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Abstract
Objective—We review uses of electronic healthcare data algorithms, measures of their accuracy,
and reasons for prioritizing one measure of accuracy over another.

Study design and setting—We use real studies to illustrate the variety of uses of automated
healthcare data in epidemiologic and health services research. Hypothetical examples show the
impact of different types of misclassification when algorithms are used to ascertain exposure and
outcome.

Results—High algorithm sensitivity is important for reducing the costs and burdens associated
with the use of a more accurate measurement tool, for enhancing study inclusiveness, and for
ascertaining common exposures. High specificity is important for classifying outcomes. High
positive predictive value is important for identifying a cohort of persons with a condition of
interest but that need not be representative of or include everyone with that condition. Finally, a
high negative predictive value is important for reducing the likelihood that study subjects have an
exclusionary condition.

Conclusion—Epidemiologists must often prioritize one measure of accuracy over another when
generating an algorithm for use in their study. We recommend researchers publish all tested
algorithms—including those without acceptable accuracy levels—to help future studies refine and
apply algorithms that are well-suited to their objectives.

Keywords
algorithms; bias; databases; factual; epidemiology; medical records systems; computerized;
misclassification

INTRODUCTION
Electronic healthcare data (e.g., Medicare claims, automated data from health plans) can be
used to address epidemiologic questions in large populations in real-world settings.
Algorithms based on these data allow epidemiologists to classify persons according to an
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exposure (e.g., preexisting dementia), outcome (e.g., disease-free survival), eligibility factor
(e.g., absence of immunosuppresion), or covariate (e.g., a comorbidity) (Table 1). Electronic
healthcare data have been used in studies on a wide variety of health conditions (e.g.,
infectious disease, cancer, diabetes), and for a variety of study designs (i.e., retrospective
studies, prospective studies, and surveillance).

However, because electronic healthcare data can be incomplete or inaccurate,
misclassification of the variable defined by the algorithm may occur.(1) The circumstances
under which electronic data could be incomplete or inaccurate, include: 1) when patients do
not seek care for a condition,(2, 3) or when they are treated outside of an integrated
healthcare delivery system or insurance plan;(2–6) 2) when physicians do not accurately or
consistently code procedures or diagnoses;(3–8) 3) when available codes do not adequately
describe the procedure or condition,(2, 6, 7) or when too many diagnoses are present for all
to be coded;(6) 4) when a health plan (e.g., Medicare) does not cover a particular procedure;
(4, 9) and 5) when the variable of interest is not measured well by automated data (e.g.
functional status),(2–5, 10–12) tends to be missing altogether (e.g. exercise), (2, 3, 5, 10) or
tends to be missing differentially by exposure or disease status (e.g. smoking).(13)
Recognizing that an algorithm based on electronic healthcare data will not be completely
accurate, researchers must often prioritize one measure of algorithm accuracy (sensitivity,
specificity, positive predictive value, or negative predictive) over another. Herein we review
uses of electronic healthcare data algorithms, measures of their accuracy, and reasons for
prioritizing one measure of accuracy over another based on the goals of the analysis.
Addressing the reasons for prioritizing one accuracy measure over another in subsequent
algorithm development and validation studies would enhance the current effort (14) to
improve reporting in such studies.

USES OF ELECTRONIC HEALTHCARE DATA ALGORITHMS
An algorithm is “a completely defined set of operations that will produce a desired
outcome.”(15) The goal of using electronic data algorithms for epidemiologic and health
services research is to correctly classify a characteristic or condition. At its simplest, such an
algorithm is a single criterion (such as a procedure or diagnosis code) chosen by the
researcher to identify a characteristic. The algorithm classifies anyone in the study
population whose record contains the appropriate code as having the characteristic as of the
date associated with the code; subjects with no record of the code are classified as not
having the characteristic during the window of time in which the code could have been
assigned to the individual. More complex algorithms may consider combinations of
procedure and diagnostic codes, the timing of codes (e.g., the frequency with which one or
more codes appears over a given period of time), and code order (e.g., the sequence of two
or more procedure codes). A detailed discussion of methods used to develop electronic
healthcare data algorithms is beyond the scope of this paper, but descriptions can be found
in studies that have used such algorithms.(16–18)

