms, the

mitochondrial organelle contains a genome that encodes an

essential subset of the electron transport chain components [1] that

are necessary for respiratory growth [2].

The mitochondrial genome has drastically reduced in size during

the course of evolution to the point that ,98% of the genes required

for mitochondrial function are encoded within the nuclear

chromosomes [3]. Consequently, mechanisms must exist to co-

ordinate and control the expression of the nuclear- and mitochon-

drial genome- encoded genes in order to maintain and control

mitochondrial function [4,5]. Intriguingly, despite the fact that the

majority of mitochondrial genes have transferred to the nuclear

genome, transfer of mitochondrial DNA (mtDNA) to the yeast

nucleus remains an on-going process with mtDNA being used to

repair double stranded breaks in yeast nuclear chromosomes under

certain conditions [6]. Unstable mitochondrial plasmids have also

been observed to transfer into the yeast nucleus [7,8] in a nuclear

gene (e.g. YME1, YME2) dependent manner [8–10]. The nuclear

functions of these transferred mtDNAs are unknown, however

elevated mitochondria to nucleus DNA migration rates correlate

with accelerated chronological aging in yeast [11].

Distal regulatory regions (e.g. enhancers) are known to loop

within chromosomes in order to interact with the promoter region

of the genes that they control [12]. Furthermore, enhancers can

also interact with promoters on different chromosomes to control

gene expression [13,14]. These types of inter- and intra-

chromosomal interactions can be captured using proximity-based

ligation methodologies (e.g. Chromosome Conformation Capture

(3C) [15]) that incorporate high resolution (i.e. ,2 Å [16]) cross-

linking of interacting DNA strands, restriction digestion, dilution,

and ligation to identify DNA sequences that interact within a cell.

Using a proximity-based ligation method that we developed to

observe the global set of genome wide interactions (Genome

Conformation Capture (GCC)), we previously observed that

nucleic acids of mitochondrial origin interact with nuclear loci

(hereinafter referred to as Mito-nDNA interactions) in S. cerevisiae

[17]. Surprisingly these inter-organelle, Mito-nDNA interactions

are frequent and statistically significant suggesting that they

perform a hitherto unrecognized role within yeast cells [17].

Furthermore, analysis of one of these interactions demonstrated

carbon source dependence [17]. Intriguingly, the quality and

quantity of mitochondrial DNA has been shown to affect patterns

of nuclear transcription [18,19] and replication [20] in yeast.

In this study we explore the hypothesis that inter-organelle

interactions respond to the metabolic status of the cell to regulate

nuclear transcript levels. Using GCC we identify dramatic

differences in both the frequency and identities of inter-organelle

interactions occurring in S. cerevisiae during growth on glucose,

galactose (i.e. respiro-fermentation [21,22]), and glycerol lactate
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(i.e. solely respiration). We also demonstrate that Interactions

between mitochondrial genes (i.e. COX1 and Q0182, a dubious

mitochondrial ORF) and nuclear encoded loci (i.e. MSY1 and,

RSM7, respectively), are dependent upon a functional electron

transport chain and mitochondrial encoded reverse transcriptase

machinery. Finally, the levels of the nuclear encoded MSY1 and

RSM7 gene transcripts are increased when the interaction

frequency is reduced by the knockout of mitochondrial reverse

transcriptase activity. On the basis of these results we propose that

reverse-transcription mediated inter-organelle DNA interactions

are a novel form of communication between mitochondria and the

nucleus.

Results

We previously captured Mito-nDNA interactions in S. cerevisiae

cells grown in glucose by GCC [17]. A detailed investigation of

one of these Mito-nDNA interactions (between the COX1 gene

(Mt: 24872–26193 bp) and the nuclear encoded MSY1 gene (Chr

XVI; 365496–365760 bp), herein after denoted COX1-MSY) [17]

demonstrated that it was carbon source dependent. Therefore, we

hypothesized that Mito-nDNA interactions would alter, on a

global scale, according to the cell’s metabolic state, and in

particular, the carbon source used for growth. Thus, we used GCC

to generate comprehensive maps of the Mito-nDNA interactions

in S. cerevisiae during exponential growth in media containing

glucose, galactose, or glycerol lactate. Two biological replicates

were prepared and analyzed for each condition. Interaction

networks were constructed from 36 bp paired end Illumina

Genome Analyzer sequence reads (total reads; glucose

56,167,792, galactose 48,419,385, glycerol lactate 49,134,906) of

GCC libraries prepared using MspI digested chromatin.

Statistical and experimental methods were used to determine if

the Mito-nDNA interaction patterns could have been generated

by experimental noise alone, which would be expected to produce

random pairings of fragments from the two genomes. In silico

simulations (100,000) were performed [17] to determine the

maximum count of a particular interaction that would be observed

under this random noise model, given the same number of

sequences, interactions and fragments as in the experimental data.

These results showed that the real dataset deviates from a random

distribution and, therefore, we conclude that the interaction

patterns cannot be attributed to noise alone under any of the

conditions, in each case with a p-value less than 1025.

Subsequently, we performed analyses to determine what frequency

individual interactions have to achieve before they are deemed to

be present at a level above experimental noise (Methods S1). As a

result, we identified 8678 statistically significant interactions

occurring between the nuclear and mitochondrial genomes during

glucose growth, 1780 during galactose growth, and 8153 during

growth in glycerol lactate (Table 1). The numbers of interactions

in each condition did not correlate with the measured mitochon-

drial copy number (Table S1). Biological replicates for each

condition were highly correlated for statistically significant

interactions (R2 = 0.78, 0.93, 0.93, respectively; Figure S1 and

Methods S1). Accordingly, sequences from biological replicates

were combined and reanalyzed.

To experimentally control for spurious inter-molecular ligation

events during the GCC process, samples were spiked with two

ligation controls during library preparation. The first ligation

control consisted of PCR products amplified from Escherichia coli or

Lambda bacteriophage (Table S2) that were added (1:1 ratio with

the nuclear genome copy number) before the GCC ligation step.

