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Abstract
Influx of Ca2+ through L-type Ca2+ channels (LTCCs) contributes to numerous cellular processes
in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and
transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac
myocytes, including those at dyadic junctions and within different plasma membrane
microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally
distinct functional properties and regulation, affording precise spatiotemporal modulation of L-
type Ca2+ current (ICa,L). Different subcellular LTCC populations demonstrate variable rates of
Ca2+-dependent inactivation and sometimes coupled gating of neighboring channels, which can
lead to focal, persistent ICa,L. In addition, the assembly of spatially defined macromolecular
signaling complexes permits compartmentalized regulation of ICa,L by a variety of neurohormonal
pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations,
with β2-adrenergic activation leading to enhanced ICa,L through caveolar LTCCs and β1-
adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal
subcellular targeting of LTCCs and associated signaling proteins may contribute to the
pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias.
Further identifying the characteristic functional properties and array of regulatory molecules
associated with specific LTCC subpopulations will provide a mechanistic framework to
understand how LTCCs contribute to diverse cellular processes in normal and diseased
myocardium.
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1. Introduction
In the heart, voltage-dependent L-type Ca2+ channels (LTCCs) are essential to numerous
cellular processes including excitability, excitation-contraction (EC) coupling, hormone
secretion, and regulation of gene expression. Participation in such diverse functions
demands that the influx of Ca2+ through L-type channels (L-type Ca2+ current, ICa,L) is
tightly controlled and compartmentalized within the cardiac myocyte. It has long been
recognized that discrete clusters of LTCCs exist along the sarcolemma, and studies in recent
years have greatly extended our understanding of how specific subcellular localization
impacts channel function and regulation by a variety of neurohormonal and second
messenger pathways [1-6].

A number of important LTCC subpopulations have been identified in cardiomyocytes that
associate with unique macromolecular signaling complexes and scaffolding proteins, which
enables spatiotemporal modulation of ICa,L. These include channels that are localized to
dyadic junctions as well as extradyadic channels that reside in biochemically distinct regions
of surface membrane known as membrane microdomains. Plasma membrane microdomains,
including lipid rafts and caveolae, exhibit unique lipid composition and protein components
and coordinate numerous cellular functions including various signal transduction pathways
and protein recycling [7-9]. Numerous signaling molecules have been localized to caveolae
including components of the β2-adrenergic receptor/adenylyl cyclase/protein kinase A
(PKA) cascade [5,6]. This review will highlight the evolving understanding of distinct
subcellular populations of LTCCs in cardiomyocytes and their differing regulation and
contributions to Ca2+ signaling in the heart.

2. LTCCs in the heart
2.1. Molecular composition of cardiac LTCCs

LTCCs are multimeric complexes consisting of a pore forming α1 subunit and auxiliary β,
α2δ, and α subunits [10]. The α1 subunit serves as the main functional component of the
channel complex and consists of four homologous domains (I-IV) each containing six
transmembrane segments (S1-S6). Cav1.2 (α1C, encoded by the CACNA1C gene) is the
predominant α1 subunit in ventricular myocardium, whereas both Cav1.2 and Cav1.3 (α1D,
encoded by CACNA1D) are expressed in atrial tissue as well as nodal cells, where ICa,L
contributes to automaticity [11-15]. Extensive alternative splicing of Cav1.2 has been
reported, and these splice variants play unique roles in cardiovascular physiology,
pharmacology, and disease [16,17]. One important example is alternative splicing of Cav1.2
within transmembrane segment IS6, which impacts sensitivity to the dihydropyridine class
of LTCC blockers. Differential expression of these splice variants lead to higher or lower
sensitivity in smooth and cardiac muscle, respectively [18,19].

Ca2+ channel auxiliary subunits further add to the functional diversity of LTCCs. The
cytosolic β subunits promote trafficking of the channel complex to the plasma membrane
and modulate gating properties of the channel [20-22]. The β subunits are encoded by four
distinct genes (CACNB1-4), each of which undergoes alternative splicing to generate a total
of 18 or more unique β subunit isoforms in human myocardium [23]. The α2δ subunits arise
from a common precursor protein that is post-translationally cleaved and relinked via a
disulfide bridge. The extracellular α2 peptide is heavily glycosylated and the δ peptide
contains a single transmembrane domain [24]. Of the four α2δ subunits (encoded by
CACNA2D1-4), α2δ-1-3 are expressed in atrial tissue whereas α2δ-1 and α2δ-2 are present in
ventricular myocardium [25,26]. The α2δ subunits modify both channel gating properties
and surface membrane expression of the L-type channel complex [20,27]. Ca2+ channel α
subunits, of which eight exist (encoded by CACNG1-8), were originally demonstrated to
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associate with voltage-dependent Ca2+ channels in skeletal muscle and brain [28,29].
However, recent evidence suggests several α subunits including α4, α6, α7, and α8 are
present in cardiac muscle and associate with the cardiac Cav1.2 channel complex, altering
both activation and inactivation properties of the channel [30].

2.2. Distinct LTCC subpopulations in cardiac myocytes
2.2.1. Dyads—A critical subpopulation of LTCCs is that which participates in EC
coupling. A number of studies applying immunoconfocal and electron microscopy
techniques have demonstrated that a subset of LTCCs form dyadic complexes with Ca2+-
release channels (ryanodine receptors) on apposing junctional sarcoplasmic reticulum (SR)
[1,2,31,32]. Upon membrane depolarization, activation of these LTCCs leads to an influx of
Ca2+ into the dyadic cleft space, which triggers the opening of ryanodine receptors and
subsequent release of SR Ca2+ stores. This Ca2+-induced Ca2+ release (CICR) mechanism
underlies the rise in free intracellular Ca2+ concentration ([Ca2+]i) that activates
myofilament proteins leading to muscle contraction [33].