Electronic healthcare data algorithms can ascertain different types of information for use in
epidemiologic studies, including information on exposures, outcomes, inclusion and
exclusion criteria, and covariates. Epidemiologists can use this information in different
ways, ranging from identifying persons for further contact or chart review, to relying on the
classification without further validation. Study designs that use algorithms include
retrospective assessments (case-control or cohort), real-time surveillance, and prospective
studies (including randomized trials). Table 1 presents examples of how electronic
healthcare data are used in epidemiologic studies.
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MEASURES OF ALGORITHM ACCURACY
Relationship among accuracy measures

Standard epidemiologic measures including sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV), describe the accuracy of algorithms (Appendix
for Table 2). Algorithm accuracy is usually measured relative to data sources such as patient
medical charts or patient surveys that are presumed to be a gold standard. Algorithm
sensitivity is computed only among study subjects with the characteristic, and specificity is
computed among only those without the characteristic. Sensitivity and specificity do not
depend on the prevalence of the characteristic in the study population, but they can vary
across populations.(19) Both PPV and NPV depend on sensitivity, specificity, and
prevalence. For conditions that are present in a minority of the study population, specificity
has a greater impact than sensitivity on PPV; the reverse is true for conditions that are
present in the majority of the study population. In algorithm development, there is often a
tradeoff between sensitivity and specificity: increasing an algorithm’s sensitivity can
decrease its specificity. For example, in developing an algorithm to identify breast cancer
recurrences, the sensitivity for finding recurrences can be increased by including an
International Classification of Diseases (ICD)-9 diagnostic code for a primary breast cancer,
such as 174.9 (malignant neoplasm of female breast, unspecified). However, this decreases
the algorithm’s specificity because some women with only a primary breast cancer will be
falsely classified as having had a recurrence. Several studies have demonstrated that varying
algorithm inputs in this way can greatly affect algorithm properties.(20–24) Thus, when
developing an algorithm, epidemiologists must often weigh the relative importance of
sensitivity, specificity, PPV, and NPV, and prioritize the accuracy measure that is most
important to a particular study.

Prioritizing different accuracy measures
The relative importance of different measures of accuracy (i.e., specificity, specificity, PPV,
and NPV) depends on the intended use of the algorithm.(20, 21, 25–27) Misclassification
can lead to reduced power,(28, 29) loss of generalizability,(25) as well as increased bias,(28,
29) patient burden,(29) and study cost.(29) The relative impact of each of these depends on
the study. Below we discuss several scenarios in which prioritizing sensitivity, specificity,
PPV, or NPV might be important. Increasing sensitivity can compromise specificity and
vice versa, and both affect PPV and NPV. Scenarios that require maximizing one accuracy
measure entirely at the expense of the other are probably rare, but there are situations in
which one measure may be more important than another.

When is algorithm sensitivity important?
Prioritizing sensitivity of an algorithm over specificity is important when the goal is
identifying all persons with a given characteristic in a population. In other words, sensitivity
is the primary consideration when the benefits of identifying more true positives outweigh
the negative consequences of including more false positives. This may be important when
the goal is: 1) reducing study costs and burdens that will be incurred from using a more
accurate measurement tool; 2) enhancing the inclusiveness of an algorithm; or 3) collecting
information on a common exposure.