These controls were designed to estimate the frequency of random

inter-molecular ligation events during GCC library preparation. A

maximum of 47 separate ligation events were observed, none of

which occurred at levels above the statistically defined experi-

mental noise threshold. The second ligation control consisted of

the addition of pUC19 plasmid to the sample following the GCC

ligation in order to control for random ligation events during high-

throughput sequencing library preparation. We observed a

maximum of six interactions between pUC19 and the rest of the

genome; again none of these interactions were above the

statistically defined experimental noise threshold. These controls

show that random inter-molecular ligations occur at very low

frequencies that are below our noise threshold for significant

interactions. This is true even for the high copy number rDNA

and mitochondrial DNA elements and thus provides empirical

evidence that random ligation events during sample preparation

do not account for the interactions we observe.

Significant interactions were separated into two pools, those

which occur between the mtDNA and the nuclear ribosomal DNA

repeats (Mito-rDNA), and those between mtDNA and unique

nuclear loci (Mito-nDNA; Table 1). The rDNA repeats form part

of the nucleolus and encode the rRNA component of the cytosolic

ribosomes. The rDNA repeats constitute ,9.8% of the yeast

genome; yet, the Mito-rDNA interactions constitute 95.8%,

52.4%, and 84.5% of the total interactions between the nuclear

and mitochondrial genomes in glucose, glycerol lactate, and

galactose, grown cells, respectively. There does not appear to be

an interaction ‘‘hotspot’’, with Mito-rDNA interactions evenly

spread across the 9.1 kb rDNA repeat (data not shown). Hence,

Mito-rDNA interactions are over-represented within the data-set

and are carbon source dependent (Table 1). We also observed

considerable alterations to the numbers of Mito-nDNA interac-

tions. Moreover, the mitochondrial regions that are involved in

interactions with the nDNA are not uniformly distributed across

the mitochondrial genome (Figure S2).

In order to determine whether the observed changes in Mito-

nDNA interactions are chromosome specific, we asked whether

nuclear chromosome length correlates with the number of

interactions identified for each individual chromosome. The

number of Mito-nDNA interactions per nuclear chromosome is

highly correlated with chromosome length in the glycerol lactate

condition, but not in glucose or galactose (Figure 1). This

discrepancy is mainly due to the deviation of chromosome X

from the trend during growth in glucose and galactose.

Intriguingly, the increase in mtDNA interactions with chromo-

some X is accounted for by a single nuclear MspI fragment that

Table 1. Inter-organelle interactions are carbon source
dependent.

Glucose Glycerol Lactate Galactose

Mito-nDNA Interactions 363 3879 278

Mito-rDNA Interactions 8315 4274 1512

Total 8678 8153 1780

There was a .10 fold increase in the number of Mito-nDNA interactions during
growth in glycerol lactate (respiration) as compared to growth in glucose and
galactose (respiro-fermentation). Growth on galactose resulted in less Mito-
nDNA and Mito-rDNA interactions combined, compared to the other two
conditions. Statistically significant DNA-DNA interactions were divided
according to whether the mtDNA was interacting with nuclear rDNA, or with
unique nuclear loci. Corrections for the copy numbers of the rDNA repeats and
the mitochondrial genome were incorporated into the significance calculations
(Methods S1).
doi:10.1371/journal.pone.0030943.t001

Mito-Nuclear DNA Interactions Control Transcripts
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encompasses the promoter region and part of the coding

sequences of two divergent ORFs: one uncharacterized ORF

(YJR115W), and RSM7 which encodes a mitochondrial small

subunit ribosomal protein. Numerous mtDNA MspI fragments,

including fragments surrounding or overlapping the COX1, COX3,

VAR1 and SCE1 genes, interact with this one region on

chromosome X.

Yeast mitochondrial escape mutants (YME) [8] have been

previously implicated in an elevated rate of transfer of unstable

mitochondrial plasmids to the yeast nucleus [7–10]. Therefore, we

predicted that the YME pathway was the source of mtDNA

fragments interacting with the nuclear genome, and that mutations

within this pathway would result in an increase in the frequency of

inter-organelle DNA interactions. To test this prediction, we used

quantitative 3 C to compare the frequency of the strong COX1-

MSY1 interaction (identified in [17]) in S. cerevisiae YME knockout

mutants (i.e. Dyme1, Dyme2). Contrary to expectations, we observed

a significant decrease in the frequency of the COX1-MSY1

interaction in the Dyme1 strain as compared to the wild-type (T-

test [Paired P(T, = t) one-tail, n = 4] p = 0.010; Figure 2).

Deletion of YME2 or a functionally unconnected nuclear gene

(ADE2) did not significantly affect the COX1-MSY1 interaction

frequency (t-test [paired P(T, = t) one-tail, n = 4] p = 0.377 and

0.103 respectively; Figure 2). These results suggest that the source

of the mtDNA that participates in the Mito-nDNA interactions

is not the unstable mitochondrial plasmids that were previ-

ously identified as escaping the mitochondria for the nuclear

compartment.

Deletion of YME1 results in an elevated rate of mitochondrial

turn-over as well as an abnormal globular mitochondrial

morphology [9,23]. Therefore, it is possible that this fragmented

mitochondrial phenotype contributes to the reduction in the

COX1-MSY1 interaction frequency we observed in the yme1

deletion strain. To test this we arrested yeast cells with a-factor,

which results in a fragmented mitochondrial network [24] that is

phenotypically similar to the one observed in yme1 deletion strains

[23]. We also deleted the mitochondrial fission gene (MDV1) to

create strains that are unable to correctly fragment mitochondria

[25,26]. Interestingly, we observed a similar reduction in the

COX1-MSY1 interaction frequency upon a-factor induced syn-

chronization (Figure S3). However, the interaction frequency

measured in the Dmdv1 strain was intermediate between that

observed for the wild-type and Dyme1 strains, and not significantly

different from either (T-test [Paired P(T, = t) one-tail, n = 4] wt-

Dmdv1 p = 0.143, Dmdv1-Dyme1 p = 0.210; Figure 2). Therefore, it

is unlikely that mitochondrial fragmentation is directly responsible

for the observed changes in COX1-MSY1 interaction frequency.

