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Summary
To characterize the computational processes by which attention improves behavioral performance,
we measured activity in visual cortex with functional magnetic resonance imaging as humans
performed a contrast-discrimination task with focal and distributed attention. Focal attention
yielded robust improvements in behavioral performance that were accompanied by increases in
cortical responses. Using a quantitative analysis, we determined that if performance were limited
only by the sensitivity of the measured sensory signals, the improvements in behavioral
performance would have corresponded to an unrealistically large (approximately 400%) reduction
in response variability. Instead, behavioral performance was well characterized by a pooling and
selection process for which the largest sensory responses, those most strongly modulated by
attention, dominated the perceptual decision. This characterization predicts that high contrast
distracters that evoke large sensory responses should have a negative impact on behavioral
performance. We tested and confirmed this prediction. We conclude that attention enhanced
behavioral performance predominantly by enabling efficient selection of the behaviorally relevant
sensory signals.

Introduction
Spatial attention allows us to see better by enhancing behavioral sensitivity and is associated
with increased neural activity in early visual cortex. But what is the relation between these
changes in behavioral performance measured psychophysically and the changes in neural
activity measured physiologically? A satisfactory answer remains elusive because there is a
paucity of empirical studies in which enhancement in behavioral sensitivity has been
quantitatively linked to concurrently measured changes in neural activity (Cohen and
Maunsell, 2009; Cook and Maunsell, 2002; Sapir et al., 2005). Many psychophysical studies
have documented changes in contrast sensitivity with attention but without measuring
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corresponding changes in neural activity (Carrasco et al., 2000; Lee et al., 1999; Lu and
Dosher, 1998; Morrone et al., 2002; Pestilli et al., 2009). Single-unit monkey physiology
(Martinez-Trujillo and Treue, 2002; McAdams and Maunsell, 1999; Mitchell et al., 2009;
Reynolds and Heeger, 2009; Reynolds et al., 2000; Williford and Maunsell, 2006) and
human neuroimaging (Buracas and Boynton, 2007; Li et al., 2008; Murray, 2008) studies
have reported various effects of attention on neural response amplitudes and variability.
These studies, however, have not quantitatively assessed whether measured neural changes
could fully account for the improved behavioral performance with attention. Understanding
how changes in cortical activity give rise to enhanced behavioral sensitivity requires
concurrent measurements of behavioral sensitivity and cortical responses during tasks for
which models can quantitatively link the two measurements.

Contrast discrimination is a standard task for which plausible linkage hypotheses exist to
relate amplitude and variability of neural responses in early sensory areas to behavioral
sensitivity (Boynton et al., 1999; Geisler and Albrecht, 1997; Legge and Foley, 1980;
Nachmias and Sansbury, 1974; Zenger-Landolt and Heeger, 2003). Neural responses in
early visual cortex increase monotonically with contrast (see Fig. 1A for an idealized
example; Albrecht and Hamilton, 1982; Boynton et al., 1999; Zenger-Landolt and Heeger,
2003), suggesting that the brain can discriminate differences in contrast (Fig. 1A, blue
arrows) by monitoring differences in stimulus-evoked response amplitudes (Fig. 1A, green
arrows; Boynton et al., 1999; Legge and Foley, 1980; Nachmias and Sansbury, 1974;
Zenger-Landolt and Heeger, 2003). According to this linkage hypothesis, attention may
improve discrimination performance by increasing the slope of the contrast-response
function: we refer to this as “response enhancement” (Fig. 1B). Response enhancement
would increase the difference in neural responses for the two corresponding contrasts and
therefore improve discriminability (d’). Attention may also improve discrimination by
reducing the noise in the sensory responses; we refer to this as “sensory noise reduction”
(Fig. 1C). Neural responses are inherently variable; slightly different responses are evoked
on each presentation of the same stimulus, resulting in response distributions that can be
characterized by their standard deviations (σ). Sensory noise reduction (smaller σ), which
can be achieved either by reducing response variability in individual neurons and/or by
reducing correlated noise across a population of neurons, would result in less overlap
between two response distributions and would increase signal discriminability. Both these
possibilities would increase contrast-discrimination performance with attention by
improving the sensory representation – what we refer to as “sensitivity enhancement.”

Attention may also improve behavioral performance by excluding irrelevant sensory signals
from the decision process – what we refer to as “efficient selection.” If attention were
distributed across multiple stimuli (Fig. 1D distributed condition), signals from relevant- and
irrelevant-locations would be pooled together resulting in a large response variance, diluting
the response differences between stimuli, and reducing stimulus discriminability. If, instead,
attention were directed only to the target stimulus (Fig. 1D, focal condition), and if doing so
selected only the relevant sensory signals (red arrow), then behavioral performance would
be improved. Psychophysical experiments suggest that perceptual decisions can be described
by a class of pooling rules by which decisions are based on the neuronal subpopulations (or
psychophysical channels) with the largest responses (Eckstein et al., 2000; Palmer et al.,
2000). Under such pooling rules, increasing responses to behaviorally relevant stimuli would
improve performance accuracy by selecting those stimuli for decision and action.

Sensitivity enhancement and efficient selection are not mutually exclusive and the degree to
which each could, in principle, account for behavioral enhancement depends on what limits
performance in any given task. We measured concurrently the psychophysical and
physiological effects of spatial attention in a task that required high sensory discrimination
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and included multiple stimuli, thus potentially allowing attention to act via either, or both,
sensitivity enhancement and efficient selection. By quantitatively linking the psychophysical
and physiological measurements, using models of sensitivity enhancement (Fig. 1B,C) and
efficient selection (Fig. 1D), we concluded that efficient selection plays the dominant role in
improving visual sensitivity.

Results
Psychophysical contrast-discrimination functions

Contrast-discrimination thresholds were measured concurrently with fMRI responses in
early visual cortex. Each trial started with either a focal or distributed attention cue (Fig. 2,
interval 1). This was followed by two 0.6 s stimulus presentations (Fig. 2, intervals 2 and 4)
of four sinusoidal gratings with 8 “pedestal” contrasts (0-84%). Different pedestal contrasts
were selected for each of the 4 locations on each trial. During one of the two stimulus
intervals, one of the four gratings (target, chosen at random) had a contrast increment, Δc,
added to the pedestal contrast. After the second stimulus interval, a small green arrow at
fixation pointed to the target location (Fig. 2, interval 6) and the observers reported with a
button press whether the first or second stimulus interval at that location had a higher
contrast. An adaptive staircase procedure was used to find the Δc that resulted in 76%
correct performance, i.e., the contrast-discrimination threshold (see Supplemental
Experimental Procedures: Behavioral protocol). Contrast-discrimination thresholds were
determined separately for each of the 8 pedestal contrasts and 2 cue conditions by running
independent and randomly interleaved staircases.