Studies have estimated that approximately 75% of LTCCs reside at dyad junctions in cardiac
myocytes [34]. In mammalian ventricular cardiomyocytes, dyadic couplings occur
predominantly within the transverse (T)-tubule network, which represents a complex system
of interconnected membrane structures continuous with the extracellular space [35]. T-
tubules extend deep into the myocyte at each myofibrillar Z-line, bringing the plasma
membrane in close proximity with junctional SR through the width of the cell, thereby
allowing synchronous Ca2+ release throughout the cell with each depolarization. However,
as many as 25% of dyads are found at the surface sarcolemma in ventricular myocytes
[35,36]. Studies in which the T-tubule system is isolated from the surface membrane using
osmotic shock led to an 75-80% decrease in ICa,L without significantly altering SR Ca2+

load; therefore, it is hypothesized that although the majority of LTCCs reside in the T-
tubular membrane, surface membrane LTCCs may play a particularly important role in SR
Ca2+ loading [37].

Dyadic LTCCs are the target of numerous neurohormonal signaling pathways, most
prominently the β-adrenergic/PKA signaling pathway, which increases contractility partially
through enhancing ICa,L [38]. Whereas extradyadic LTCCs do not contribute directly to EC
coupling, these channels likely play roles in several other cellular processes. These
extradyadic channels are not found randomly throughout the sarcolemma, but associate with
important signaling molecules in biochemically-distinct membrane microdomains [3,4,6,39].

2.2.2. Lipid rafts—The plasma membrane is a heterogeneous mixture of lipids,
cholesterol, and proteins that can form localized regions that compartmentalize cellular
processes. The tight packing of sphingolipids and cholesterol forms liquid-ordered
microdomains popularly termed “lipid rafts”, which serve a number of important cellular
functions including signal transduction and membrane trafficking [7,8]. Although the small
(10-200 nm), heterogeneous, and dynamic nature of lipid rafts has made their visualization
and characterization challenging, one common feature is that these microdomains resist
solubilization with non-ionic detergents such as Triton X-100 at 4°C and can be found in
low density fractions on density gradients [8,40,41]. A number of studies utilizing this
biochemical methodology have demonstrated the presence of Cav1.2 in low density fractions
from ventricular myocardium [5,42,43], strongly suggesting LTCCs localize to lipid raft
domains.

2.2.3. Caveolae—Caveolae represent a subset of lipid rafts that are morphologically
distinct structures appearing in electron micrographs as flask-shaped invaginations of
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membrane that are 50-100 nm in diameter. Caveolae are rich in cholesterol and are
associated with the integral membrane protein caveolin [44]. Three genes (CAV1-3) encode
six known caveolin subtypes (caveolin-1α and −1β; caveolin-2α, −2β, and −2α; and
caveolin-3) that have varying tissue distribution [45]. Caveolin (Cav)-1 and Cav-2 are
expressed in most cell types, whereas expression of Cav-3 is restricted to cardiac, skeletal,
and smooth muscle types, as well as some types of neurons [45-47].

The lack of morphologically distinct caveolae in skeletal muscle from Cav-3 knockout mice
highlights the importance of caveolin in caveolae formation [48]. Cholesterol is an
additional component necessary for caveolar assembly and maintenance, because depletion
of membrane cholesterol dramatically reduces caveolae number [49]. More recently, the
cytosolic protein Polymerase I and Transcript Release Factor (PTRF), also known as Cavin,
was also demonstrated to be required for caveolar biogenesis [50].

Several methods have been used to demonstrate the presence of LTCCs within caveolae in
cardiomyocytes, exploiting the presence of Cav-3 as a marker to help differentiate the
localization of proteins to caveolae versus non-caveolar lipid rafts. First, co-
immunoprecipitation from ventricular myocytes using anti-Cav-3 or anti-Cav1.2 showed that
the two proteins are associated [5,51]. Immunofluorescence studies of isolated ventricular
myocytes using confocal microscopy also demonstrated extensive colocalization between
Cav-3 and Cav1.2 [5,43]. Perhaps most strikingly, immunogold electron microscopy showed
colabeling of Cav-3 and Cav1.2 in close association within morphologically distinct
caveolae (Fig. 1A,B) [5,51].

2.2.4. Caveolin-3 scaffolds—The presence of caveolins in cell types lacking
morphologically distinct caveolae such as neurons has sparked interest in understanding the
physiological role of caveolins independent of caveolae. It has been suggested that extra-
caveolar caveolin forms scaffolds that regulate protein trafficking and signal transduction in
some cell types [52]. Cav-3 scaffolds may be particularly important in cardiac myocytes,
which have relatively few caveolae compared to other cell types such as endothelial cells
and smooth muscle myocytes, yet express Cav-3 at high levels [52,53]. In adult rat
cardiomyocytes, a significant amount of Cav-3 is found in heavy (non-buoyant) fractions,
and immunoprecipition studies showed that Cav-3 associates with a number of signaling
proteins including G-protein coupled receptors, adenylyl cyclase, and heterotrimeric G
proteins even in heavy fractions [54]. These findings suggest Cav-3 may regulate signal
transduction in sarcolemmal regions outside of caveolae in cardiac myocytes. However, no
data yet directly demonstrate localization of LTCCs to noncaveolar Cav-3 scaffolds and
additional approaches such as immunogold electron microscopy are needed to carefully
investigate this possibility.

2.2.5. Nucleus—The carboxyl (C)-terminus of Cav1.2 undergoes proteolytic cleavage and
serves as an autoinhibitory domain by reassociating with the truncated Cav1.2 subunit at the
surface membrane [55-57]. Recently, the Cav1.2 C-terminus was also localized to the
nucleus in cardiac myocytes, where it autoregulates transcription [58]. Western blotting of
nuclear fractions showed expression of the cleaved Cav1.2 C-terminus in nuclear fractions,
and GFP-tagged Cav1.2 C-terminus showed nuclear localization [58]. Interestingly,
expression of various β subunits fused to GFP in ventricular myocytes also revealed
significant localization of β4 in the nucleus; however, the significance of this is currently
unclear [59].