Reducing study costs that result from using a more accurate measurement
tool—In studies where additional verification or data collection with a more accurate tool is
possible, prioritizing sensitivity over specificity may be preferable. For example, in a study
of care processes after myocardial infarction, patients were identified based on diagnostic
and procedure codes, then medical chart review was done to collect information on
symptoms and other detailed clinical data (30) (Table 1). A study of breast cancer recurrence
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could substantially reduce its costs by using an electronic healthcare data algorithm to
identify women likely to have had a breast cancer recurrence and then use medical chart
review to identify false positives (i.e., women who did not have a breast cancer recurrence
but were classified by the algorithm as having had one.) An algorithm with modest
specificity but high sensitivity could dramatically reduce the number of charts to be
abstracted. For example, assuming recurrence in 150 subjects (15%) in a cohort of 1000
women with breast cancer, an algorithm that identified recurrences with only 60%
specificity (and 100% sensitivity) would reduce the number of charts to be abstracted by
about half compared to abstracting charts of all women in the cohort: abstraction would
occur on only 490 women (150 true positives plus 40% [% false positives] of the 850
women without recurrence).

Another example comes from surveillance studies that monitor for adverse events. In these
studies where the priority is not missing a single case and when confirmatory analysis is
intended, an algorithm with high sensitivity is desirable. Nordstrom et al. developed an
algorithm to identify hypersensitivity reactions to abacavir (an antiretroviral used to treat
human immunodeficiency virus), to be used when monitoring claims data as part of adverse
event surveillance.(31) They proposed that their algorithm could provide a timely, initial
indication of an adverse event to be confirmed with supplemental information.

Similarly, high sensitivity is desirable for studies that plan to recruit patients with a
particular condition who will be further screened by telephone interview or mailed
questionnaire, as suggested by Warren et al. for studies that plan to survey breast cancer
patients.(27) Gary et al. used this approach to identify participants for a randomized
controlled trial of a management intervention for type 2 diabetes (32) (Table 1).

Enhancing study inclusiveness—Another scenario in which identifying all cases is
important is a study that assesses the full range of disease outcomes rather than only the
most severe. For studies relying on claims data only, Winkelmayer et al. argue that highly
sensitive algorithms are important for generalizability of results, particularly if less sensitive
algorithms are differentially sensitive to different disease characteristics.(25) For example,
in a study of treatment effectiveness for depression, an algorithm that is more sensitive for
severe depression than mild depression may fail to detect the benefit of treatment strategies
that work for mild but not severe depression.

Identifying a common exposure—Using algorithms to classify exposure status—
without additional data collection for verification—is common, particularly in
pharmacoepidemiology studies that use electronic pharmacy data to classify subjects’
medication use (for example, Chen et al.’s study of antidepressant use and risk of
hemorrhagic stroke (33)) (Table 1). In this situation, lack of sensitivity in identifying a
common exposure can cause bias. For example, in a cohort study where there is non-
differential misclassification of the exposure but ascertainment of the outcome is perfect,
bias due to low sensitivity will increase as the exposure becomes more prevalent. This
occurs because the proportion of the exposed study population that is misclassified as
unexposed increases (Appendix for Table 3). In contrast, bias due to low specificity
decreases as an exposure becomes more common because the proportion of the study
population without exposure who are misclassified as exposed decreases (Appendix for
Table 3). The overall incidence of disease does not independently affect percent bias
however, bias increases as the true relative risk is further from the null (Appendix for Table
3). The bias in the odds ratio is similar to the bias in the relative risk in the above examples.
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When is algorithm specificity important?
Imperfect sensitivity of an algorithm that classifies outcomes will not bias the relative risk,
provided that the misclassification is non-differential with respect to exposure status and
specificity is perfect. The same proportion of subjects are removed from the numerator of
the rate in the unexposed and exposed groups, and the denominator is unchanged, so when
comparing exposed to non-exposed subjects, the ratio of the observed incidence of the
outcome will be the same as if the sensitivity were perfect.(19) There will however, be a
very small amount of bias in the odds ratio, which will increase as the outcome becomes
more common.