We next postulated that an abnormal mitochondrial morphol-

ogy, coupled with elevated mitochondrial turnover would result in

a disturbance of the mitochondrial ATP synthesis pathway, and

this may explain the observed reduction in the frequency of the

COX1-MSY1 interaction. Therefore, we tested the inter-organelle

COX1-MSY1 interaction for ATP dependence by treating yeast

cells with an electron transport chain uncoupling agent, 2,4-

Dinitrophenol (DNP), at a concentration (5 mM) that inhibits

respiration but allows fermentation (Figure S4). We observed a

significant time-dependent decrease in the frequency of the COX1-

MSY1 interaction in the presence of DNP (t-test p,0.05;

Figure 3A), as measured by quantitative 3 C. However, an

interaction between two nuclear loci (nDNA-nDNA; Chr VII:

868673–873686 bp - Chr IX: 172565–173311 bp) was also shown

to be affected by treatment with DNP (Figure 3B). The observed

dependence of the nDNA-nDNA interaction on a proton gradient

across the mitochondrial membrane, and thus mitochondrial ATP

synthesis, suggests that formation of these DNA-DNA interactions

is ATP dependent.

The region of the COX1 gene involved in the COX1-MSY1

interaction overlaps the non-essential group II mitochondrial aI5c
intron. There are four Group II introns present within yeast

mitochondria (aI1, aI2, bI1, and aI5c) and these introns encode

functional splicing, reverse transcriptase, or endonuclease ma-

chinery [27–31]. Only the aI1 and aI2 introns encode reverse

transcriptase [32] activity while the aI5c intron encodes

endounuclease activity [33,34] but not reverse transcriptase

activity [35]. Therefore, we postulated that reverse transcription

of the mitochondrial group II introns might be involved in the

COX1-MSY1 interaction. To test this we measured the COX1-

MSY1 interaction using quantitative 3 C on a strain which only

Figure 1. The number of Mito-nDNA interactions correlates with chromosome length, except chromosome X. Statistically significant
Mito-nDNA interactions, occurring above the expected noise level (selected to have a false positive rate of between 1 and 3%), have been summed
for each nuclear chromosome and expressed as a percentage of the total number of interactions for the particular sample before being plotted
according to chromosome length in base pairs. Interactions included in this analysis are between the mitochondrial genome and nuclear
chromosomes, with the 2-micron plasmid and rDNA interactions removed. The length of chromosome XII has been reduced to account for the rDNA
interactions being removed.
doi:10.1371/journal.pone.0030943.g001

Mito-Nuclear DNA Interactions Control Transcripts

PLoS ONE | www.plosone.org 3 January 2012 | Volume 7 | Issue 1 | e30943



contained the COX1 aI5c intron (i.e. 161-U7 GII-0 aI5c;

Figure 4A). We observed a 40–60% decrease in the inter-organelle

COX1-MSY1 interaction in the GII-0 aI5c strain relative to the

wild type (Figure 4B). We concluded that the partial dependence

of the COX1-MSY1 interaction upon the presence of the group II

introns reflects a role for reverse transcription in the inter-

organelle interactions. However, part of the COX1-MSY1

interaction remains independent of mitochondrial encoded reverse

transcriptase.

It remained to be seen if interactions involving other

mitochondrial loci required the presence of the type II introns

and hence reverse transcriptase. We examined the interaction

frequency between a dubious mitochondrial ORF (Q0182;

mtDNA [65783–65903 bp]), that does not contain any group II

introns and therefore is not altered in the 161-U7 GII-0 strain, and

the nuclear encoded RSM7 (Chr X [638756–640423 bp]) gene.

The Q0182-RMS7 interaction frequency decreased in the absence

of the mitochondrial group II introns (Figure 4C). These results

Figure 2. Deletion of yme1 causes a significant reduction in the frequency of the mitochondrial-nuclear COX1-MSY1 interaction.
Interaction frequency between the mitochondrial COX1 and nuclear MspI fragments was assayed by quantitative 3 C (Methods S1) in wild-type (S.
cerevisiae BY4741), Dyme1 (BY4741 Dyme1), Dyme2 (BY4741 Dyme2), Dade2 (BY4741 Dade2) and Dmdv1 (BY4741, Dmdv1) strains. Interaction values
were corrected for mitochondrial genome copy number (see Methods) and are expressed as percentages of wild-type (set at 100%) +/2 standard
error of the mean (n = 4). Deletion of an unconnected gene (ade2) did not significantly affect interaction frequency. T-tests (paired P(T, = t) one-tail,
n = 4) were performed to determine the significance of observed variations: wild-type: Dyme1 p = 0.01; wild-type: Dyme2 p = 0.377; wild-type: Dade2
p = 0.103; wild-type: Dmdv1 p = 0.143; Dyme1: Dmdv1 p = 0.210. Only Dyme1 demonstrated a significant difference.
doi:10.1371/journal.pone.0030943.g002

Figure 3. A functional electron transport chain is required to maintain the interaction between the mitochondrial COX1 and nuclear
MSY1 loci. Uncoupling of the electron transport chain was achieved by 2,4-dinitrophenol (5 mM) treatment of exponentially growing S. cerevisiae in
synthetic complete media, containing glucose or galactose, for the indicated time (Figure S4). COX1-MSY1 A) and nDNA-nDNA B) interaction
frequencies were determined by quantitative 3 C analyses using fluorescent probes (see Methods S1). Interaction values in A) were corrected for
mitochondrial genome copy number while those in B) were corrected for nuclear genome copy number (see Methods). Interaction values were
expressed as percentages of the untreated sample (set at 100%) +/2 standard error of the mean (n = 3).
doi:10.1371/journal.pone.0030943.g003

Mito-Nuclear DNA Interactions Control Transcripts
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confirm that this phenomenon is not restricted to interactions

involving COX1.

Our results suggested that the nucleic acids of mitochondrial

origin which participate in the Mito-nDNA interaction are reverse

transcribed from RNA intermediates prior to transfer to the

nucleus as cDNAs. However, it remained possible that the Mito-

nDNA interactions we observed did not involve inter-organelle

transfer. Rather, these interactions might have been completely or

partially due to interactions between nuclear loci and mitochon-

drial sequences that had been integrated into the nuclear genome

(i.e. nuclear-mitochondrial sequences (NUMTs)). To rule out the

possibility that NUMTs were involved, we performed quantitative

3 C analyses in strains without (i.e. 161-U7 GII-0) the COX1 aI5c
intron (Figure 4A and B). Removal of aI5c, and hence the probe

site (Figure 4A), resulted in complete loss of detectable COX1-

MSY1 interactions (Figure 4B). This confirmed that the COX1-

MSY1 interaction involves DNA that is directly derived from the

mitochondrial genome and not a NUMT.