The contrast-discrimination functions (Fig. 3, contrast-discrimination threshold as a function
of pedestal contrast) had characteristics consistent with previous findings. First, as pedestal
contrast increased from 1.75% to 28%, thresholds monotonically increased. This behavior is
reminiscent of Weber’s law, which predicts that discrimination thresholds maintain a
constant ratio with the stimulus intensity (a slope of 1 plotted on a log-log axis). We found
slopes <1 (blue curve, distributed-cue, target stimulus, 0.73 ±0.04; red curve, focal-cue
target stimulus, 0.78 ±0.08; mean ±standard error across observers), consistent with previous
studies (Gorea and Sagi, 2001). Second, thresholds decreased for lower pedestal contrasts,
resulting in a characteristic dipper shape of the contrast-discrimination function (Legge and
Foley, 1980; Nachmias and Sansbury, 1974). Because we tested a large range of mid-to-high
contrasts to reliably compare any slope changes in the fMRI measurements, we did not
sample low enough contrast pedestals to fully characterize the dipper (compare blue and red
curves). Third, thresholds decreased above 28-56% with a slope on a log-log axis of −2.9
±0.18 (blue curve, mean ±s.e.m. across observers) and −3.22 ±0.67 (red curve). This
decrease in threshold at high contrast may be explained by the selection model presented
below (see last section or Results).

The effect of focal attention on contrast-discrimination thresholds was characterized using
spatial cues. On half of the trials, a focal cue (Fig. 2A, small black arrow) was shown before
the stimuli to be discriminated. This focal cue indicated the target location with 100%
validity, but did not provide information regarding the stimulus interval containing the
higher contrast target. Observers were instructed to use this cue to direct spatial attention to
the target. On the rest of the trials (randomly interleaved), a distributed cue was shown (Fig.
2B, four small black arrows), which did not provide information about the target location;
observers were instructed to distribute their spatial attention across the four stimuli. To
minimize uncertainty about the target location, in both cases a response-cue (green arrow)
indicated the target location after stimuli offset. Contrast-discrimination thresholds were
lower at all pedestal contrasts on focal- than on distributed-cue trials (Fig. 3, red and blue
curves, respectively). This vertical shift of the contrast-discrimination functions was
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reflected in smooth function fits to the data (Fig. 3, solid curves; see Experimental
Procedures: Psychophysical contrast-discrimination functions) in which the parameter
controlling vertical offset increased significantly for the distributed-cue compared to the
focal-cue trials (gr, p=0.02, student’s t-test across observers), but other parameters did not
change (gc, p=0.58; s, p=0.17; q, p=0.4, student’s t-test). Enhanced contrast discrimination
could not be attributed to any change in eye position between focal- and distributed-cue
trials (see Experimental Procedures: Eye position monitoring).

Testing response enhancement
Contrast-response functions were measured, in each of several visual cortical areas, for each
of four stimulus-cue combinations (Fig. 4): focal-cue target, focal-cue non-target,
distributed-cue target, and distributed-cue non-target. fMRI responses increased
monotonically with stimulus contrast (Fig. 4A,B representative observer), and depended on
the stimulus-cue combination (Fig. 4B,C representative observer and average respectively).
Response amplitudes were smallest for unattended stimuli (Fig. 4C, green, focal-cue non-
target), larger when attention was distributed (purple, distributed-cue non-target; blue,
distributed-cue target), and largest for attended targets (red, focal-cue target).

There was no evidence for response enhancement in any of the visual cortical areas. We fit
the data by adopting a parametric equation for the contrast-response functions (see
Experimental Procedures: fMRI contrast-response functions). Only one of the fitted
parameter values differed significantly across the four stimulus-cue combinations, the
baseline response (b) that determined the vertical positions of the contrast-response
functions. Allowing only this parameter to vary across cue conditions provided a fit that was
statistically indistinguishable from the fit allowing all parameters (gc, gr, and b) to vary
across cue conditions (V1, V2, V3 and hV4 each F(14,8), p=0.3). Thus, we did not observe a
change in gain or slope of the contrast-response functions, consistent with previous reports
(Fig. 1B; Buracas and Boynton, 2007; Murray, 2008). Instead, the cue effect was well
described as a vertical additive shift of the contrast-response functions. The amount of
additive offset increased across the hierarchy of visual cortical areas. Values for b increased
from the focal-cue non-target curve to the distributed-cue non-target curve by 0.04, 0.08,
0.14 and 0.25 (% fMRI signal change) in visual areas V1, V2, V3 and hV4, respectively.
The values increased from focal-cue non-target to distributed-cue non-target by 0.11, 0.18,
0.27 and 0.34, and they increased from focal-cue non-target to focal-cue target by 0.29, 0.39,
0.52 and 0.51. Therefore, the effect of attention was about 6×, 3× or 1.75× larger in hV4
than in V1, depending on which pair of conditions was compared.

There was a small but reliable difference in responses between distributed-cue target and
non-target stimuli (Fig. 4C; blue and purple). Values for b in V1-hV4 differed by 0.07, 0.10,
0.13 and 0.10% signal change, respectively. These response differences were evident even
though these trials differed only after the stimuli had been removed from the display for 400
ms (Fig. 2B), when the response-cue was presented. This effect cannot be the result of
differences in neural responses during the first interval, because the response-cue defined the
target only after the second interval. Observers could have inferred the target location during
the second interval, before the response-cue, if they noticed where the change in contrast
occurred between the two intervals. Consequently, they would have attended more to the
identified target location during the second stimulus interval. However, we found no
difference between correct and incorrect trials, either for the distributed-cue target or for
distributed-cue non-target responses (quantified by the b parameter; p>0.1, paired student’s
t-test across subjects and visual areas). Thus, this small response difference likely originates
from a post-stimulus modulation during the response phase (Sergent et al., 2010).
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Testing sensory noise reduction
To test whether sensory noise reduction alone can account for enhanced behavioral
performance with focal attention, fMRI and behavioral data were fit using the sensitivity
model depicted in Fig. 1 (see Experimental Procedures: Testing sensory noise reduction).
The sensitivity model fit the fMRI (contrast response) based on parameterized behavioral
(contrast discrimination) data with two key parameters; the baseline response (b), and the
sensory noise standard deviation (σ).

For the distributed-cue condition (Fig. 5A,B), the psychophysical contrast-discrimination
data were again fit with a smooth function (Fig. 5A, blue line), and then the σ and b
parameters were optimized to find the best fit to the fMRI contrast-response function (Fig.
5B, blue line). This procedure was repeated for each visual cortical area. The sensitivity
model fit well the contrast-response measurements in each visual area (V1, r2=0.95, Fig. 5B;
V2, r2=0.97; V3, r2=0.97; hV4, r2=0.98; average across observers), and for each individual
observer (observer 1, r2=0.98; observer 2, r2=0.94; observer 3, r2=0.97; average across
visual areas).

Having fit the sensitivity model parameters to the data in the distributed-cue condition, we
asked whether these parameters could account for the data in the focal-cue condition. Had
the slope of the contrast-response function changed in a way that could account for the
behavioral data, then fixing the σ and b parameters to what had been estimated in the
distributed-cue condition would have provided a good fit in the focal-cue condition. It did
not. To show this, we used the σ and b that were fitted to the distributed-cue condition (Fig.
5A) to predict the contrast-response function from the focal-cue condition. The resulting
contrast-response function had a much steeper slope than that measured in the focal-cue
condition, and did not fit well the measured contrast-response functions in any of the visual
areas (V1, r2=0.58, Fig. 5D, blue curve; V2, r2=0.63; V3, r2=0.63; hV4, r2=0.64; average
across observers), nor for any observer (observer 1, r2=0.63; observers 2, r2=0.59; observer
3, r2=0.64; average across visual areas).