Imperfect specificity in classifying the outcome will, however, bias the relative risk even if
sensitivity is perfect (Appendix for Table 4). In their hypothetical study of medication use
and risk of lymphoma, Setoguchi et al demonstrate that bias increases with decreasing
specificity.(24) The proportion of subjects added to the numerator of the rates in the exposed
and unexposed groups will not be the same, because a fixed proportion of each non-diseased
group is added to the diseased groups resulting in a different proportional change in the
diseased group (i.e., the numerator of the rates). Therefore, prioritizing specificity, even at
some cost to sensitivity, is important in studies that use algorithms rather than chart review
for identifying outcomes.

Once specificity is prioritized, sensitivity remains important in one respect: at a given level
of specificity, bias increases as sensitivity decreases (Appendix for Table 4). As sensitivity
decreases, the size of the numerator of the rates decreases, and a given addition to that
numerator (due to incomplete specificity) will have a greater impact (larger percent change
in the numerator). Also of note, as the outcome becomes increasingly common, imperfect
specificity has less of an effect on the relative risk. Additionally, bias increases as the true
relative risk becomes further from the null (Appendix for Table 4).

When is algorithm PPV important?
The primary means by which a researcher can influence algorithm PPV and NPV is by
modifying sensitivity and specificity, so PPV and NPV cannot be completely disentangled
from these measurements. Prevalence, which also influences PPV and NPV, cannot be
modified, although the researcher may choose to apply the algorithm to a population with a
high prevalence of the condition to increase the PPV of the algorithm. Conversely, selecting
a population with a low prevalence of the condition increases an algorithm’s NPV.

In some studies, one may want to ensure that the algorithm’s PPV – and not just its
specificity – is high. PPV is important when identifying a cohort defined by disease status to
ensure that only persons who truly have the condition of interest are included in the study.
For example, in developing an algorithm to identify persons with a relapse of acute
myelogenous leukemia, Earle et al. prioritized PPV to ensure that all patients identified were
receiving treatment for the relapse and not for the initial cancer.(17) Similarly, Nattinger et
al. developed an algorithm with high PPV to identify women with incident breast cancer to
be used when conducting patterns-of-care and survivorship studies.(16) Winkelmayer et al.
developed several algorithms to identify chronic kidney disease using Medicare claims data,
and recommended prioritizing PPV when the goal is to identify a cohort with this condition.
(25) However, an algorithm with a high PPV may not identify all persons with a condition
(i.e., there may be false negatives). Therefore, prioritizing PPV is appropriate in studies
where the cohort must be limited to persons with a particular condition but need not include
or be representative of all persons with the condition of interest.

In the above scenarios, high specificity is important for ensuring high PPV. However, high
specificity alone is not sufficient if the overall prevalence of disease is very low because a
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relatively large absolute number of persons without the condition will be misclassified as
having it, even though the proportion misclassified is small.(19) This demonstrates that
effective algorithm use may require selecting an appropriate population in which to apply
the algorithm.

When is algorithm NPV important?
NPV is an important consideration for algorithms used to identify subjects to include in a
study. Many studies seek to exclude subjects with a history of another illness. For example,
a study of the relationship between medication use and risk of non-Hodgkin’s lymphoma
may exclude people with a history of autoimmune diseases whose inclusion would introduce
confounding because they may be more likely to both take certain medications and be
diagnosed with non-Hodgkin’s lymphoma. Beiderbeck et al. used ICD-9 codes to identify
and exclude persons with a history of cancer or human immunodeficiency virus-related
illness from their case-control study of medication risk factors for non-Hodgkin’s lymphoma
(34) (Table 1). Similarly, a study of incident fall risk in the elderly may exclude people with
a history of falls. Thus, to reduce confounding in these types of studies, persons considered
to be free of the condition must truly be disease-free. In the example of a case-control study
of non-Hodgkin’s lymphoma, only persons with no history of autoimmune disease should be
included, so an algorithm for autoimmune disease with a high NPV should be employed.
This would ensure that anyone classified as having no history of autoimmune disease truly
was disease-free, even if this unnecessarily excluded a few people without autoimmune
disease.