The number of significant (Methods S1) Mito-nDNA interac-

tions increased .10-fold in respiring (i.e. glycerol lactate grown)

cells, relative to glucose or galactose grown cells (Table 1). This

increase was not due to a higher number of sequence reads for the

respiring sample. Thus, a greater number of unique nuclear loci

connect to mtDNA during respiratory growth when the mito-

chondria are most active. This result, coupled with the need for a

functional electron transport chain and reverse transcriptase

machinery, led us to hypothesize that the Mito-nDNA interactions

are functional in nature, and specifically that they are capable of

controlling the transcript levels of the nuclear loci with which they

interact. To test this we performed quantitative reverse transcrip-

tase PCR (qRT-PCR) to determine the transcript levels of the

nuclear encoded MSY1 and RSM7 genes in WT cells, the

mitochondrial group-II intron knockout mutant (161-U7 GII-0),

and strain 161-U7 GII-0 aI5c (Figure 4A). We found that the

population transcript level of the MSY1 gene is significantly higher

(t-test, two-sample unequal variance, one-tail, n = 2, p = 0.0007) in

strain 161-U7 GII-0 (Figure 5A), which does not contain the probe

site and, therefore, has no detectable COX1-MSY1 interaction

(Figure 4A and B), thus identifying the maximum transcript level

in the absence of detectable inter-organelle interactions. Critically,

we observed a similar population level increase in MSY1 transcript

levels following the removal of the type II introns, except aI5c (i.e.

strain 161-U7 GII-0 aI5c; Figure 5A). A similar increase was

observed for RSM7 transcripts in both the 161-U7 GII-0 and 161-

U7 GII-0 aI5c strains relative to the WT (Figure 5B), consistent

with the effects of intron deletion on the Q0182-RMS7 interaction

level (Figure 4C). By contrast deletion of MRS1, which is involved

in mitochondrial group I intron splicing [36,37], had no effect on

either MSY1 or RSM7 transcript levels (Figure 5C), or the COX1-

MSY1 interaction frequency (Figure S5). Thus, strains lacking

Figure 4. Mito-nDNA interactions require active mitochondrial reverse transcriptase machinery. A) Illustration of COX1 gene
arrangement in the WT (161-U7), intron a15c (161-U7 GII-0 a15c), and no mitochondrial group II introns (161-U7 GII-0) strains. Group II introns within
the COX1 gene encode functional reverse transcriptase. The region of COX1 that participates in the COX1-MSY1 interaction is indicated (qPCR probe).
Strain 161-U7 GII-0 was included as a control to rule out a nuclear sequence, originating from a mitochondrial integration within the nuclear genome
(NUMT), being responsible for the observed interaction. B) COX1-MSY1 interaction frequencies for wt and intron mutants, illustrated in A), grown in
glucose or galactose. C) Q0182-RSM7 interaction frequencies for mitochondrial reverse transcriptase mutant 161-U7 GII-0 a15c, illustrated in A), grown
in glucose or galactose. Interaction frequencies are expressed as percentages of the wild-type S. cerevisiae strain 161-U7 for each carbon source (set at
100%) +/2 standard error of the mean (n = 3). Interaction values in B) and C) were corrected for nuclear genome copy number to facilitate direct
comparison.
doi:10.1371/journal.pone.0030943.g004

Mito-Nuclear DNA Interactions Control Transcripts
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mitochondrial reverse transcriptase activity have lower frequencies

of Mito-nDNA interactions and increased levels of nuclear

encoded transcripts. These results suggest that cDNA mediated

Mito-nDNA interactions are involved in the regulation of the

nuclear transcripts, and therefore that the Mito-nDNA interac-

tions we observed are biologically relevant.

The finding that inter-organelle interactions affect nuclear

transcript levels necessarily predicts that the deletion of yme1,

which reduces the frequency of the COX1-MSY1 interaction

(Figure 2), should correlate with an increase in nuclear MSY1

transcript levels. Indeed increases in MSY1 transcript levels, and

other genes involved in mitochondrial gene expression and the

biogenesis of the respiratory chain, have been identified within

yeast cells containing the yme1 deletion growing with a mixed

respiro-fermentative metabolism [38].

Discussion

In this study we have shown that a large number of nuclear loci

interact strongly and reproducibly with Mitochondrial DNA in S.

cerevisiae and that the spectrum of these interactions is dependent

upon the carbon source on which the yeast are grown.

Interestingly, we find that Mito-nDNA interactions are signifi-

cantly reduced when group II mitochondrial introns that contain

reverse transcriptase machinery are deleted. This suggests that the

mitochondrial DNA that is involved in these inter-organelle

interactions is cDNA that has been reverse transcribed from

mitochondrial RNAs. Critically, we demonstrate that suppression

of inter-organelle DNA-DNA interactions correlates with elevated

transcript levels for the interacting nuclear gene and a reproduc-

ible albeit small increase in growth rate (Figure S6), suggesting that

these interactions are biologically relevant and play a role in

regulating nuclear gene expression. This is further supported by

previous observations that yeast nuclear transcription responds to

the presence or absence of mitochondrial genome sequences

[18,19]. From these results we propose that the Mito-nDNA

interactions act as part of an inter-organelle communication

system to signal mitochondrial metabolic state and regulate gene

expression. While this DNA based inter-organelle communication

may seem surprising, there is a large body of evidence

demonstrating the presence of mitochondrial DNA in the nucleus

and supporting the on-going nature of this transfer [7–9,39–45].

Thus, it is plausible that the process of mitochondrial DNA

transfer has evolved into a functional signaling mechanism. In the

case of the glucose and galactose dependent COX1-MSY1 and

Q0182-RSM7 interactions we have shown a repressive role for

Mito-nDNA interactions in the control of nuclear transcript levels.

However, there is no reason to assume that all interactions are

repressive.

The observation that mito-nDNA interactions correlated with

chromosome length would be consistent with non-specific

interactions. However, this relationship is also consistent with

the hypothesis that the interactions are enriched with elements

which are themselves evenly distributed across the genome. Yeast

genes, ARS’s, and nuclear encoded mitochondrial genes fulfill this

criterion (Figure S7). Importantly, we observed that the nuclear

fragments involved in the interactions are enriched for regions that

overlap genes with mitochondrial functions in glucose (p = 0.08)

and glycerol-lactate grown cells (p,1028, Table S3), in agreement

with earlier observations [17]. The condition specific significance

of these enrichments can be interpreted as reflecting the regulatory

roles of these interactions as part of a functional signaling

mechanism.