2.2.6. Other subcellular compartments—Additional specialized compartments may
exist that could prove important for LTCC modulation. For example, a recent study using
electron tomography identified electron-dense bridges between dyadic clefts and the
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mitochondrial outer membrane in mouse ventricular myocardium, and ICa,L has been
demonstrated to alter mitochondrial function either directly or through association with actin
filaments [60-62]. This raises the possibility of a functional coupling between dyadic LTCCs
and mitochondria. Similarly, a close spatial relationship exists between the T-tubule
membrane, dyadic cleft, and the nuclear envelope [63]. However, the detailed identity and
function of these different subcellular populations of LTCCs are largely unknown at this
time.

Furthermore, the subcellular localization of LTCCs may be more complex than currently
appreciated. There is a dynamic range in the size of dyadic junctional spaces, for instance,
which could differentially impact LTCC function at individual dyads [60]. Likewise,
subcompartmentalization of membrane microdomains into smaller nanodomains may be
necessary to more precisely define their function and impact on LTCCs. For example, it is
currently unknown whether subpopulations of LTCCs coupled to different signaling
pathways coexist within the same caveola. Addressing these possibilities will require
refinement of available biochemical and microscopy techniques.

3. Subcellular localization impacts LTCC function
With each heart beat, ICa,L activates ryanodine receptors to release SR Ca2+ stores, leading
to a transient rise in global [Ca2+]i from ~100 nM during diastole to ~1 μM during systole,
which activates myofilament proteins, producing contraction. How then, is specificity of
Ca2+ signaling achieved within the cardiomyocyte? It is increasingly recognized that the
localization of LTCCs to structurally or biochemically distinct subcellular regions affords
functional and physical compartmentalization. Within these spatially defined areas, local
[Ca2+] may differ significantly from bulk cytosolic [Ca2+]i, which modulates LTCC function
and differentially regulates a number of Ca2+-dependent cellular processes [64,65].

3.1. Local effects on Ca2+-dependent inactivation of LTCCs
Upon opening, LTCCs undergo rapid voltage-dependent and Ca2+-dependent inactivation
that limits the amount of Ca2+ entry during each action potential. The mechanism of Ca2+-
dependent inactivation (CDI) involves tethering of the Ca2+ sensor protein calmodulin
(CaM) to the carboxyl tail of Ca 1.2 [66,67]. Ca2+v ions near the mouth of the channel bind
to CaM, which subsequently changes conformation to bind a nearby IQ motif, accelerating
channel inactivation. The degree of CDI observed depends on local [Ca2+] and thus may
differ among channels localized to various subcellular environments [68].

At the dyadic cleft, a spatially restricted area estimated between 4.39 × 105 nm3 and 1.5 ×
106 nm3 in size, ICa,L and subsequent SR Ca2+ release combine to dramatically increase
local [Ca2+] from approximately 100 nM during diastole to 100-600 μM during systole
[60,69]. Elevated [Ca2+] in the dyadic space during CICR greatly enhances CDI of LTCCs,
which impacts action potential duration in ventricular myocytes (Fig. 2) [70-75]. This was
demonstrated in rat ventricular myocytes by depleting SR Ca2+ stores with thapsigargin to
abolish CICR, which slowed CDI, resulting in a 40-70% increase in ICa,L during the action
potential waveform and prolonging action potential duration [72].

Interestingly, LTCCs outside of T-tubules have been shown to exhibit slower inactivation
kinetics, indicating surface membrane channels are less sensitive to SR Ca2+ release [74,76].
It is not clear whether subpopulations of surface membrane LTCCs localized to membrane
microdomains such as lipid rafts and caveolae have a characteristic ‘signature’ of CDI.
However, experiments using fluorescence-based Ca2+ sensors have indicated that
subcaveolar [Ca2+] is higher than levels associated with the surrounding plasma membrane
in endothelial cells [77]. Given the known clustering of LTCCs in lipid raft and caveolar
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microdomains in cardiomyocytes, it is possible that locally elevated subcaveolar [Ca2+] may
contribute to unique CDI among caveolar LTCCs relative to channels residing outside of
caveolae [5,43,51].

There is evidence that the conformational change of the CaM-bound C-terminus of Cav1.2
during CDI directly impacts Ca2+-dependent cellular processes such as excitation-
transcription coupling and SR Ca2+ release [78]. For instance, activation of cAMP-
responsive element-binding protein (CREB)-mediated gene transcription upon
depolarization is dependent on a freely moving Cav1.2 C-terminus as well as the binding of
CaM. This was demonstrated through experiments in which the Cav1.2 C-terminus was
either immobilized to the plasma membrane by fusing it to a pleckstrin homology domain or
made insensitive to CaM, both of which diminished CDI and abolished CREB activation
despite an influx of Ca2+ and corresponding rise in [Ca2+]i [79]. These findings suggest at
least one mechanism of excitation-transcription coupling is attributed more to the movement
of CaM-bound Cav1.2 C-terminus than to ICa,L or changes in [Ca2+]i [78, 79]. Thus, overall
differences in the degree and kinetics of CDI among subpopulations of LTCCs provide a
mechanism to differentially regulate Ca2+ signaling processes within distinct subcellular
domains of cardiac myocytes.

3.2. Coupled gating of LTCCs
Ca2+ influx through single LTCCs or small clusters of channels can be measured with high
spatiotemporal resolution using total internal reflection fluorescence (TIRF) microscopy
[80,81]. Whereas single L-type channels normally exhibit random, infrequent openings that
permit small rises in submembrane [Ca2+] termed “Ca2+ sparklets”, some channels associate
in highly active clusters that generate localized regions of significantly elevated [Ca2+]
[82,83]. These “persistent Ca2+ sparklets” arise from the coupled opening of as many as six
adjacent LTCCs [83]. Coupled gating of neighboring LTCCs associated with persistent Ca2+

sparklets is enhanced by the scaffold protein A-kinase anchoring protein (AKAP) 5 (also
known as AKAP 79/150) as well as protein kinase C alpha (PKCα) [83]. Thus,
subpopulations of LTCCs associating with AKAP5 and PKCα may serve as specialized
Ca2+-signaling domains that are coupled to discrete cellular functions requiring locally high
[Ca2+] [83,84]. Whether LTCCs giving rise to persistent Ca2+ sparklets localize to specific
subcellular compartments remains unclear; however, AKAP5 has been shown to associate
with Cav-3, indicating caveolae or Cav-3 scaffolds may serve an important role in
modulating persistent Ca2+ sparklet activity [85]. Future work is needed to define the precise
subcellular localization and physiological role of persistent Ca2+ sparklets in cardiac
myocytes.