Allowing the standard deviation (σ) and the baseline response (b) to be adjusted for the
focal-cue condition resulted in good fits to the contrast-response functions for each visual
area (Fig. 5F; V1, r2=0.89; V2, r2=0.85; V3, r2=0.89; hV4, r2=0.83; average across
observer) and for each individual observer (observer 1, r2=0.90; observer 2, r2=0.77;
observer 3, r2=0.91; average across visual areas). For V1, the best-fit value of the sensory
noise standard deviation (σ) was 0.085% signal change for the distributed-cue and 0.016%
signal change for the focal-cue condition. The best-fit value of the baseline response (b) was
0.34% signal change for the distributed cue and 0.55% signal change for the focal-cue
condition. Thus, there was no evidence for a change in the response gain of the fMRI
responses, only for a change in the sensory noise standard deviation and baseline response
parameters.

A similar result was found for each visual area and observer; the ostensible effect of the
focal-cue was to decrease sensory noise and increase the baseline response. These two
model parameters were fit separately for the distributed-cue and focal-cue conditions for
each visual area and each observer. The average σ value for the distributed-cue (σd)
condition was 0.064% ±0.02 and 0.016% ±0.01 for the focal-cue (σf) condition. The ratio of
σd to σf was significantly greater than 1 in all observers and visual areas (p<0.01, bootstrap
test, see Supplemental Experimental Procedures: Statistical tests in individual observers) and
implied approximately a 4-fold reduction in sensory noise (Fig. 6A). The average b value
increased from 0.58 ±0.02% for the distributed-cue condition to 0.74 ±0.04% for the focal-
cue condition (Fig. 6B, bd and bf respectively). The difference between bd and bf was
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significantly different from 0 in all observers and visual areas (p<0.05, except for hV4 in
one observer, p=0.38, bootstrap test).

Testing efficient selection
The approximately 400% reduction in σ between the distributed- and focal-cue conditions
could be due to a decrease in early signal-to-noise ratio, to greater inefficiencies in “reading
out” the sensory signals, or to a combination of the two. Monkey electrophysiology
experiments have shown that attention can reduce sensory noise, but not by such a large
amount. For visual cortical area hV4, attention decreases both trial-to-trial variability in
firing rates in individual neurons and trial-to-trial correlations in firing rates across neurons,
such that an overall reduction in sensory noise of approximately 50% is achieved when
averaged across a pool of neurons (Cohen and Maunsell, 2009; Mitchell et al., 2009). This
suggests that inefficiencies in sensory pooling and decision-making play a large role in
explaining the difference in performance accuracy for focal- and distributed-cue trials.

We propose a particular example of a model that exhibits such inefficiencies, which we call
the “selection model.” The selection model pools sensory responses across the four stimulus
locations according to a max-pooling rule (it weighs the largest response the most). This
ensures that decisions on focal-cue trials are based primarily on responses to the target
stimuli (which are larger than responses to non-targets because the baseline responses are
larger for attended stimuli), leading to good behavioral performance. On distributed-cue
trials, one of the non-target stimuli evokes the largest responses (noting that in our
experimental protocol one of the non-targets typically had a higher contrast than the target).
Max-pooling thereby causes decisions to be based primarily on irrelevant sensory signals
corresponding to incorrect locations, leading to correspondingly poor behavioral
performance.

We begin by considering attentional selection via max-pooling in a focal cue trial. Fig. 7A
shows simulation results, idealized sensory response distributions for the two intervals in the
task at each of the four target locations. Each location elicited some response as measured
by the contrast-response function for target and non-target stimuli. Only the target location
had an actual difference in mean response between the two intervals (because there was a
contrast increment added only at this location). For these simulations, the means of the
sensory response distributions in Fig. 7 were set to be the mean fMRI response amplitudes
(from V1) for the target and non-target locations, and the standard deviation of the sensory
response distributions was set to the best-fit value from the sensitivity model fit (see above,
Testing sensory noise reduction) for the focal-cue condition. To read-out the responses, the
max-pooling operation weighted responses differently depending on their relative amplitude
(Fig. 7B):

[1]

where ri was the response at each of the four stimulus locations, Rp was the pooled read-out
of the responses, and k was a model parameter that changed the pooling operation from
averaging (k=1) to maximizing (k=∞). With a large k, the largest amplitude response
dominated the read-out distribution from which the decision was made. For focal-cue trials,
attention served to boost the target response above the non-target responses, and therefore
the read-out distribution was dominated by the response to the target (i.e., the read-out
distributions in Fig. 7C are virtually identical to the sensory response distributions at the
target location in Fig. 7A).

Pestilli et al. Page 6

Neuron. Author manuscript; available in PMC 2012 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The max-pooling rule with exactly the same k value predicted a larger threshold contrast
(Δc, i.e., worse-performance) on distributed-cue trials. On distributed cue trials, a much
larger Δc evoked a larger sensory response difference at the target location (Fig. 7A,
compare sensory response distributions corresponding to the target location, top-left, for
focal and distributed cues). In spite of the much larger target contrast difference on
distributed-versus focal-cue trials, and the correspondingly larger separation between the
sensory response distributions at the target location, the read-out distributions were virtually
identical (Fig. 7C, compare response distributions for focal versus distributed cues). Because
of the max-pooling rule, the read-out distributions were dominated by the stimulus location
evoking the highest response. For focal-cue trials, this was nearly always the target location.
For distributed cue trials, none of the sensory responses were preferentially increased by
attention so the max-pooling rule biased the read-out distributions to correspond to the
stimulus with the highest contrast, which was not usually the target. A larger Δc was
consequently needed in the distributed-cue trials compared to focal-cue trials, to get the
same separation between the read-out distributions and correspondingly the same
performance accuracy.

Unlike the sensitivity model described above, this selection model quantitatively predicted
behavioral enhancement based on the measured differences in cortical response amplitudes
without any sensory noise reduction. We adjusted the k and σ parameters to fit the contrast-
discrimination functions (see Experimental Procedures: Testing efficient selection). We used
a single σ value across both focal-cue and distributed-cue conditions, and found that the
selection model provided excellent fits (e.g., Fig. 8A plots behavioral data and V1 contrast-
response functions averaged across observers). Fitting the k and σ parameters across
individual observers and visual areas, we found k values with a mean near the maximizing
end of the spectrum (k=68.08). We used An Information Criteria (AIC) and cross-validated
r2 to compare the quality of the model fits (see Experimental Procedures: Model
comparisons). Across all visual areas, the fits to the data averaged across observers were
significantly better (AIC difference = −23.94, −10.90, −59.88, −21.09 V1-hV4) for the
selection model using a single σ value for both focal-cue and distributed-cue conditions
(cross-validated r2=0.84, 0.88, 0.89, 0.89, V1-hV4 respectively) compared to the sensitivity
model (fit without allowing σ to vary; cross-validated r2=0.06, 0.20, 0.13, 0.16). The
selection model also provided better fits than the sensitivity model for the data from
individual observers (selection model cross-validated r2=0.82, 0.83, 0.84, 0.83, V1-hV4
respectively, computed separately for each individual observer and then averaged across
observers; sensitivity model cross-validated r2=0.10, 0.41, 0.34, 0.40; AIC difference=
−23.21, −33.20, −40.26, −41.03).