Our global network analyses were obtained using proximity-

based ligation methodologies (i.e. GCC and q3C) with a single

restriction enzyme (i.e. MspI). Duan et al. used different restriction

enzymes (i.e. EcoRI and HindIII) to interrogate yeast genome

structure [46]. A comparison of the interaction frequencies

Figure 5. Knocking out mitochondrial encoded reverse transcriptase activity results in increased transcript levels of nuclear genes
that are involved in Mito-nDNA interactions. A) Nuclear encoded MSY1 transcript levels were determined by qRT-PCR in WT (strain 161-U7),
161-U7 GII-0 (lacks both the mitochondrial group II introns and the COX1 interacting region; Figure 4A), and 161-U7 GII-0 a15c (contains the
interacting region and lacks the group II introns; Figure 4A) cells. B) Nuclear encoded RSM7 transcript levels were determined by qRT-PCR in: WT
(strain 161-U7); 161-U7 GII-0; and 161-U7 GII-0 a15c cells. Neither 161-U7 GII-0 nor 161-U7 GII-0 a15c has any alteration within the Q0182 open
reading frame. C) Deletion of MRS1 (BY4741 Dmrs1), a nuclear gene involved in splicing mitochondrial type-I introns, has no effect on i) MSY1 or ii)
RSM7 transcript levels. All transcript levels were standardized to nuclear ACT1 and expressed as percentage of wild-type (set at 100%) +/2 standard
error of the mean (n = 2).
doi:10.1371/journal.pone.0030943.g005

Mito-Nuclear DNA Interactions Control Transcripts
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between Duan et al.’s EcoRI results and ours showed that the data

sets share a large portion of total interactions (Table S4) despite

the fact that the interaction frequencies do not correlate

quantitiatively (Figure S8). Duan et al.’s investigation of yeast

genome organization did not report any Mito-nDNA interactions

[46]. However, the absence of these interactions was due to the

author’s omission of the mitochondrial genome from their analyses

because there is more than one copy of the mitochondrial genome

per cell. This form of repetition is surmountable because

interactions can be mapped onto a single scaffold, unlike elements

which are repeated at different locations within the genome

sequence. Re-examination of the datasets published by Duan et al.

[46] identified a number of conserved Mito-nDNA between our

datasets (Table S4). Interactions between COX1-MSY1 and Q0182-

RSM7 (Data S1 and S2, respectively) were observed in both

datasets, at levels above or just below the cut-off. The observation

that Mito-nDNA interactions are present in these datasets is

important for several reasons: 1) the methodologies while both

based on proximity-ligation were considerably different, particu-

larly with respect to enrichment and cell conditions; and 2) EcoRI

cuts the yeast genome less frequently and at different positions to

MspI. While this goes some way towards relieving the likelihood

that the interaction network is dependent on the restriction profile

it does not completely alleviate this possibility, particularly because

only one Mito-nDNA interaction was observed in the HindIII

datasets (Data S3). The failure to identify more of these

interactions in the HindIII datasets supports our conclusion that

only parts of the mitochondrial genome are transferred into the

nucleus and interact with the nuclear DNA. Because HindIII only

cuts the yeast mitochondrial genome two times it is not unexpected

that it does not cut within the transferred parts. Furthermore, the

HindIII results support the finding that the interactions are not due

to random ligation because random interactions would occur

irrespective of fragment length.

It has been shown that DNA sequences which share stretches of

sequence homology can associate in vitro [47,48]. Theoretically it is

possible that such a mechanism could allow the sequence

dependent association of fragments prior to ligation in our

experiments. However, only three pairs of interaction fragments

that we detected showed any homology upon blast analysis (Data

S6) and these were not the interactions that we investigated.

Therefore, this mechanism is unlikely to contribute significantly to

our results.

Deletion of the group II introns suggests a role for mitochon-

drial encoded RNA intermediates in the inter-organelle interac-

tions. This implies that the regions of the mitochondria that are

involved in these interactions should predominantly be open

reading frames (ORFs). However, there was no bias for

mitochondrial ORFs being involved in the Mito-nDNA or Mito-

rDNA interactions we observed. Superficially, this argues against

the transfer occurring through reverse-transcribed cDNAs.

However, yeast mitochondrial genes are transcribed as polycis-

tronic transcripts from 14 ATATAAGTA consensus promoters

and possibly another 5 non-consensus promoter sites around the

mitochondrial genome [49]. Hence, a large percentage of the

mitochondrial genome is physically transcribed [50–52] and

therefore available to act as a template for reverse transcription.

The incomplete ablation of the interactions following the

deletion of the mitochondrial group II introns raises the possibility

that not all Mito-nDNA interactions involve reverse-transcribed

mitochondrial sequences. If mitochondrial mini-circles contribute

to inter-organelle interactions [8], we should have seen an increase

in interaction frequency in the Dyme1 mutant. The fact that we did

not indicates that this form of mitochondrial DNA transfer has a

negligible role in the signaling pathway we are proposing.

Ongoing transfer despite the loss of the mitochondrial reverse

transcriptase can be explained by: 1) cytoplasmic or nuclear

reverse transcription of mRNA released from damaged mitochon-

dria, or 2) the presence of other retrotransposon or retroviral

encoded reverse-transcriptase of either mitochondrial or nuclear

origin within the mitochondrial matrix. Such a mechanism is

supported by the identification of remnants of nuclear derived

copia-, gypsy- and LINE-like retrotransposon elements within

Arabidopsis mitochondria [53,54].

It is unclear whether the mtDNA that participates in the Mito-

nDNA interactions is transferred by a direct connection between

the mitochondrial and nuclear organelles or by uptake from the

cytoplasm. Uptake from the cytoplasm is feasible given that

unstable mitochondrial plasmids are first released into the

cytoplasm [7,9], and high success rates are generally attained for

yeast transformation which involves passage through the cyto-

plasm [55,56]. However, Ricchetti et al. demonstrated that the

mtDNA mediated repair of nuclear double strand breaks is

independent of Dyme1 mutations [6] and therefore occurs through

another, possibly direct, transport mechanism. Direct transport

from the mitochondria to nuclear compartments could occur as a

result of a tethering/transport complex that physically links

mitochondria to the endoplasmic reticulum [57].