3.3. Membrane microdomains and excitation-transcription coupling
LTCCs provide a critical link between cellular excitability and gene regulation. Considering
transcriptional regulation is on a time course of minutes to hours, it has remained puzzling
how cardiac myocytes regulate Ca2+-dependent gene regulation given the rhythmic cycling
of cytosolic [Ca2+]i with each heart beat. This has led some to propose that specific
membrane microdomain compartments are responsible for Ca2+-dependent signal
transduction to the nucleus [86,87].

CaM plays a significant role in coupling ICa,L to transcriptional regulation in cardiac
myocytes, particularly in the activation of hypertrophic signaling [88,89]. Ca2+-CaM
activates a number of transcriptional pathways, and the two most prominent in cardiac
muscle involve either Ca2+-CaM-dependent protein kinases (CaMK) or the phosphatase
calcineurin (protein phosphatase 2B, PP2B) [88]. The importance of ICa,L in stimulating
hypertrophic remodeling was recently demonstrated in transgenic mice with cardiac-specific
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overexpression of the LTCC β2a subunit to increase ICa,L, which develop hypertrophy that is
inhibited using blockers of LTCCs, CaMK, or calcineurin [90].

Relatively little is currently known regarding whether specific LTCC populations are
responsible for signaling to the nucleus through the CaM-CaMK pathway. Interestingly,
CaMKIIα has been localized to lipid rafts in neurons, and disruption of lipid rafts using
methyl-β-cyclodextrin reduced phosphorylation of CaMKII substrates [91,92]. However,
several studies have shown that overexpression of the nuclear localized CaMKIV and
CaMKII-δB isoforms stimulate cardiomyocyte hypertrophy whereas the nonnuclear
CaMKIIα does not seem to play a significant role in hypertrophic remodeling [93,94]. There
is evidence that ICa,L triggers translocation of CaM from the cytosol to the nucleus, where it
activates nuclear CaMKIV [95]. In cardiomyocytes, CaMKIV induces a hypertrophic
response through activation of the transcription factor MEF2 [94].

Activation of the Ca2+-CaM-calcineurin pathway leads to dephosphorylation of members of
the nuclear factor of activated T cells (NFAT) transcription factor family within the cytosol,
which then translocate to the nucleus to regulate genes involved in cardiac hypertrophy [96].
In arterial smooth muscle cells and neurons, a macromolecular signaling complex between
Cav1.2, AKAP5, and calcineurin couples ICa,L with NFAT-mediated gene transcription
[97,98]. Recently, calcineurin has been demonstrated to associate with Cav1.2, AKAP5, and
Cav-3 in ventricular myocytes [85]. This raises the possibility that LTCCs within caveolae
or associated with Cav-3 scaffolds specifically couple to calcineurin-NFAT-mediated gene
regulation (Fig. 2); however, little experimental evidence currently exists to directly support
this hypothesis. It is worth noting that Cav-3 has a known role in cardiac hypertrophy, as
knockout of Cav-3 leads to hypertrophic cardiomyopathy in mice [99].

3.4. Membrane microdomains and excitation-secretion coupling
LTCCs provide a critical influx of Ca2+ necessary for secretion of hormones in some cell
types [100,101]. Cav1.2 associates with several soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) proteins involved in exocytosis [102,103]. In
pancreatic β-cells, it has been shown that the coupling of LTCCs to SNARE proteins permits
locally elevated [Ca2+] near exocytotic machinery to trigger insulin secretion [102].

In atrial myocytes, LTCCs regulate secretion of atrial natriuretic peptide (ANP), a hormone
with diuretic, natriuretic, and vasodilatory properties [104]. However, the precise role of
ICa,L remains unclear. Some studies have shown that ICa,L stimulates ANP release, but other
studies have suggested that ICa,L inhibits ANP secretion [105-112]. ANP release is also
largely controlled by mechanical stretch, and ICa,L is coupled to the regulation of stretch-
induced ANP secretion, suggesting there may be different roles for Ca2+ in basal versus
stimulated release [112-114].

Little is known regarding the subcellular localization of ANP release machinery in atrial
myocytes. However, several aspects of caveolae make this microdomain an attractive
candidate for coordinating secretion of ANP. First, ANP has been localized to caveolae in
atrial myocytes using electron microscopy [115]. Second, the localization of SNARE
proteins to cholesterol-rich microdomains has been reported in various cell types and
methyl-β-cyclodextrin treatment reduces exocytosis of secretory vesicles [116-118]. Finally,
caveolae contain a subpopulation of LTCCs and are essential for translating mechanical
stretch to activation of downstream signaling pathways, both of which impact the rate of
ANP release [5,119]. Thus, it is possible that ANP release from atrial myocytes occurs in
specialized membrane microdomains such as caveolae where LTCCs have preferred access
to secretory machinery.
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3.5. Modulation of ICa,L by membrane cholesterol and lipids
Relative to the bulk plasma membrane, lipid rafts and caveolae are enriched in
sphingolipids, cholesterol, and phosphoinositides, which have been shown to modulate the
functional properties of a number of ion channels [39,120]. Experimental approaches to
investigate the role of cholesterol or lipids on ion channel function are often complicated
because these interventions also target a large number of signaling molecules that regulate
ion channel activity. However, there is some evidence that cholesterol directly modulates
ICa,L. Exposure of smooth muscle cells to cholesterol-enriched liposomes led to a gradual
increase in ICa,L and a positive shift in the voltage dependence of inactivation that was
speculated to result from changes in membrane physical properties [121]. Importantly, lipid-
altering strategies such as statin drugs or dietary supplementation with n-3 polyunsaturated
fatty acids have shown promise as anti-arrhythmic therapy. These interventions are believed
to exert effects via several mechanisms including modulation of ion channel expression and
function [122-124]. The antiarrhythmic action of polyunsaturated fatty acids such as
eicosapentaenoic acid has been partially attributed to a decrease in ICa,L [122,125].
Likewise, simvastatin has been shown to suppress ICa,L in mouse ventricular myocytes
[126]. Studies have also shown that statins and diets rich in n-3 polyunsaturated fatty acids
alter lipid raft and caveolar composition [127-130]. Future work is needed to investigate
whether these lipid-altering therapies specifically result in changes in the localization,
function, or regulation of LTCCs within membrane microdomains.