We confirmed the result that the max-pooling selection rule accounted for contrast-
discrimination performance, by adopting a single k value (the mean across V1-hV4) for each
observer and applying it to all visual areas. It is not necessarily the case that each visual area
should have exactly the same balance of maximization versus averaging as implied by a
single k value. Nonetheless this analysis was used to test how well a fixed pooling rule could
account for the behavioral data. With a fixed k for each observer, σ for the distributed- and
for the focal-cue trials was allowed to vary separately to fit the contrast-discrimination
functions. The ratio of σd to σf (1.04±0.05, mean and s.e.m across visual areas and
observers) was statistically indistinguishable from 1 (p=0.56; bootstrap test), demonstrating
that the selection model could account for the difference in behavioral performance between
the two conditions without requiring any sensory noise reduction. This result is contrasted
with the sensitivity model in which σd was on average about 4 times larger than σf
(4.12±0.23, mean and s.e.m. across visual areas and observers; Fig. 8C, a recapitulation of
the result in Fig. 6).
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A combination of sensory noise reduction with our selection model also fit the data well. As
noted above, the largest sensory noise reduction reported in the literature is about 50%
(Cohen and Maunsell, 2009), but our contrast-discrimination functions were not adequately
fit with a 50% sensory noise reduction, disregarding pooling of the sensory responses (Fig.
8B; cross-validated r2=0.46, 0.55, 0.52, 0.53, V1-hV4 respectively). However, this amount
of sensory noise reduction when coupled with the selection model provided good fits to our
data (cross-validated r2=0.89, 0.92, 0.92, 0.92), resulting in slightly smaller k values (61.03,
averaged over areas) than the selection model alone. This combined model also provided a
good fit to the data from individual observers (cross-validated r2=0.86, 0.84, 0.86, 0.85, V1-
hV4 respectively, computed separately for each individual observer and then averaged
across observers). This fit was virtually indistinguishable from the selection model alone
(compare to selection model r2, two paragraphs above), but it was better than the sensitivity
model with noise reduction (cross-validated r2=0.40, 0.63, 0.60, 0.63; AIC difference=
−19.05, −18.06, −17.35, −23.78).

Robustness of results
We confirmed the robustness of our conclusions via the following analyses. (1) We removed
anticipatory hemodynamic effects separately for focal-cue and distributed-cue trials (see
Supplemental Data Fig. S2A). (2) We varied the sizes of the regions of interest in each
visual area, corresponding to each stimulus location, using different statistical thresholds
(see Supplemental Data Fig. S2B). (3) We used different functional forms (polynomial, a
skewed Gaussian, and the form fit by the sensitivity model) to parameterize contrast-
discrimination functions. These changes made quantitative but not qualitative changes in the
parameter estimates of the various models and did not affect the overall conclusions (see
Supplemental Data Fig. S2C).

Testing high contrast distracter prediction
One important prediction of our selection model is that behavioral performance is not
determined by the properties of the target alone - the configuration of distracters also affects
behavior. For example, a distracter with high contrast that evokes a large response will
preferentially pass through the selection mechanism and therefore be expected to disrupt
behavioral performance more than a distracter that evokes a smaller response. We confirmed
this prediction in the following two ways.

First, we found that our selection model, given the configuration of distracter contrasts in the
main experiment, predicted the prominent dip at high contrast of the measured contrast
discrimination functions (Fig. 3). Distracter contrasts were always randomized around the
target contrast. However, for the highest contrast pedestal, physical constraints (a maximum
of 100% contrast is achievable) necessitated presenting lower contrast distracters. Thus,
these high contrast pedestals were paired with distracters that evoked comparatively smaller
responses and therefore were excluded to a great extent by our selection rule. This resulted
in a prediction of better performance at high than at lower pedestal contrasts. This effect was
even more pronounced given that contrast-response functions saturated at higher contrast,
resulting in comparatively weaker distracter responses. Thus, our selection model predicted
a prominent dip at high contrast for the distributed-cue condition (Fig. 8, blue curve), despite
the fact that the form of the contrast-response functions used in the model fits did not
include any accelerating non-linearity at high contrast. The dip in the modeled distributed-
cue discrimination function was due solely to the selection mechanism excluding the smaller
response of the distracters at high contrast from the read-out distributions. Our selection
model also predicted that the focal-cue condition would be less susceptible to these
distracter affects due to the enhanced response at the focal-cue target (Fig. 8, red curve).
While our selection model over-predicts the ability of focal-attention to overcome the effect
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of distracters (i.e. predicts no, rather than a small, dip), there was indeed a much smaller dip
in the contrast-discrimination performance at high-contrast for the focal-cue condition (Fig.
3, red curve).

As a second, more direct confirmation of the prediction of our selection model, we
conducted behavioral experiments similar to the ones described above, but added a second
set of conditions in which we replaced the lowest contrast distracter in each condition with a
distracter of 84% contrast (see Supplemental Experimental Procedures: Behavioral Protocol
for details). As before, thresholds were lower for the focal-cue condition than the
distributed-cue condition (Fig. 9A); indeed, there was a ~4.2 fold difference(Fig. 9B,
p<0.001, two-way nested ANOVA main effect of cue), thus replicating the behavioral effect
of focal attention. As predicted, behavioral performance for both distributed-cue and focal-
cue conditions was worse when there was a high contrast distracter (Fig. 9A, p<0.001, two-
way nested ANOVA main effect of distracter condition), with no evidence of any individual
differences between subjects (p=0.49, two-way nested ANOVA). The effect of distracter
contrast was greater for the distributed-cue condition than the focal-cue condition (Fig. 9B)
as expected by our selection-model given that in the focal-cue condition the target location
was predicted (by the model) to have an enhanced response that could better compete with
the high-contrast distracter.

Discussion
The behavioral and cortical effects of attention were concurrently measured using
psychophysics and fMRI and a computational analysis was used to quantitatively link these
measurements. Cortical responses in early visual areas increased when spatial attention was
focused on a single location as compared to when attention was distributed across all
stimuli, consistent with previous studies (Buracas and Boynton, 2007; Li et al., 2008; Liu et
al., 2005; Murray, 2008). Concurrent behavioral performance also improved (contrast-
discrimination thresholds decreased) when observers were cued to the target location, also
consistent with previous studies (Foley and Schwarz, 1998; Lee et al., 1999; Lu and Dosher,
1998; Morrone et al., 2002; Pestilli et al., 2009). We considered whether sensitivity
enhancement, in the form of response enhancement or noise reduction, and efficient
selection, in the form of a max-pooling selection rule, could quantitatively link the two
measurements. We concluded that efficient selection played the dominant role in accounting
for the behavioral enhancement observed in the contrast discrimination task. Finally, we
confirmed one prediction of our selection model, that high contrast distracters disrupt
behavioral performance.