In conclusion, several important questions are raised by this

work. Firstly, what is the mechanism by which the Mito-nDNA

interactions affect changes in transcript levels? Is the effect

mediated by physical interaction between the mitochondrial

derived cDNA and the nuclear locus or by more indirect means?

It is possible that transcription factors may be sequestered or

recruited to locations of activity through interactions with the

mitochondrial DNA. Secondly, does this inter-organelle signaling

pathway operate on a general level or function just to regulate

conditionally essential genes (e.g. RMS7 and MSY1)? Thirdly,

while we demonstrated that specific interactions are dependent

upon reverse transcription, whether this is true for all the Mito-

nDNA and Mito-rDNA interactions remains to be determined.

Finally, the universal significance of these interactions remains to

be determined, particularly given the non-ubiquitous distribution

of group II introns within higher eukaryotic mitochondria. The

pervasive presence of reverse transcription within higher eukary-

otic cells leads us to propose that this phenomenon will be

widespread and that it deserves further investigation.

Materials and Methods

Strains and growth conditions
Saccharomyces cerevisiae strains (Table S5) were stored (280uC) and

cultured (30uC, 160 rpm) on synthetic complete (SC) medium

containing amino acid supplements and glucose (2% w/v) [58],

glycerol lactate (2% glycerol v/v 2% lactic acid v/v with 0.05%

glucose w/v), or galactose (2% w/v). For Genome Conformation

Capture (GCC) and Chromosome Conformation Capture (3 C)

analyses, strains were recovered from 280uC on SC glucose (2%

w/v) agar (2%) plates for 48 hours prior to starter culture

inoculation. Starter cultures were grown (30uC, 160 rpm, 16 h) in

SC glycerol lactate or glucose medium containing amino acid

supplements, as indicated. Test cultures were inoculated, from the

starter cultures into SC media (containing the indicated carbon

source), grown (30uC, 160 rpm) and harvested at an optical

density (OD600) of 0.6. Mitochondrial uncoupling was achieved by

the addition of 2,4-Dinitrophenol (5 mM final concentration) for

45, 90, or 180 minutes (Figure S4). Cell cycle arrest was achieved

by treatment (180 mins, 30uC, 160 rpm) with cell cycle inhibitors
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(i.e. a-factor (3.4 mm), nocodazole (15 mgml21), or hydroxyurea

(100 mM)). Cell cycle arrest was confirmed by microscopy.

Genome Conformation Capture (GCC)
GCC was performed according to [17]. Refer to the

supplementary methods for a detailed description. Briefly,

chromatin was prepared from 15 sets of 108 (i.e. a total of

1.366109) cross-linked cells. Chromatin was digested with MspI

(Fermentas) and ligated (T4 ligase; Invitrogen). Crosslinks were

reversed in the presence of proteinase K (final concentration 7–

11 mg, Roche). Samples were treated with RNase A (final

concentration 10 mgml21) prior to purification by phenol:chloro-

form (1:1 v/v, three times) and column extraction (Zymo Clean

and Concentrator, Zymo Research). Paired-end sequencing

(36 bp) was performed on 5 mg DNA using the Illumina Genome

Analyzer platform (Allan Wilson Centre, Massey University, New

Zealand & Friedrich Miescher Institute for Biomedical Research,

Basel, Switzerland).

External controls were added at two steps in the GCC protocol

to control for random ligation events. The first ligation control, a

linear DNA fragment with a free MspI site at one end (Methods

S1), was added in a 1:1 ratio with the nuclear genome prior to the

addition of ligase. The second ligation control (16106 molecules of

pUC19) was included prior to RNase A treatment as a control for

the sequencing step ligation.

GCC Network Assembly
Network assembly was performed using Topography v1.19

(available on request [17]). The SOAP [59] algorithm was used to

position paired end sequences and single ends, which contain an

MspI restriction site, onto the S. cerevisiae reference genome

(Methods S1). No mismatches were allowed.

Bioinformatic analyses
Bioinformatic and statistical analyses (see Methods S1) were

performed on chromosomal interactions involving the nuclear and

mitochondrial genomes for which the sequences mapped uniquely

onto the reference genome. Connections with the ribosomal DNA

(rDNA), 2 micron plasmid and mitochondrial genomes were

considered as unique because they could be positioned to a

,1 MB region of Chromosome XII, the 6318 bp 2 micron

plasmid or the ,85 kbp mitochondrial genome, respectively [17].

All statistical analyses involving 2 micron plasmid, mitochondrial,

or rDNA sequences included copy number corrections (Methods

S1). Other repetitive elements, such as LTRs and tRNAs, were

omitted from the analysis.

Chromosome Conformation Capture (3 C)
3 C samples were prepared as previously described [60]. Refer

to Methods S1 for a detailed description. Quantitative 3 C

analyses [17] were performed using FAM labeled BHQ Probes

(BioSearch Technologies; Table S2) and TaqmanH Gene

Expression Master Mix (Applied Biosystems) on an ABI Prism

7000 Sequence Detection System (SDS7000). Chromosomal

coordinates for the interactions under investigation are listed in

Methods S1. Samples (2 ml in triplicate) were analyzed in a final

reaction volume of 20 ml using primers listed in Table S2. Assays

were performed using a 3-stage program (50uC, 2:00 min; 95uC,

10:00 min; 456[95uC, 0:15 sec; 60uC, 1:00 min]).

Dedicated interaction standards (concentration from: 2 ng ml21–

2610215 g ml21) were prepared by PCR amplification (from S.

cerevisiae BY4741) of the interacting regions, followed by MspI

digestion and ligation of the two interacting partner fragments.

Mitochondrial and nuclear genome (i.e. GAL1) copy number were

determined by qPCR (Table S2) using Sybr-green and a five stage

program (50uC, 2:00 min; 95uC, 2:00 min; 406 [95uC, 0:15 sec;

59.5uC, 0:30 sec; 72uC, 0:30 sec]; 55uC, 1:00; followed by a

dissociation analysis) on an ABI Prism 7000 Sequence Detection

System (SDS7000). An S. cerevisiae BY4741 genomic DNA sample

(concentration from: 2 ng ml21–7.7812561024 ng ml21) was used

as a control for all Sybr-green assays.