4. Unique regulation of LTCC subpopulations
Neurohormonal regulation of LTCCs is central to the ability of the heart to adapt to
changing physiological needs by altering heart rate and contractility [131,132]. Membrane
microdomains such as lipid rafts and caveolae are particularly well-suited for regulation of
ICa,L because of the targeting of proteins involved in a variety of signaling cascades to these
domains. Co-localization of signaling molecules with LTCCs enables highly localized and
specific regulation of the channels.

4.1. Localization of LTCCs to a caveolar macromolecular signaling complex is required for
β2-adrenergic regulation

The sympathetic nervous system drives the fight-or-flight response through activation of β-
adrenergic receptors, and one of the essential downstream targets of β-adrenergic regulation
is the LTCC [38]. Three subtypes of β-adrenergic receptors exist (β1-3) in myocardium and
notable differences exist in the manner by which each receptor affects downstream
pathways. For example, chronic activation of β1-adrenergic receptors results in
cardiomyocyte apoptosis, whereas β2-adrenergic receptor stimulation is cardioprotective
[133]. Furthermore, β1 receptor activation causes a global cellular response that includes
PKA-mediated phosphorylation of multiple proteins involved in EC coupling including
LTCCs and the SR protein phospholamban, yet β2 receptors signal locally to increase ICa,L
without affecting other PKA-dependent processes such as phospholamban phosphorylation
[134,135].

A number of recent studies have helped explain these divergent physiological responses
observed with β1 versus β2-adrenergic receptor activation. A subpopulation of LTCCs was
identified as part of a caveolar macromolecular complex with the β2-adrenergic receptor,
adenylyl cyclase, Gαs, Gαi, and protein phosphatase 2A (PP2A) in ventricular myocytes [5].
Disruption of caveolae in neonatal mouse ventricular myocytes with either methyl-β-
cyclodextrin or short interfering RNA (siRNA)-mediated knockdown of Cav-3 abolished β2-
adrenergic stimulation of ICa,L (Fig. 1C,D) without effecting β1-adrenergic enhancement of
ICa,L[5]. Similar studies utilizing methyl-β-cyclodextrin or intracellular application of Cav-3

Best and Kamp Page 8

J Mol Cell Cardiol. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



antibody in adult rat ventricular myocytes showed disruption of normal β2 regulation of
ICa,L [42]. These results demonstrate specific coupling of LTCCs with β2-adrenergic
receptors within caveolae or in a complex scaffolded by Cav-3 and suggest that channels
coupled to β1-adrenergic signaling molecules localize outside of cholesterol-rich membrane
microdomains. Interestingly, ICa,L-mediated cardiomyocyte apoptosis resulting from β1-
adrenergic activation involves CaMKII, which has not been reported in caveolae [136].
Thus, the specific coupling of caveolar LTCCs with β2-adrenergic receptors may stimulate
pro-survival signaling (Fig. 2) [86,137].

Activation of Gαs-coupled receptors activates adenylyl cyclase, resulting in production of
cAMP. Monitoring subcellular localization of cAMP pools using fluorescence resonance
energy transfer (FRET)-based biosensors in ventricular myocytes has demonstrated that
stimulation of β-adrenergic receptors using isoproterenol leads to cAMP accumulation
within cytosolic and caveolar compartments, whereas activation of another Gαs-coupled
receptor, the E-type prostaglandin receptor 4, results only in cytoplasmic cAMP production
[138]. Thus, restricted production of cAMP within the caveolar compartment following β2-
adrenergic receptor activation may explain the localized signaling between β2 receptors and
LTCCs. This idea is consistent with studies in which disruption of caveolae with methyl-β-
cyclodextrin led to more diffuse cAMP regulation after β2-adrenergic activation that
included PKA phosphorylation of phospholamban [139]. Spatially restricted cAMP
generation associated with β2 adrenergic activation may also involve coupling of β2
receptors with Gαi or localized expression of phosphodiesterase 4D isoforms [140,141].

4.2. AKAP5 essential for β-adrenergic stimulation of [Ca2+]i transient
Whereas selective activation of β2-adrenergic receptors within caveolae does not have far-
reaching regulatory effects on phospholamban or contractile proteins, β1-adrenergic
stimulation leads to global signaling events that increase contractility and speed relaxation.
Recently, a macromolecular signaling complex involving the scaffolding protein AKAP5
and Cav-3 was demonstrated to be essential for β-adrenergic regulation of EC coupling
proteins including LTCCs, ryanodine receptors and phospholamban [85]. Knockout of
AKAP5 in mice abolished isoproterenol (a nonselective β-adrenergic receptor agonist)
stimulation of [Ca2+]i transients, as well as phosphorylation of ryanodine receptor and
phospholamban. Intriguingly, enhancement of whole cell ICa,L by isoproterenol remained
intact in AKAP5 knockout mice. Further work demonstrated that in wild type mice, Cav1.2
channels associated with Cav-3 were preferentially phosphorylated at Serine 1928 (S1928)
after treatment with isoproterenol whereas the fraction of Cav1.2 not associating with Cav-3
did not undergo significant phosphorylation. In AKAP5 knockout mice, however, the
converse was observed as isoproterenol predominantly led to phosphorylation of non-Cav-3-
associated Cav1.2 channels. Thus, loss of AKAP5 leads to β-adrenergic stimulation of ICa,L
acting on a different subpopulation of LTCCs that does not communicate directly with
ryanodine receptors. However, the physiological relevance of S1928 phosphorylation is
debated as recent studies have demonstrated that S1928 is not necessary for the PKA-
mediated increase in ICa,L [131,142,143]. Nevertheless, the authors provided important
evidence to propose a model in which AKAP5 serves as a scaffold to assemble proteins
involved in EC coupling with a β-adrenergic signaling complex within T-tubules, and
interestingly this macromolecular signaling complex included Cav-3 (Fig. 2).