fMRI and neural activity
In describing our effort to quantitatively link fMRI responses and behavioral enhancement
with attention, an underlying assumption of our analysis is that the fMRI responses were
approximately proportional to a measure of local average neuronal activity (Boynton et al.,
1996; Heeger and Ress, 2002). It has been claimed that fMRI responses are most closely
related to synaptic input and intracortical processing within a cortical area, not the spiking
output (Logothetis and Wandell, 2004). Cortical circuits are, however, dominated by
massive local connectivity in which most synaptic inputs originate from nearby neurons
(Douglas and Martin, 2007). Thus, synaptic “inputs” in cerebral cortex are mostly produced
by local spiking of neighboring neurons, leading typically to a tight coupling between
synaptic and spiking activity, as well as vascular responses. It is not surprising, therefore,
that fMRI responses have been found to be highly correlated with neural spiking (Heeger et
al., 2000; Mukamel et al., 2005). Even suppression of neuronal activity, which probably
involves an increase in synaptic inhibition, has been found to be correlated with smaller
fMRI responses (Shmuel et al., 2006; Zenger-Landolt and Heeger, 2003).
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There are clear demonstrations that vascular responses can be dissociated from spiking
activity. A striking example of such dissociation is a spatially-global anticipatory
hemodynamic modulation during regularly-paced trials that is not reflected in spiking
activity (Sirotin and Das, 2009). Our methodology removed such anticipatory hemodynamic
modulation by randomizing the inter-trial intervals and subtracting a spatially homogenous
component of the responses (see Supplemental Data Fig. S1A). After subtracting this
spatially-global component, the residual vascular responses are tightly linked with spiking
activity, such that the magnitude of the vascular responses evoked by different stimulus
contrasts are linearly proportional to the magnitude of spiking activity as assumed by our
analysis (A. Das, personal communication).

Attentional modulation of activity in visual cortex: fMRI versus electrophysiology
We considered whether potential conflicts between fMRI and single-unit measurements of
the effect of attention on contrast-response suggests another possible dissociation of vascular
and spiking activity. Attention has been reported to have a wide variety of effects on the
contrast-response functions of neurons in visual cortex. Contrast-gain changes (Martinez-
Trujillo and Treue, 2002; Reynolds et al., 2000; Williford and Maunsell, 2006), response-
gain changes (Lee and Maunsell, 2010; Williford and Maunsell, 2006), activity-gain
changes (Williford and Maunsell, 2006), additive offsets dependent on visibility
(Pooresmaeili et al., 2010; Thiele et al., 2009) and baseline shifts in the absence of a
stimulus (Reynolds et al., 2000; Williford and Maunsell, 2006) have all been observed, even
different changes in different neurons during the same experiment (Williford and Maunsell,
2006).

Some of these inconsistent results from single-unit studies may be due to uncontrolled task
parameters. For example, the normalization model of attention predicts different effects
(response-gain changes, contrast-gain changes, or a combination of the two that can mimic a
baseline shift) in different neurons depending on stimulus size and attention field size (i.e.,
the spatial and featural extent of attention), with respect to receptive field size (Reynolds and
Heeger, 2009). But stimulus size and attention field size have only been manipulated
systematically in one behavioral and neuroimaging study (Herrmann et al., 2010), and have
not been systematically manipulated in electrophysiology experiments. In addition, task-
difficulty is known to modulate neuronal responses (Boudreau et al., 2006; Chen et al.,
2006), and task difficulty varies with contrast (e.g., orientation discrimination is typically
harder at low contrast than at high contrast; Lu and Dosher, 1998; Pestilli et al., 2009). In
our experiment, separate staircases were run for each contrast, thus ensuring the same
threshold level of discrimination difficulty at each contrast.

Whereas attentional modulation of single-unit firing rates have shown inconsistent effects
across and within experiments, the results may be more uniform when averaged across a
large population of neurons. Our results are consistent with those from previous fMRI
experiments (Buracas and Boynton, 2007; Murray, 2008) reporting additive offsets with
attention as well as a voltage-sensitive dye experiment which reached a similar conclusion
about selection (E. Seidemann, personal communication). Equal increases in responses at all
contrasts may result when responses are averaged across populations of neurons for at least
two reasons. First, if some neurons show enhancement primarily at low and intermediate
contrasts (contrast-gain like changes) and other neurons show enhancement primarily at high
contrasts (response-gain like changes), then the overall sum of activity (and consequently
any population read-out that depends on this sum) would be expected to show enhancement
at all contrasts (i.e., an additive offset). Indeed, an electrophysiological study has reported
that some neurons exhibit contrast-gain, others response-gain and yet others exhibit additive
changes in the same experiment (Williford and Maunsell, 2006). Moreover, the
normalization model of attention (Reynolds and Heeger, 2009) can yield contrast-gain or
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response-gain like changes in different neurons dependent on the locations and sizes of their
receptive fields. These effects in individual neurons can appear as an additive offset change
when averaged across neurons (unpublished simulations). Second, the majority of single-
unit electrophysiology experiments used stimulus parameters that were matched to the
tuning properties of the individual units being recorded. But in fact, any stimulus that is the
target of attention will give rise to activity in many neurons whose receptive fields and
tuning properties may only partially match with the stimulus. Small baseline shifts with
attention (Luck et al., 1997; Reynolds et al., 2000; Williford and Maunsell, 2006) in each of
many neurons may sum to a large effect in the overall population output, evident in the
fMRI responses. The behavioral performance improvements with attention may, for some
stimuli and tasks, depend primarily on this component of the population responses that is
correlated across neurons (not the response- and/or contrast-gain changes evident in each
individual neuron’s responses). Our max-pooling selection rule exemplifies how such a
baseline shift can lead to improved behavioral performance. Hence, it is possible to
reconcile the attentional modulation effects that have been measured with fMRI with those
measured electrophysiologically.

Response Enhancement
Is it possible that behavioral performance improvements with attention are due to response
enhancement (Fig. 1B), but that we were simply unable to measure the response
enhancement with fMRI? In particular, is it possible that increases in fMRI responses that
we and others (Buracas and Boynton, 2007; Murray, 2008) have measured with attention
were entirely due to neuromodulatory input, and therefore did not reflect signals used by the
brain for contrast discrimination? We considered three specific possibilities to address these
questions.

First, it could be that the fMRI measurements were dominated by attention-related synaptic
input that was constant for all stimulus contrasts and hence looked like an additive offset.
Such would be the case if the fMRI measurements reflected only the neuromodulatory input
that specified the attention field (i.e., the changes in synaptic gain corresponding to the
spatial extent of attention), which would be only indirectly evident in extracellular
electrophysiological measurements of spiking activity. However, we measured a
monotonically increasing contrast-response function in all task conditions (Fig. 4) which
indicated that at least part of the fMRI responses was driven by the stimulus. Moreover, the
gain changes that would have been needed to account for the behavioral enhancement with
attention were approximately 4-fold (Fig. 5) and should have been easily measurable as they
would have been much larger than contrast-gain changes with adaptation measured with
fMRI using similar procedures (Gardner et al., 2005).

Second, could it be that the contrast-response functions we measured reflected only bottom-
up input? Had this been the case, gain changes within a cortical area would not have been
evident in the fMRI responses from that area, but rather those gain changes would have been
displaced to a later visual area. For example, even if one area, say V1, were dominated by
bottom-up inputs, e.g., from the LGN, we would have expected to see gain changes in the
areas to which V1 projects. However, no gain changes were observed in V2, V3 and hV4.