For comparison, all samples were presented as a percentage of

wild-type, following standardization for: 1) the amount of a15c
intron-containing DNA (i.e. mitochondrial copy number); or 2) the

number of nuclear genomes (determined using the single copy

GAL1 locus; [61]; Primer sequences are listed in Table S2. This

standardization was performed to correct for alterations to

mitochondrial genome stability and the rates of appearance of

rho2 or rho0 strains. This is critical as inter-organelle interactions

are dependent upon the presence of the mitochondrial genome

(see 161-U7 GII-0 results). The method of standardization

depends upon the interaction being investigated (i.e. COX1-MSY1

interactions were standardized by mitochondrial genome copy

number while nuclear-nuclear locus interactions were standard-

ized by GAL1 copy number). No significant differences were

observed when inter-organelle interactions were standardized by

mitochondrial or nuclear copy number (data not shown).

RNA extraction
Total RNA was extracted from S. cerevisiae grown in SC

(Glucose) to an OD600 of 0.600. Briefly, cells were harvested

(4,000 rpm, 4uC, 2 min) and washed with AE buffer (4,000 rpm,

4uC, 2 min; 50 mM Sodium Acetate, 10 mM EDTA, pH 5.3).

The cell pellet was suspended in phenol/chloroform/isoamyl

alcohol (400 ml, 24/24/1) and glass beads (400 ml). Cells were

lysed in a bead mill (SPEX sample prep 2010, Geno/Grinder;

1,750 rpm, 8630 sec cycles with 60 sec resting intervals at 4uC).

Lysed cells were frozen (280uC, 15 min), thawed and pelleted

(15,000 rpm, 5 min, 4uC). The aqueous phase was extracted

twice with phenol/chloroform/isoamyl alcohol (400 ml, 24/24/

1). Total RNA was pelleted (15,000 rpm, 10 min, 4uC), following

addition of 2/3 s volume of 8 M LiCl and freezing (220uC, 2 h).

RNA was washed (70% ethanol), and the pellet air-dried. Total

RNA was suspended (60uC, 10 min) in 80 ml of DECP treated

water (Invitrogen). DNA was removed from the total RNA

samples (5 mg, 20 ml) by treatment with 1 ml of TURBO DNase

(TURBO DNA-freeTM Kit, Ambion) as per manufacturer’s

instructions. Samples were centrifuged (10,000 g, 1.5 min) and

the supernatant was retained. Total RNA concentration was

measured using a Nano-drop and 50 ml samples (50 ng/ml) were

stored at 280uC.

Quantitative Reverse Transcription-PCR
qRT-PCR standards were amplified from S. cerevisiae BY4741

genomic DNA (Table S2). PCR products were purified (Zymo

DNA clean and concentratorTM-5 kit according to manufacturer’s

instructions). The concentration of each qRT-PCR standard was

determined by Nano-drop and used to make dilutions ranging

from 4.0–4.061025 ng/ml. qRT-PCR reactions were performed

using One Step SYBRH Ex TaqTM qRT-PCR Kit according to

the manufacturer’s instructions (TaKaRa). The qRT-PCR was

run with the following protocol: 42uC, 5 min; 95uC, 10 sec; 406
[95uC, 5 sec; 60uC, 31 sec] 95uC, 15 sec; 60uC, 1 min; 95uC,

15 sec. All transcript levels were standardized to nuclear ACT1

and expressed as percentage of wild-type (set at 100%) +/2

standard error of the mean.
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Supplementary files
The following additional data are available with the online

version of this paper. Supplementary material file contains: Figures

S1, S2, S3, S4, S5, S6, S7, S8, Tables S1, S2, S3, S4, S5, Methods

S1 and Supplementary references. Additional data files: contain

the analysis of the Duan data (Data S1, S2, S3, S4, S5); and the

mitochondrial blast analyses (Data S6); a list of all uniquely

mapping mito-nDNA and mito-mito interactions and their

interaction strength (Data S7); a list of all mapped mito-nDNA

and mito-mito interactions and their interaction strength (Data

S8); and a list of nuclear genes with a mitochondrion annotation in

gene ontology (Data S9). Sequences are available from GEO

(accession number GSE34132).

Supporting Information

Figure S1 Biological Repeats correlate well at the MspI
restriction fragment level. Two biological repeats were

performed for each condition; A) glucose, B) glycerol lactate,

and C) galactose. R2 values are as follows; Glucose 0.78, glycerol

lactate 0.93, and galactose 0.93. Scatter plots were constructed

from statistically significant (p = ,0.0004) interactions involving

only MspI fragments which could be uniquely positioned on the

reference genome. Adjacent interactions have been omitted as we

are unable to distinguish between true adjacent interactions and

those which are the result of simply sequencing across an uncut

MspI site. Circularized fragments (i.e. self interactions) have also

been omitted.

(DOC)

Figure S2 Inter-organelle interactions vary with meta-
bolic state and do not occur evenly across the mitochon-
drial genome. Interaction frequency was graphed as a

percentage of the total number of interactions in the sample,

according to segment length. To test whether Mito-nDNA

interactions have a uniform distribution (i.e, the total number of

interactions in a segment is proportional to its length) we

aggregated consecutive restriction fragments to create 58 sections

that were expected to have at least 5 interactions under the null

hypothesis of uniformity. A Chi-squared goodness of fit test was

performed, and the distribution of the interactions was shown to

deviate significantly from uniformity (p,0.0001, 57 df) for all

conditions, Thus, Mito-nDNA interactions are not uniformly

distributed across the mitochondrial genome. The linearized

mitochondrial genome is shown for comparison of the interaction

frequency with mitochondrial ORF and inter-genic sequence

positions. Metabolic conditions were as follows: A) respiro-

fermentation (glucose), B) respiro-fermentation (galactose), and C)

respiration (glycerol lactate). Only statistically significant unique

interactions between the mitochondrial genome and nuclear

chromosomes were included in this analysis (p#1025; n = 2).

Interactions with the rDNA and 2-micron plasmid were removed.

D) Nuclear genome interactions are not enriched over mitochon-

drial open reading frames. We compared the numbers of nuclear

genome interactions with mitochondrial inter- and intra-genic

regions to determine if the interactions across the mitochondrial

genome were enriched over the open reading frames (ORFs).

Galactose displays a larger number of interactions with mitochon-

drial ORFs but the difference is not statistically significant.