Questions remain regarding the precise subcellar localization of this AKAP5/Cav1.2/Cav-3
complex. In ventricular myocytes, caveolae are found in both surface and T-tubular
sarcolemma but are absent from dyadic junctions [53,144]. A number of studies have
demonstrated Cav-3 expression within the T-tubule system in ventricular myocytes, where
Cav-3 has some degree of colocalization with Cav1.2 and ryanodine receptor [54,145].
Considering caveolar structures are excluded from dyads, the observation that Cav-3
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colocalizes with both Cav1.2 and ryanodine receptor within the cell interior may suggest the
presence of Cav-3 scaffolds at or very close to dyadic junctions. A recent study using a triple
immunolabeling strategy revealed that a small but significant percentage (~3-5%) of Cav-3
colocalizes with both Cav1.2 and ryanodine receptor in atrial myocytes, suggesting Cav-3 is
expressed at or adjacent to select dyads; however, atrial myocytes lack the highly developed
T-tubule system seen in adult ventricular myocytes, which may lead to differences in dyad
architecture between the two cell types [146,147]. Another study using confocal microscopy
has reported little to no Cav-3 localization at dyad junctions in rat ventricular myocytes
[148]. Because perturbation of cholesterol rich microdomains reduces [Ca2+]i transient
amplitude and knockout of Cav-3 in mice leads to reduced myocardial contractility
measured by fractional shortening, it seems possible that Cav-3 is expressed sufficiently
close to dyadic junctions to play an important role in regulating EC coupling (Fig. 2) or
alternatively influx of Ca2+ through distinct caveolar LTCCs contributes significantly to
loading SR stores [42,99]. Additional strategies such as immunogold electron microscopy
may yield insight into the localization of Cav-3 relative to dyadic Cav1.2 channels.

5. Targeting LTCCs to subcellular compartments
Considering spatially defined subpopulations of LTCCs regulate discrete cellular functions,
understanding the mechanisms responsible for appropriate channel targeting to various
subcellular compartments in cardiac myocytes is important, yet these pathways are largely
undefined. Recent advances in our understanding of LTCC trafficking in cardiomyocytes
will be briefly discussed.

5.1. Influence of Ca2+ channel auxiliary subunits on subcellular localization of LTCCs
The LTCC β subunits may play a significant role in defining subcellular L-type Ca2+

channel populations. Early evidence that β subunits can directly impact subcellular Ca2+

channel targeting came from studies in polarized epithelial cells, in which Cav2.1 subunits
were trafficked to the basolateral membrane by β1a and β4 subunits but exhibited apical
membrane localization when coexpressed with β2a [149]. Disparities in the localization of
various β subunits have been also observed in cardiomyocytes. Western blots of canine
ventricular membrane fractions and immunoconfocal microscopy of isolated ventricular
myocytes demonstrated that β1b, β2, and β3 isoforms localize predominantly to T-tubule
membranes while expression of β1a and β4 was detected more strongly at the surface
sarcolemma [23]. Furthermore, adenovirus-mediated expression of various β subunits fused
to GFP showed marked differences in subcellular localization among β subunit isoforms in
cultured adult rat ventricular myocytes [59]. There is mounting evidence that caveolar
localization of Cav1.2 channels requires an association between β2 subunits and Cav-3,
suggesting β subunits play an active role in targeting L-type Ca2+ channel complexes in
cardiac myocytes [150].

A role for α2δ subunits in subcellular targeting of LTCCs has also been proposed. The α2δ
subunits undergo posttranslational modification to add glycosylphosphatidyl inositol (GPI)
anchors, which are known to localize proteins to highly ordered microdomains such as lipid
rafts and caveolae [151-152]. Another possibility is that trafficking of cardiac LTCCs to
caveolae may involve Cav-3. Cav-1 has been demonstrated to direct trafficking of the
voltage-dependent K+ channel Kv1.5 to cholesterol-rich rafts [153]. The skeletal muscle
Cav1.1 LTCC subunit has been reported to interact directly with Cav-3; however, this has
not been demonstrated with Cav1.2 [154]. Future work will be necessary to carefully address
whether other auxiliary subunits are important for targeting LTCC complexes to specific
membrane microdomains such as caveolae.
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5.2. BIN1 targets channels to T-tubules in cardiac myocytes
Localization of LTCCs to dyadic junctions within T-tubule structures is essential for EC
coupling, and mislocalization of channels caused by remodeling in heart failure is thought to
contribute to impaired contractility. T-tubule biogenesis involves the membrane scaffolding
protein BIN1, and recent studies have implicated BIN1 in targeting LTCCs to T-tubules
[155,156]. BIN1 localized to T-tubules in human and mouse ventricular myocytes in that
BIN1 tethers microtubule structures to coordinate anterograde trafficking of Cav1.2 channels
to T-tubule structures [156]. Importantly, knockdown of BIN1 reduced plasmalemmal
expression of Cav1.2 channels and diminished [Ca2+]i transients, suggesting fewer dyadic
LTCCs [156].