Third, could it be that signals used to perform the contrast-discrimination task were encoded
at a spatial scale below the resolution afforded by hemodynamic measurements? Whereas
we cannot fully rule-out this possibility, it is unlikely because single-unit studies (Martinez-
Trujillo and Treue, 2002; McAdams and Maunsell, 1999; Mitchell et al., 2009; Reynolds et
al., 2000; Williford and Maunsell, 2006) have uniformly measured gain changes that are too
modest to explain the large (~4 fold) response-gain changes needed to account for the
observed behavioral effect. Indeed, population sensitivity measures from single-unit data
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agree with our conclusion that gain changes can account for only a very small fraction of
behavioral enhancement (Cohen and Maunsell, 2009).

Sensory noise reduction
Sensory noise reduction (Fig. 1C) is another possible mode of sensitivity enhancement,
which could have been missed by fMRI measurements (Cohen and Maunsell, 2009; Mitchell
et al., 2009). Direct measurements of the variability of neural responses with fMRI are
difficult if not impossible as fMRI is corrupted by various other sources of noise (thermal,
physiological, movement artifacts, hemodynamic, etc.). Indeed, the sensitivity model
estimated that the trial-to-trial fluctuations of the fMRI signal needed to account for
behavior (i.e. the estimate of the noise variance due to neural sources that influence
perception) was less than 0.1% change in fMRI image intensity - an order of magnitude
smaller than the overall trial-to-trial variability in the fMRI responses we measured
(approximately 1%).

However, although fMRI may not be able to measure changes in neural variability directly,
the sensitivity model estimated that an unrealistically high 400% reduction in noise was
needed to account for behavioral enhancement. This amount of noise reduction was an order
of magnitude larger than the reduction in the response variance inferred from monkey
electrophysiology (Cohen and Maunsell, 2009; Mitchell et al., 2009). We note, however,
that there are still few studies that have examined changes in response variation and
correlation between neurons with attention and that there is considerable uncertainty about
how much reduction in variability at the level of populations of neurons can be inferred from
the existing data. Nonetheless, our analysis suggested that response enhancement coupled
with a realistic amount of noise reduction, would not suffice to account for the behavioral
performance improvements that we observed.

We assumed additive noise when estimating neural variability to link the contrast-
discrimination and contrast-response functions, but single-unit studies have found that firing
rate response variances scale with the mean firing rates, similar to a Poisson process (Softky
and Koch, 1993). Therefore it might seem that contrast discrimination should be modeled
with multiplicative noise, which scales with response. However, because perceptual
decisions are likely based on populations of neural activity, behavioral performance is not
necessarily limited by Poisson-like noise evident in single neurons. If the neural noise that
scales with the response amplitudes is independent across neurons, then the Poisson-like
noise will be averaged out and only correlated components of the noise will remain. This
remaining correlated noise component might be additive. Indeed, the standard deviation of
the population response measured with voltage sensitive dyes does not change with contrast
in V1 (Chen et al., 2006). Moreover, psychophysical data suggest that perceptual
performance is limited by an additive noise component (Gorea and Sagi, 2001).

Efficient selection
Not being able to account for the behavioral enhancement with the forms of sensory
enhancement discussed above, we considered the possibility that attention improved
behavioral performance by efficiently selecting relevant sensory signals (Eckstein et al.,
2000; Palmer et al., 2000). And we found that a simple max-pooling selection mechanism
could fully and realistically account for the behavioral enhancement. The selection model
we implemented did not change the pooling rule across focal and distributed cue trials (a
fixed k and σ across both trial types could account adequately for the behavioral data), and
therefore does not suggest that the pooling mechanism itself becomes more efficient for
focal cue trials. Instead we hypothesize that larger responses (in the form of an additive
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offset) aid in propagating the relevant visual information through a static pooling rule
leading to more efficient selection of relevant signals.

Whereas the particular form of max-pooling selection rule used was not essential, we used it
because it has a plausible neural implementation. We implemented a continuum of selection
rules from averaging to max-pooling by taking the sum of the exponent of input signals.
Other selection rules such as a soft-max operator (Kouh and Poggio, 2008) could have been
used to achieve the same function. However, an exponential relation to inputs has been
observed for visual neurons in sensory areas; these neurons are well modeled as linear
operators with a static output nonlinearity in the range of 2-4 (Albrecht and Hamilton,
1982). Higher exponent values might be achieved as sensory signals pass from one area to
the next, each area contributing a part of the full exponent value. Our selection rule also
includes a root operator, the purpose of which was simply to keep the output of the selection
rule in the same range as the input, and could also be achieved by other computations such
as divisive normalization (Heeger, 1992).

A prediction of our selection model is that distracters that evoke large responses (for
example those presented with higher contrast) will be better able to pass through the
selection mechanism and thus disrupt performance. We tested and confirmed this prediction.
These results parallel other reports (Palmer and Moore, 2009; Yigit-Elliott et al., 2011) that
show that high contrast distracters (foils) can be incorrectly selected, leading to errors in
behavioral performance. Similarly, searching for a high contrast target among low contrast
distracters is less impaired relative to searching for a low contrast target among high contrast
distracters when attention is allocated elsewhere (Braun, 1994) or V4 is lesioned (Schiller
and Lee, 1991). These results all suggest that high contrast stimuli preferentially access
perception (but see Jonides and Yantis, 1988). Efficient selection with winner-take-all like
selection mechanisms as described here and elsewhere (e.g. Koch and Ullman, 1985; Lee et
al., 1999) provide a unified framework which can explain both these types of bottom-up
effects as well as top-down effects of focal attention.

Working memory
Our conceptualization of the processes involved in the contrast discrimination task did not
consider the limits of working memory in changing behavioral performance. To perform a
two-interval discrimination task, observers must hold the contrast perceived in the first
interval in working memory to compare with the perceived contrast in the second interval.
Our task was designed to minimize demands put on working memory by using a very brief
ISI (200ms; Fig 2) and a small set size (4) that has been shown to minimize performance
decrements due to working memory (Luck and Vogel, 1997). Nonetheless, performance
may have improved for the focal cue because working memory was needed only to hold the
relevant one item instead of all four items with the distributed cue. If this account holds, it
raises the question of what process acts to exclude irrelevant information from working
memory in the focal cue condition. One possibility is that efficient selection in a matter akin
to what we have formulated here acts as a gatekeeper that excludes irrelevant information
from working memory. Indeed, exclusion of irrelevant items in working memory is a key
factor improving performance in working memory tasks (Vogel et al., 2005), thus
suggesting that attentional enhancement in the form of efficient selection may be a key
process in determining the efficacy of working memory.