CAVEATS
The above discussion provides examples of scenarios in which different types of algorithm
accuracy are important. The following section has additional considerations for guiding the
use of electronic healthcare data algorithms.

Relationship between misclassification and bias of estimates is complex
One of the primary reasons to prioritize one measure of algorithm accuracy over another is
to reduce bias (or distortion) in the risk estimate (i.e., the magnitude of the association
between the exposure and the health outcome). The relationship between misclassification
and bias of risk estimates is complex, however.(35–41) We will not explore the literature in
detail, although we note several factors that may make it difficult to determine how
misclassification will affect the estimate of the association between the exposure and
outcome:

1. Non-differential bias does not always attenuate the risk estimate toward the null,
(35, 40, 42) particularly when an exposure has more than two levels,(35, 40, 42)
when non-differential errors in exposure and outcome classification are not
independent of one another,(38, 41, 43) or when the error in a variable is associated
with its true level.(44)

2. Small departures from non-differentiality (i.e., misclassification that is
approximately—but not exactly—the same in groups being compared) can lead to
substantial bias away from the null.(37, 45)

3. Differential misclassification can cause bias in either direction.(19)

4. Because bias is an average, chance alone may cause results from an individual
study to be in the opposite direction of the expected bias.(36, 46, 47)
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5. Bias away from the null can occur when adjusting for a confounder that is non-
differentially misclassified if the direction of confounding is away from the null.
(48)

6. Total bias in a risk estimate depends upon factors other than misclassification.(39,
49)

Thus, when developing and using an algorithm, predicting the expected direction of the bias
due to misclassification may not be possible.

Algorithm properties may vary across settings
An algorithm developed in one setting may have different sensitivities and specificities in
other settings if electronic healthcare data coding practices differ or change over time. Some
integrated delivery system use their own “homegrown” codes,(4) which can make applying
an algorithm developed in another setting difficult, unless careful mapping of the
homegrown codes to standard diagnostic and procedure codes is performed. Even when
identical coding systems are used, coding practices may differ. For example, fee-for-service
and health maintenance organization providers may code differently based on
reimbursement structure.(4) Thus, applying an algorithm developed in one setting to a
different setting requires caution and an understanding of similarities and differences in
coding practices. Studies using algorithms developed in other settings may find it useful to
first assess algorithm accuracy in a subset of their own study population. Lack of adequate
detail in reports of validation studies (14) may make this challenging. To the extent that
readers are unable to identify characteristics of the study population used for validation or
the algorithm itself, they will have difficult determining whether the algorithm is appropriate
for use in a subsequent study.

CONCLUSIONS
Electronic healthcare data are valuable resources for epidemiologic studies. Ideally,
algorithms that identify procedures and disease states from automated healthcare data would
be 100% accurate, with perfect sensitivity and specificity. In reality, however, sensitivity
and specificity are a tradeoff, and depending on the goals of the study a researcher must
prioritize one measure of accuracy over others. When additional data collection with a more
accurate measurement tool is feasible, algorithm sensitivity should be prioritized. High
sensitivity is also important for enhancing study inclusiveness and for collecting information
on common exposures. High specificity is important for classifying outcomes. High positive
predictive value is important for cohort identification when the cohort does not need to be
representative or include everyone with the defining condition. Finally, a high negative
predictive value is important for reducing the likelihood that included subjects will have an
exclusionary condition. We encourage publication of all tested algorithms, in accordance
with recently proposed guidelines,(14) even those with unacceptable accuracy levels, to
assist future studies in refining and applying the algorithms that are the most suitable for
their objectives.
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WHAT’S NEW

• Researchers developing algorithms based on electronic healthcare data should
prioritize different measures of accuracy based on the intended use of the
algorithm.

• Sensitivity is important for reducing the costs of data collection and ascertaining
common exposures, whereas specificity is important for classifying outcomes.

• Researchers should publish all tested algorithms and their properties.
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