5.3. Internalization and degradation of LTCCs
Although BIN1 plays an important role in anterograde trafficking of LTCCs to the plasma
membrane, other mechanisms likely regulate channel retrieval and intracellular trafficking.
There is some evidence for regulated internalization of LTCC complexes in cardiomyocytes;
exposure of ventricular myocytes to isoproterenol for several minutes led to β-arrestin-1-
mediated internalization of Cav1.2 into clathrin-coated vesicles [157]. However, it was
unclear whether a specific subpopulation of LTCCs was targeted for internalization (i.e.
bulk plasma membrane vs. caveolar); however, caveolar endocytosis is thought to be largely
clathrin-independent, which suggests internalized channels are extracaveolar [158].
Furthermore, the destination of these internalized channels was not defined. Evidence exists
for endocytic recycling of some cardiac ion channels to the surface membrane, and this
process is normally regulated by the small GTPase Rab11 [159-161]. However, Rab11b has
been demonstrated to target surface membrane LTCCs for degradation in cardiomyocytes
[162]. Thus, recycling of cardiac LTCCs to the plasma membrane may occur via an
alternative pathway, or internalized Cav1.2 channels may be preferentially degraded rather
than recycled. In neurons, L-type Cav1.2 and Cav1.3 channels internalized in the presence of
glutamate are targeted to the lysosome, which is thought to protect against excitotoxicity
[163,164].

6. Altered microdomains disrupt LTCC function in cardiac disease
Dysregulation of LTCCs contributes to the pathophysiology of numerous heart diseases
including heart failure, atrial fibrillation, and long and short QT syndromes [165-170].
Several reports have suggested that the geometry and protein composition of subcellular
compartments associated with LTCC activity are altered in some cardiac diseases [171-174].
These changes could directly impact the function and regulation of LTCCs and contribute to
defects in Ca2+ signaling, dysregulated EC coupling, and electrical instability [175].

6.1 Mutations in Cav1.2 and LTCC auxiliary subunits
Mutations in the genes encoding Cav1.2 and LTCC auxiliary subunits including β2b and
α2δ-1 have been reported in patients with inherited arrhythmia disorders [165,169,176]. A
number of mutations in Cav1.2, β2, and α2δ-1 lead to a loss-of-function phenotype
characterized by dramatically reduced ICa,L. Although in most cases the reduction in ICa,L
was attributed to changes in biophysical properties of the channel, one mutation in Cav1.2
(A39V) associated with short QT syndrome and sudden death disrupted LTCC trafficking
[165,176]. It is unclear whether any of these reported loss-of-function mutations alter the
specific subcellular localization of LTCCs. However given the potential role of auxiliary β
and α2δ subunits in the subcellular targeting of LTCCs (see Section 5.1), it is possible these
phenotypes could result from the mislocalization of critical LTCC subpopulations.
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Timothy syndrome (TS) is a multisystem disorder characterized by ventricular arrhythmias
and autism resulting from gain-of-function mutations (G406R, G402S) in Cav1.2 that
interfere with voltage-dependent channel inactivation [169]. Interestingly, TS mutant G406R
Cav1.2 channels have recently been demonstrated to exhibit increased propensity for
coupled gating and persistent Ca2+ sparklets [83]. TS Cav1.2 channels in transgenic
ventricular myocytes exhibited prominent localization at the surface sarcolemma and
intercalated discs relative to T-tubules, suggesting these mutant channels represent a distinct
subcellular population [167]. TS Cav1.2 channels appear to be abnormally coupled to
AKAP5, undergoing frequent and prolonged openings that are eliminated by knockout of
AKAP5 [167]. AKAP5 ablation also protects TS transgenic mice from arrhythmias,
indicating persistent Ca2+ sparklet activity plays a significant role in the TS phenotype.
Precisely where TS Cav1.2 channels target remains unclear, but caveolae represent an
intriguing candidate due to the known association between AKAP5 and Cav-3 [85].

6.2. CAV3 mutations associated with arrhythmia and cardiomyopathy
Congenital long QT syndrome (LQTS) is a potentially lethal disorder associated with
delayed cardiac repolarization, prolonged QT interval, and ventricular arrhythmias and
arises due to mutations in a number of ion channels and scaffolding proteins [178].
Recently, mutations in the CAV3 gene were identified in a subset of LQTS patients
(designated LQT9). Initial studies showed that the CAV3 mutations resulted in increased late
Na+ current through Nav1.5 channels, which could prolong action potential duration [179].
Because LTCCs and important regulatory molecules such as β2-adrenergic receptors
associate with Cav-3, alterations in ICa,L may also contribute to the pathophysiology of
LQT9. However, additional information regarding the electrophysiological effects of LQTS
CAV3 mutations is not available. Other mutations in CAV3 have been linked to familial
hypertrophic cardiomyopathy in one family and dilated cardiomyopathy with AV
conduction defects in another [180,181]. The molecular mechanisms leading to these
phenotypes are not well understood.

In addition to CAV3, mutations in the gene encoding the caveolar protein PTRF/Cavin have
also been linked to LQTS, sinus bradycardia, and supraventricular and ventricular
tachycardias [182]. Further work will be required to understand the detailed mechanisms
underlying cardiac arrhythmias and cardiomyopathies induced by mutations in caveolar
proteins.