Selection and sensitivity
Whether attention improves performance through sensory enhancement or efficient selection
may critically depend on the types of tasks used to probe attentional effects. Sensory
enhancement and efficient selection are not mutually exclusive, rather they are both likely to
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contribute to the computational processes by which attention improves performance
(Eckstein et al., 2000; Lu and Dosher, 1998; Palmer et al., 2000). On the one hand, many
experiments have limited the number of behaviorally relevant stimuli; for example by
presenting one or two stimuli on a blank background, thus limiting demand on the neural
processes that govern the efficiency of selection (Carrasco et al., 2000; Lu and Dosher,
1998; Morrone et al., 2002; Pestilli et al., 2009). For these types of tasks, the bottleneck in
performance may therefore be in the fidelity of the stimulus representation.
Correspondingly, single-unit studies using such tasks have reported signal enhancement in
the form of gain changes (Martinez-Trujillo and Treue, 2002; McAdams and Maunsell,
1999; Reynolds et al., 2000; Williford and Maunsell, 2006), and reductions of correlated
noise (Cohen and Maunsell, 2009; Mitchell et al., 2009). On the other hand, tasks in which
the relevant signals must be selected out of many possible alternatives place higher demands
on selection efficiency (Eckstein et al., 2000; Palmer et al., 2000). For these tasks, the
bottleneck in performance may not be the fidelity of the stimulus representation, but the
efficiency of selection. Moreover, tasks in which relevant and irrelevant stimuli are placed in
near proximity to each other may result in selection of relevant signals and suppression of
irrelevant signals at stages of the visual system in which both stimuli are within the same
receptive field (c.f., “biased-competition;” Desimone and Duncan, 1995). Real world
situations usually involve complex and cluttered visual environments in which efficient
selection mechanisms may be particularly crucial for optimal behavior.

Experimental Procedures
Observers

Three healthy males (age 33-36) with normal or corrected-to-normal vision who provided
written informed consent participated in the study. Experimental procedures were in
compliance with the safety guidelines for MRI research and were approved by the
University Committee on Activities Involving Human Subjects at New York University.
Each observer participated in multiple fMRI experiments: one 1.5-hour long session of
retinotopic mapping and five 2-hour long sessions of the contrast discrimination experiment.
To test the effect of high contrast distracters, we conducted behavioral experiments on six
observers (ages 23-39, one female), including two from the main experiment, all with
normal or corrected-to-normal vision. Experimental procedures were conducted with the
written consent of each observer and were approved by the RIKEN Brain Science Institute
Functional MRI Safety and Ethics Committee.

Behavioral Protocol
The behavioral protocol is described in the Results and in detail in the Supplemental
Experimental Procedures.

Stimulus presentation
Visual stimuli were generated using Matlab (The Mathworks Inc., Natick, MA) and MGL
(URL:http://justingardner.net/mgl) and presented via an LCD projector. See Supplemental
Experimental Procedures.

MRI acquisition and preprocessing
MRI data were acquired on a 3 Tesla Allegra head-only scanner (Siemens, Erlangen,
Germany) using standard procedures. See Supplemental Experimental Procedures.
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Psychophysical contrast-discrimination functions
Contrast-discrimination thresholds were computed separately for each pedestal contrast and
each cue condition and the resulting contrast-discrimination functions were then fit,
following previous research (Boynton et al., 1999; Legge and Foley, 1980; Nachmias and
Sansbury, 1974; Zenger-Landolt and Heeger, 2003), by assuming that behavioral
performance is limited by the fixed difference in response amplitude (ΔR) divided by the
standard deviation of sensory noise (σ). Then the contrast-discrimination threshold for a
pedestal contrast, Δc(c), satisfies:

[2]

where R is the underlying contrast-response function. The contrast-response functions were
parameterized as:

[3]

where b is the baseline response, gr is the response-gain that determines the maximum
response, gc is the contrast gain that determines the horizontal position of the function along
the contrast axis, and s and q are exponents that control how quickly the function rises and
saturates. For the sensitivity and selection model fits, gr (the response gain of the contrast-
response function, Eq. 3) and ΔR (the response difference at threshold, Eq. 2) were
constrained by measurements of the contrast-response functions. However, ΔR, σ, and gr
were codependent variables when fitting the contrast-discrimination functions on their own.
We therefore set σ and ΔR to 1 and fit (nonlinear least squares) the other parameters of the
contrast-response function to the measured contrast thresholds. Increasing or decreasing
either ΔR, σ or gr resulted in a vertical shift upwards or downwards of the fit to the contrast-
discrimination function, and b (baseline response; Eq. 3) had no effect on the contrast-
discrimination function and was set to 0.

We show that the decrease in contrast-discrimination thresholds at high contrast is explained
by the selection model (see Results), but we also fit the data without ascribing it to any
particular mechanism, by multiplying the thresholds, Δc(c), from the above model (Eq. 2
and 3) with a scaling factor:

[4]

where γ is the contrast at which threshold has decreased by 37%, and ρ is the slope of the
decrease on a log-log axis.

In summary, the contrast-discrimination functions were fit (nonlinear least-squares) using a
combination of Eq. 2-4 (see Fig. 3). There were a total of 8 data points for each of 2 cue
conditions (focal and distributed). These data were fit with 6 free parameters for each cue
condition: gr (response-gain), s, q (exponents), gc (contrast-gain shift), γ, and ρ (center and
slope of threshold dip at high contrast, Eq. 4).

fMRI contrast-response functions
While observers performed the contrast-discrimination task, cortical responses to the stimuli
were measured in visual areas V1, V2, V3 and hV4. In a separate scanning session, we
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identified the 4 subregions of each visual area corresponding to each of the 4 stimulus
apertures (see Supplemental Experimental Procedures, Retinotopic mapping and Visual field
quadrant localizer). Responses corresponding to each stimulus contrast, for each stimulus-
cue combination (i.e., focal-cue target, focal-cue non-target, distributed-cue target and
distributed-cue non-target, see Fig. 1), were then averaged across these 4 subregions of each
visual area.

The mean fMRI response time-courses were estimated using deconvolution, i.e., linear
regression, baseline normalized to the non-target focal-cue condition and the amplitude of
response was estimated. These amplitudes were then fit using Eq. 3. See Supplemental
Experimental Procedures.

Testing sensory noise reduction
The sensitivity model (Fig 1) was fit (nonlinear least-squares) to the contrast-response
functions (see Fig. 5A-F), using Eqs. 2-4. The particular parameterization of the contrast
discrimination functions was not essential for our results in that simplified forms (with fewer
parameters, see Supplemental Experimental Procedures: Alternate functional forms used to
fit contrast-response) did not qualitatively change the results (See Supplemental Data Fig.
S2C).

To perform the fit, the contrast-discrimination functions were numerically integrated, using
the following procedure, to predict the contrast-response functions. Given values for the
noise, σ, and baseline response, b, a contrast-discrimination function uniquely specified a
contrast-response function. The first point on the contrast-response function at 0% contrast
was simply the baseline response:

[5]

We assumed that behavioral sensitivity (d’) was equal to the neural response difference, R(c
+ Δc) − R(c), divided by σ (see Eq. 2). The interpolated contrast discrimination functions
gave the threshold contrast, Δc, for any contrast, c, for a behavioral sensitivity of d’=1 (see
above, Psychophysical contrast-discrimination functions), thus:

[6]

To compute the next point on the contrast-response function, we thus applied Eq. 6, for c=0
and Δc as estimated from the interpolated contrast discrimination function, i.e. R(Δc) = b +
σ. Subsequent values of R were computed by repeated application of Eq. 6 in which each
new c was set to c+Δc from the previous iteration and Δc for that new contrast c, was
retrieved from the interpolated contrast discrimination function (see Supplemental
Experimental Procedures, for more details on the fitting procedure). σ and b were adjusted to
produce the best fit of the contrast-response functions in the least-squares sense.