Interactions were assigned proportionally to inter- and intra-genic

regions to obtain a ratio of inter-genic to intra-genic interactions

and expressed as percentages. tRNAs were not deemed intra-genic.

Interestingly, the galactose sample exhibited 7% and 13% more

inter-organelle interactions involving the COX1 ORF than glycerol

lactate and glucose, respectively. Thus, while there is no obvious

preference for interactions with mitochondrial ORFs, interactions

involving COX1 show differences between the datasets.

(DOC)

Figure S3 The COX1-MSY1 Mito-nDNA interaction is
cell cycle dependent. Cells were synchronized at three different

cell cycle phases by treatment with a-factor (3.4 mm), Hydroxy-

urea (100 mM), or Nocodazole (15 mgml21); G1, S, G2/M,

respectively). Mito-nDNA interaction frequency, between the

representative mitochondrial and nuclear MspI fragments, was

assayed by quantitative 3 C (see Methods S1). Interaction values

were corrected for mitochondrial genome copy number (see

Methods). Interaction values are expressed as percentages of the

untreated sample (set at 100%) +/2 standard error of the mean

(n = 3).

(DOC)

Figure S4 5 mM 2,4-Dinitrophenol (DNP) inhibits re-
spiratory growth but does not prevent growth of
fermenting S. cerevisiae BY4741 cells. S. cerevisiae BY4741

cultures were grown (50 ml, 30uC, 160 rpm) on glucose

(fermentation) or glycerol/lactate (respiration) to an Optical

density (600 nm; OD600) of 0.600. Cultures were diluted to an

OD600 of 0.150 (50 ml final volume) in their respective media.

5 mM DNP (final concentration) was added to two of the cultures,

while two remained untreated. The cell growth was monitored

(OD600) for a further 11.5 hours, with the exception of the

untreated glucose culture which was only grown for 4 hours.

(DOC)

Figure S5 Deletion of MRS1 (BY4741 Dmrs1), a nuclear
gene involved in splicing mitochondrial type-I introns, has
no significant effect on the frequency of the COX1-MSY1
interaction in glucose grown yeast cells. Interaction frequency

was expressed as percentages of the wild type S. cerevisiae strain

BY4741 (WT, set at 100%) +/2 standard error of the mean (n = 3).

(DOC)

Figure S6 Deletion of group II introns results in an
increase in growth rate. Growth rates were determined for

Saccharomyces cerevisiae strains (161-U7, 161-U7 GII0, and 161-U7

GII0 +aI5c; Figure 4a) grown in SC+2% glucose (30uC and

160 rpm). Cultures were inoculated to an initial optical density

(OD600) of 0.05 from overnight cultures. The OD600 was

measured every two hours for 10 hour. Data represent the mean

6 SD (n = 3).

(DOC)

Figure S7 ARS and ORF numbers correlate with
chromosome size. Data on ARS and ORF numbers and

chromosome size were taken from the Saccharomyces genome

database Genome Inventory (as of Nov 03, 2011). The length of

chromosome XII was calculated based on it containing only two

copies of the rDNA repeat.

(DOC)

Figure S8 Comparison of the total interaction frequen-
cies for the Glucose derived GCC data (this study) and
Duan et al. EcoRI derived datasets.

(DOC)

Table S1 Mitochondrial copy number calculations.
(DOC)

Table S2 Primers and probes used in this study.
(DOC)

Table S3 Nuclear fragments involved in mito-nDNA
interactions are enriched for regions that overlap genes
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with mitochondrial functions. The percentage of nuclear

fragments that overlap with nuclear encoded mitochondrial genes

within the complete genome was calculated and compared to the

percentage of nuclear fragments involved in mito-nDNA interac-

tions that overlap with nuclear encoded mitochondrial genes. A

test of proportions (prop.test) was performed in R to determine

whether the percentage difference is significant, p-values are

shown.

(DOC)

Table S4 Comparison between the EcoRI interaction
set from Duan et al. [46] and the glucose set from this
study.
(DOC)

Table S5 Strains used in this study.
(DOC)

Methods S1 This file contains supplementary informa-
tion for methods used in this manuscript.
(DOC)

Data S1 This text file contains the significant interac-
tions that were identified as occurring between the
mitochondrial genome and the region surrounding the
nuclear MSY1 locus in the dataset prepared by Duan
et al. [46]. The number of instances for any interaction that had

to be seen was set at . = 3 for the Mse1 and . = 4 for the Msp1

datasets.

(TXT)

Data S2 This text file contains the significant interac-
tions that were identified as occurring between the
mitochondrial genome and the region surrounding the
nuclear RSM7 locus in the dataset prepared by Duan et al.
[46]. The number of instances for any interaction that had to be

seen was set at . = 3 for the Mse1 and . = 4 for the Msp1 datasets.

(TXT)

Data S3 This text file contains the one interaction that
was identified as occurring between the mitochondrial
and nuclear genomes in chromatin cut with HindIII and
subsequently Mse1.
(DAT)

Data S4 This file contains all the interactions that were
identified by re-analysis of the Duan et al. [46] datasets
for chromatin digested with EcoRI and subsequently
Mse1. All listed interactions were all above the cut-off which was

set at . = 3.

(DAT)

Data S5 This file contains all the interactions that were
identified by re-analysis of the Duan et al. [46] datasets
for chromatin digested with EcoRI and subsequently
Msp1. All listed interactions were all above the cut-off which was

set at . = 4.

(DAT)

Data S6 This file contains the results of a blastN
analysis of mito-nDNA interacting fragments. Only three

pairs of interaction fragments that we detected showed any

homology upon blast analysis. The smaller restriction fragment

from each interaction pair was compared to the longer fragment

by blastn using default parameters. The length, score, and evalue

for each comparison was recorded. Comparisons that showed no

similarity were given an evalue score of 10.

(CSV)

Data S7 This text file contains a list of all uniquely
mapped mito-nDNA and mito-mito interactions and
their interaction strength.

(XLSX)

Data S8 This text file contains a list of all mapped mito-
nDNA and mito-mito interactions and their interaction
strength. The interactions that are included in this list include

those which mapped uniquely and were repetitive.

(XLSX)

Data S9 This text file contains a list of all genes that
have a mitochondrion gene ontology annotation. The

gene list was obtained from YeastMine (http://yeastmine.

yeastgenome.org/yeastmine/begin.do).

(CSV)
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