6.2. Remodeling in failing heart
Heart failure is characterized by weakened myocardial contractile force, partially due to
abnormal EC coupling resulting in reduced SR Ca2+ release [171,183,184]. A number of
studies have demonstrated extensive remodeling of the T-tubular system in failing heart,
which likely contributes to inefficient EC coupling [167,185-187]. T-tubule structural
remodeling in heart failure is associated with a significant (~50%) reduction in the density of
LTCCs, and Cav1.2 channels within T-tubules may be specifically decreased compared to
channels in the surface membrane [167,188]. It has also been suggested that T-tubule
remodeling may alter the geometry of the dyadic cleft microdomain [171,174,189].
Alternatively, changes in T-tubular architecture and composition could potentially disrupt
macromolecular signaling complexes and lead to dysregulation of LTCCs. Blunted β-
adrenergic regulation of ICa,L has been observed in animal heart failure models and in
human heart failure [167,190]. Changes in the relative density, localization, and coupling of
β-adrenergic receptor subtypes have been observed [190-193]. For example, in a canine
tachycardia-induced heart failure model, enhanced β2-adrenergic signaling through Gαi
strongly blunted the increase in ICa,L by β1-adrenergic stimulation [190].
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6.4. Atrial fibrillation
Chronic atrial fibrillation involves important structural and electrical changes including
significant downregulation of ICa,L that results in shortened action potential duration and
reduced atrial contractility [194,195]. Some studies have attributed the decrease in ICa,L to a
reduction in transcription of Cav1.2 or various LTCC auxiliary subunits genes resulting in
reduced mRNA and protein levels, whereas other reports have suggested impaired
posttranslational modifications such as dephosphorylation of Cav1.2, altered channel
trafficking, or enhanced degradation [196-200]. A decrease in T-tubule density was
observed in atrial myocytes from a sheep model of atrial fibrillation, which may underlie
dysynchronous CICR and reduced contractility [201]. However, it remains unclear whether
specific populations of LTCCs are altered in atrial fibrillation.

7. Conclusions and future directions
In cardiac myocytes, LTCCs are localized to multiple distinct subcellular compartments that
impact their function and regulation (Fig. 2). The significance of dyadic LTCCs in EC
coupling has long been recognized, but other subpopulations, such as those localized to
caveolae, are increasingly implicated in a variety of cellular functions and signaling
pathways. Many cardiac diseases involve changes in subcellular architecture and
organization, thus altered subcellular localization of LTCCs with associated changes in
channel function properties can produce aberrant electrophysiology with resulting
arrhythmias as well as dysregulation of various Ca2+-dependent cellular processes. Many
gaps in our knowledge remain. For example, technical limitations still preclude detailed
single channel studies of critical populations of LTCCs localized to T-tubules and thus out
of reach from the patch pipette or TIRF microscope. Future studies will undoubtedly reveal
additional details regarding how LTCCs and associated Ca2+-signaling molecules are
assembled and targeted to defined subcellular compartments. Furthermore, a better
understanding of the various subcellular populations of LTCCs may enable new therapeutic
approaches for prevalent forms of heart disease such as heart failure and atrial fibrillation.
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Abbreviations

LTCC L-type Ca2+ channel

EC excitation-contraction

ICa,L L-type Ca2+ current

SR sarcoplasmic reticulum

T-tubules transverse tubules

CICR Ca2+-induced Ca2+ release

[Ca2+]i free intracellular Ca2+ concentration

PKA protein kinase A

Cav caveolin

PTRF Polymerase I and Transcript Release Factor

C-terminus carboxyl terminus
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CDI Ca2+-dependent inactivation

CaM calmodulin

CREB cAMP-responsive element-binding protein

TIRF total internal reflection fluorescence

AKAP A-kinase anchoring protein

PKCα protein kinase C alpha

CaMK Ca2+-CaM-dependent kinase

PP2B protein phosphatase 2B

NFAT nuclear factor of activated T cells

SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

ANP atrial natriuretic peptide

PP2A protein phosphatase 2A

FRET fluorescence resonance energy transfer

GPI glycosylphosphatidyl inositol

TS Timothy syndrome

LQTS congenital long QT syndrome
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Highlights

> L-type Ca2+ channels regulate diverse cellular processes in the heart.

> Different L-type Ca2+ channel subpopulations exist in cardiomyocytes.

> Function and regulation of L-type Ca2+ channels depend on subcellular
localization.

> Altered localization of L-type Ca2+ channels plays a role in heart disease.
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Figure 1. Cardiomyocyte L-type Ca2+ channels localized to caveolae are regulated by β2-
adrenergic receptor activation
(A,B) Immunogold electron micrographs of mouse neonatal ventricular myocytes
demonstrate co-localization of the Cav1.2 subunit of L-type Ca2+ channel (large particle,
arrows) with Cav-3 (small particle, arrowheads) within caveolae. Scale bars represent 200
nm. (C) β2-adrenergic receptor activation with 10 μM salbutemol (Sal) plus 10 μM atenolol
(Aten) increases peak ICa,L in neonatal mouse ventricular myocytes under control
conditions. (D) β2-adrenergic stimulation of ICa,L is lost in cells in which caveolae are
disrupted using Cav-3 siRNA. Copyright (2006) National Acadamy of Sciences, USA [5].
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Figure 2. Schematic of L-type Ca2+ channel subpopulations and associated macromolecular
signaling complexes that contribute to diverse processes within the cardiac myocyte
Within T-tubules, some L-type Ca2+ channels (LTCCs) form dyadic junctions with
ryanodine receptors (RyR2) on the apposing sarcoplasmic reticulum (SR). A small influx of
Ca2+ through LTCCs triggers release of SR Ca2+ stores through RyR2, leading to the
intracellular [Ca2+]i transient, which is essential for activation of myofilament proteins
leading to contraction. β-adrenergic receptor (β-AR) stimulation of [Ca2+]i transients
involves a signaling complex consisting of LTCCs, β-AR, adenylyl cyclase (AC), protein
kinase A (PKA), caveolin-3 (Cav-3), and A-kinase anchoring proteins (AKAPs) [85].
Multiple AKAPs are important for regulating LTCC function in the heart including AKAP5
and AKAP15 [85,131]. Additional LTCC subpopulations in the surface sarcolemma are
implicated in signaling to the nucleus to regulate the transcription of genes involved in cell
survival or cardiac hypertrophy and may also contribute to membrane excitability. Within
caveolae, LTCCs associate in a macromolecular protein complex with β2-AR, AC, PKA,
protein phosphatase 2A (PP2A), and Cav-3. Caveolar LTCCs are locally stimulated by β2-
AR activation [5]. Coupled gating of closely neighboring LTCCs results in persistent Ca2+

sparklets, which are enhanced by AKAPs and protein kinase C alpha (PKCα) and may serve
as a local source of Ca2+ to stimulate calcineurin (PP2B) signaling to the nucleus [83,97].
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