Testing efficient selection
The contrast-discrimination functions were fit (nonlinear least-squares) by the selection
model, using Eqs. 1 and 3. To perform the fit, the contrast discrimination performance of the
selection model (% correct) was computed by simulating synthetic trials based on responses
computed from the measured contrast-response functions. Contrast-response functions were
interpolated with a simplified version of Eq. 3 (a Naka-Rushton type equation), which
lacked the exponent s. The exact form of the interpolation function was not essential (see
Supplemental Experimental Procedures). For any fixed value of k (Eq. 1) and value of the
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sensory noise (σ), the selection model performance (% correct) was computed as follows.
For each pedestal contrast, Gaussian response distributions were computed for each stimulus
location and each interval of the task (Fig. 7A). The mean of each response distribution was
determined according to the interpolated contrast-response functions. The standard
deviations of the Gaussian response distributions were set to the σ parameter. Responses
were then combined into “read-out” distributions using the max-pooling rule (Eq. 1) and the
parameter k (Fig. 7B). On each of 10,000 simulated trials, a response was taken from the
read-out distribution for each interval. If the larger of these two responses was in the same
interval as the increment in contrast, the trial was marked as correct. The Δc that produced
76% correct values using this procedure was taken as the discrimination threshold. Values of
k and σ were adjusted to produce the best fit of the contrast discrimination functions in the
least-squares sense.

We also computed two variations of the above model (see Fig. 8). One variation included
two σ values (σf and σd), one for the focal-cue and one for the distributed-cue trials. The
second variation of the model used a pooling rule in which the read-out distribution was
taken solely from the correct target location on both focal-cue and distributed-cue trials.
This version had both σd and σf parameters, but no k parameter.

Model comparisons
Model fits were compared using two different measures that account for differences in
number of model parameters: cross-validated r2 and AIC. See Supplemental Experimental
Procedures.

Eye position monitoring
Eye position was monitored during the experiments and analysis of the data did not reveal
any potential artifacts. See Supplemental Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Signal detection theory, sensitivity enhancement, and efficient selection
A. Contrast-discrimination performance depends on the contrast-response function (black
curve) and variability of response. Stimuli of contrast c and c+Δc evoke neural responses
with mean amplitude R(c) and R(c+Δc), respectively. Across trials, presentation of the same
stimuli elicit slightly different responses, depicted by the distributions on the ordinate which
have standard deviation σ. Behavioral sensitivity (d’, see equation) is theorized to be equal
to the difference between the responses to the two stimuli (green arrow) divided by σ. B-D.
Top panels, possible effects of attention on the contrast-response functions. Bottom panels,
distributions of responses for two stimuli of different contrasts, showing how focal attention
may affect stimulus discriminability. B. Focal attention increases the slope of the contrast-
response function. C. Focal attention reduces the trial-to-trial variability in sensory neural
responses D. Focal attention selects the relevant sensory signal (red arrow), so irrelevant
information is ignored.
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Figure 2. Behavioral protocol
Observers performed a 2-interval forced-choice contrast-discrimination task. On each trial, 4
gratings appeared in two temporal intervals (Stim1 and Stim2). Only one grating (target) had
a slightly higher contrast in one of the intervals. A response cue (green arrow in Resp)
appearing after stimulus offset indicated the location of the target. Observers reported the
interval in which the target was higher in contrast. There were two kinds of attentional cues.
A. Focal cue, a single arrow indicating the correct target location with 100% validity, B.
Distributed cue, four arrows indicating that the target was equally likely to appear in any
quadrant. The protocol thus defined four stimulus-cue combinations: (1) focal-cue target, red
arrow; (2) focal-cue non-target, green arrows; (3) distributed-cue target, blue arrow; and (4)
distributed-cue non-target, purple arrow.

Pestilli et al. Page 22

Neuron. Author manuscript; available in PMC 2012 December 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Contrast-discrimination performance
Contrast-discrimination thresholds for the focal-(red) and distributed-cue (blue) conditions
(mean ±s.e.m. across observers; some error bars are smaller then symbols) are plotted as a
function of stimulus contrast. Thick curves are best fit of Eqs. 2-4.
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Figure 4. Testing response enhancement
A. Example fMRI response time-courses from one observer’s V1. Colors indicate different
stimulus-cue combinations (see legend at bottom right). Shading indicates stimulus contrast;
darker colors correspond to lower contrasts. Error bars, s.e.m. over repeated trials. B.
Example contrast-response functions, corresponding to the response time-courses in A.
Continuous curves, best fit of Eq. 3. C. Contrast-response functions for each visual area and
stimulus-cue combination averaged across observers (mean ±1 s.e.m.) for each visual area.
See also Supplemental Data Fig. S1.
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Figure 5. Testing sensory noise reduction
Left column, contrast-discrimination functions (mean ±s.e.m. across observers) for
distributed (blue, A) and focal (red, C, E) cues. Right column, V1 contrast-response
functions (mean ±1 s.e.m. across observers) for distributed (blue, B) and focal (red, D, F)
cues. Contrast-response functions are plotted on log-linear axis in the large panels and on
linear-linear axis in the insets. The smooth curves are fits of the model, with parameter
values listed in each box (σ, sensory noise; b, baseline response).
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Figure 6. Noise estimates and baseline responses inferred from model fits
A. Ratio of sensory noise on distributed cue trials (σd) to focal cue trials (σf). B. Difference
between baseline on focal cue trials (bf) and distributed cue trials (bd). Error bars, ±1 s.e.m.
across observers.
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Figure 7. Selection model
A. Sensory response distributions. Each panel plots simulated response distributions, the
proportion of trials on which a given response was evoked, for each stimulus location. Blue,
first stimulus interval. Orange, second stimulus interval (that included the contrast increment
at the target location). Left, focal-cue trials. Right, distributed-cue trials. Insets, schematics
of stimulus displays and attention cues (see Fig. 2). B. Max-pooling operation. Sensory
responses to each stimulus interval were pooled across locations according to the max-
pooling rule (best-fit k=68.08). C. Read-out distributions after pooling across locations.
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Figure 8. Comparison of sensory noise reduction and efficient selection
A. Contrast-discrimination functions (data re-plotted from Fig. 3) fit with the selection
model (continuous curves), constrained by the average V1 contrast-response functions (not
shown, but see Fig. 4). The two free parameters, k (max-pooling parameter, Eq. 1) and σ
(sensory noise standard deviation) were constrained to be the same for the focal- and
distributed-cue conditions. B. Contrast-discrimination functions fit with the sensitivity
model, again constrained by the V1 contrast-response functions. Noise standard deviation
(σ) was constrained to be 50% smaller for focal- than distributed-cue trials. c. Changes in
noise standard deviation (σ) for focal- and distributed-cue trials estimated by the selection
(left) and the sensitivity (right) models. Error bars, ±1 s.e.m. across observers. See also
Supplemental Data Fig. S2.
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Figure 9. Testing prediction of selection model that high contrast distracters disrupt behavioral
performance
A. Contrast discrimination thresholds (mean ±s.e.m. across observers; some error bars are
smaller then symbols) for focal-(red) and distributed-(blue) cue conditions as a function of
distracter condition (see legend). B. Ratio of thresholds averaged across pedestal contrast.
Error bars are s.e.m. across observers.
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